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Abstract

Fractal image coding has significant potential for the compression of still and mo-
ving images and also for scaling up images. The objective of our investigations was
twofold. First, compression ratios of factor 60 and more for still images have been
achieved, yielding a better quality of the decoded picture material than standard
methods like JPEG. Second, image enlargement up to factors of 16 per dimension
has been realized by means of fractal zoom, leading to natural and sharp repre-
sentation of the scaled image content. Quality improvements were achieved due
to the introduction of an extended luminance transform. In order to reduce the
computational complexity of the encoding process, a new class of simple and suited
invariant features is proposed, facilitating the search in the multidimensional space
spanned by image domains and affine transforms.

1. INTRODUCTION

Lossy image compression based on the removal of redundant and irrelevant content of the
picture information brings about compression factors up to 10. For increasing compression
ratios up to factors of 100 and more as required for limited bandwidth transmissions or



between the original and the decoded picture are not visually significant for certain textures
and structures like hair, trees, clouds and other irregular detail. Fractal image coding
performs superior here, since information detail occurring manifold in different scales under
slight variations can easily be modelled.

Image enlargement is applied for example to printing posters using resolution limited
sources as e.g. TV cameras. Linear magnification factors of 16 and more per spatial dimen-
sion are required. Key point is the expansion of image information by a factor of 256 adding
subjectively realistic and acute image information, where standard interpolation algorithms
lead to a blurred representation.

The coding scheme underlying the investigated algorithms is the fractal block coder!,
where domain blocks are contractively mapped onto range blocks by concatenation of a
massic or luminance transform LT and a geometrical transform GT like depicted in Figure
1.

Massic
Transform

‘0\\ Wi

/} '\§/"~}!‘\
SATANRIS N
K

BN
LRSI

Geometric
Transform

Fig. 1  Principle of fractal block coding.

If the picture is divided in nonintersecting rangeblocks, the compression gained is the
amount of information conveyed in the mapping parameters compared to a description
by space discrete colour values. Due to the recursive application of the mappings at the
decoder, the notion Iterated Function System (IFS) is introduced?.

Compared to classical DCT based coding schemes, fractal image compression is superior
in encoding edges as well as low frequency picture content with lack of perceivable texture.
Due to the exploitation of scaling invariance (the domain blocks are scaled down by a factor
of 2), the modelling of areas with high frequency detail is difficult. However, such detail
often is of irregular nature so that there is no or minor perception of artefacts as long as the
decoded picture content is similar to the original. This is rather advantageous for image
coding. Even if the PSNR values are bad in such areas, impairments are visually concealed,
given that there is no well known, recognizable geometrical pattern within the picture, like
for example characters or geometrical figures. The quality of fractal image coding with
respect to classical DCT based coding schemes is well documented?®.



plexity. In order to find the best encoding parameters there is the task for each range block
to find a domain block which gives the best approximation after application of geometric
and luminance transform. The search space to be investigated is spanned by the amount
of domain block locations, which is equal to the number of pixels of the image, and the
variations of all transform parameters. Therefore the major part of our work concentrated
on methods to reduce the search effort to a value acceptable for practical implementations.
This involves intelligent search methods known from computer science and a definition of
simple features invariant against pixel permutations like rotation or mirroring. First of
all an extension of the luminance transform is introduced together with a practical imple-
mentation strategy. It can be used for example to achieve quality improvements in case of
magnification based on IFS.

2. HIGHER ORDER LUMINANCE TRANSFORM

The original coding scheme of A. Jacquin! foresees a luminance transform applying lumi-
nance scaling of domainblocks and addition of an offset which is equal to adjusting contrast
and brightness. Generalized, the massic part of the mapping from domain blocks Lp to
range blocks Lr can be expressed as LT(Lp(z,y)) = s- Lp(z,y)+ o. Finding the best
approximation of a range block Lp usually is done by applying least squares error criteria
and taking into account the constraint s < 1 in order to ensure contractivity of the map-
ping. However in practice so called eventual contractivity may be sufficient to maintain
decoder convergence. Y. Fisher® reports experiments where s reached up to 4 and the de-
coder still converged, although at lower speed. Another phenomenon was observed in these
experiments. The best PSNR was found at s,,,, = 2, not below 1! One may deduce that
the increased parameter space s leads to a better approximation of the collage, which on
the decoder side only is constrained by bad fixpoint approximation when s becomes too
large. Anyhow, as a conclusion it is worthwhile to increase self similarity between domain
and range blocks by extending the luminance transform, especially when the application
requires high quality reproduction or even interpolation in case of image magnification. D.
Monro*? proposed the Bath Fractal Transform BFT to drastically limit the search area and
still be able to model blocks with the help of polynomial functions over the space, helping
to increase self similarity. Another way of luminance transformation extension is proposed
by G. Vines® as a first order luminance transform in conjunction with an orthonormal basis
of codebook vectors. In that case the encoding of an image becomes a matter of projection
operations, reducing computational effort of domain block search.

In our investigations the luminance transform has been extended by polynomial functions

LT(Lp(z,y))=so Lp(z,y)+s1-a+s2-y+ss-a-y+ss-a°+s5-y°+o (1)

of the spatial coordinates z,y up to second order, also making use of mixed terms. The
polynomial part can be regarded as an approximation of the block. The residual part
is encoded by IFS means using the whole domain pool in order to avoid a priori quality
restrictions. As polynomial and residual part are orthogonal, they can be treated separately.

A fast algorithm for the determination of the luminance transform has been developed
by calculating the polynomial coefficients sg, 0, s1, s2,... only once for each range and
each domain block. The Np pixels of range blocks Lp and shrinked domain blocks Lp



domainblock = polynomial surface + residual content

N
i
RNl unuwet
IO
AN unawae
easaEIT
AN NN
AN

Fig. 2 Example for increasing self similarity by a first order luminance transform.

are serialized and written as onedimensional vectors. Any vector Lp is represented as
Lg = Lg + M - Pg, composed of the polynomial coefficient vector Pg, the matrix M
consisting of the spatial variables z,y, z -y, 22, y2, - - - and the residual signal vector Lg. The
mapping from domain blocks Lp onto range blocks Lp is expressed by the transformation
Lr=s9-Lp+ M - P leading to

Lp+M -Pr=sy-[Lp+M-Pp)|+M-P . (2)
After separation of the polynomial terms
P = Pr—so-Pp, where Pp=[(MT-M)™"M"]-Lr and Pp = [(MT-M)"*-MT]-Lp (3)

the scale factor sg is calculated from the pseudoinverse of the N]% X 1-matrix iD as
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so=[(Lh Lp)™ - Lp]-Lr = —x—= : (4)




is illustrated in Figure 2, where four differently looking domainblocks turn out to have the
same appearance after subtracting the first order polynomial part.

Obviously there are also two drawbacks of this scheme. The computational complexity
and the number of IFS parameters is increased and therefore the compression ratio is
decreased. This is acceptable in certain applications, especially in the case of fractal zoom,
where blockiness is one major impairment. For standard encoding/decoding applications
there are other benefits. Using a quad tree approach for the hierarchical coding of range
blocks?, it is possible to increase the number of large blocks. This is reasonable as long
as the amount of additional parameters s; is smaller than the entire mapping parameters
needed for the subblocks. Another benefit is given for small picture sizes like for example
the QCIF format used for very low bitrate coding. Changed image statistics and a reduced
domain pool are imposing restrictions on the applicability of IFS based coding methods.
It is important here to use the domain pool most effectively and therefore to increase self
similarity by the extended luminance transform. A matter of future work in this field will
be the investigation of other luminance transforms paying a better tribute to the image
statistics of such pictures together with a good performance of the zooming function, which
is of special interest here.

3. FAST SEARCH USING INVARIANT FEATURE KEYS

The reduction of the enormous encoding effort of fractal encoders gave rise to lots of in-
vestigations. Starting from A. Jacquin', who used three simple block classifications, shade
blocks without a significant gradient, edge blocks featuring a significant gradient across a
curve and midrange blocks containing moderate gradients like textures. Y. Fisher® uses
mean values and variances of the four domain/rangeblock quadrants to derive 72 classes.
The idea behind classification is to characterize a range block a priori and search for proper
domain blocks only within the subset of the domain pool belonging to the respective class.
A comprehensive overview of complexity reduction algorithms is given by A. Saupe and
R. Hamzaoui®, characterizing known methods as being based on discrete (classification,
adaptive clustering) and continuous features (1 D functional vectors, feature vectors). The
complexity of such search reduction methods equals a - O(Npe), where the efficiency of the
particular method decreases a, but still stays linear to the amount of pixels N,. in the
image, which corresponds to the amount of domain blocks.

It has already been mentioned, that the range and domainblocks Li and Lp are serialized
for practical issues, forming vectors of Np and Np elements. A simple and direct approach
is to regard the domain pool as a file of N, records, each of which contains Np keys.
Following the work of J. L. Bentley et. al.®%1911 the application of multidimensional search
trees reduces the linear effort to expected logarithmic order O(log(N,)). Different search
space partitionings are known (Figure 3), all leading to logarithmic mean search effort.

D. Saupe” mentions the huge memory requirements of & — d trees for domain block
search applications. As keys he uses the normalized part of a block L which is orthogonal
to the normalized vector representing the DC component [11 --- 1]7/y/Ng. To reduce the
memory requirements, D. Saupe has investigated k — d trees in conjunction with Fisher’s
classification scheme and downsamples the keys to a number of 4 or 16 respectively. Instead
of inserting each domain under application of the 8 isometries! (identity map, reflection,
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Fig. 3  Search space partitionings.

rotation), he searches each range block 8 times in the different variations. To reduce search
time, not only the nearest but the 1+ ¢ nearest neighbour is searched for.

The key point of reducing the search order from order a - O(N,y) to expected a -
O(log(N,er)) is an important step. The notification ezpected is reflecting to the organi-
zation of the tree. Constructing it from scratch with no constraints would possibly lead to
a degenerated tree, where the mean logarithmic search time could not be achieved. The
structure will largely depend on the statistics of the blocks found in an image, thus it is
image dependent. So in our algorithm we fixed the tree at the first levels by predeterming
keys and their respective division thresholds. A further possibility is to prohibit the divi-
sion of very small subspaces and either insert new domain entries as a list associated to the
respective node or discard them totally and only insert a representative block in the node.

Another important step for the reduction of search effort is the efficient treatment of the
isometries, which is proposed in the following. In Figure 4 the basic idea is sketched for a
4x4 pixel block:

|sometries Invariant Features:{Y A, Y O, YO}
~ [
L) [/ —
4 } !
W 7 D

> O |O|>
o \\g|g|o
o|g|o
>O|O|>

Fig. 4 Isometry invariant features.

All pixel locations of a block, which are mapped onto themselves, are accumulated. For
a 4x4 block three features can be extracted that may be used as keys in a k — d tree.
Searching under all isometry variations is not necessary any more. A nice side effect is the
reduction of keys from 16 down to 3 giving rise to additional speedup as well as reduction



For a practical implementation only the residual luminance components are considered,
the polynomial parts of the blocks can be treated separately without putting constraints
on tree construction and search. The residual parts of the domain blocks are normalized
to Lpy = ,Z/D/”ED”Q in order to remove the dynamics in scaling. The invariant keys then
become:

ffl :Zi/DN, I(QIZEDN, I(SIZjDN (5)
A O o

A simplified example for the search is given in Figure 5, where for reasons of a better
illustration only two keys are used and a tree has been constructed out of 6 domain blocks.
The keys are supposed to have values between 0 and 6. The active key belonging to a node
is marked by an arrow, the discriminator threshold p is given below the node. Now a range
block R is to be searched, which has key values Ky = 4 and K5 = 1. Starting at the root

D1, the search will develop as:
1. discriminator: K
2. discriminator: K
3. discriminator: Ky
4. no successor

Ki(R)=4 > p(Dy)= = search right
Ky(R)=1 < p(D3) = = search left
Ki(R)=4 < p(Ds)=4.5 = search left
nearest neighbour of R is Dj.
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Fig. 5 Example for twodimensional search space and 6 domainblocks.

The computational cheap generation of the invariants is paid by a lack of completeness!?,

meaning that there are ambiguities in the discrimination of possible blocks in the feature
space. A derivation of more complete and general invariants is given by Nolle et al.!®.
The invariants proposed above are largely simplified versions of them. So arriving at Ds,
it could happen that a bad match of Lry by ED5N is discovered, although the nearest
neighbour in the feature space has correctly been found. One possibility to reduce the
ambiguity problem is to add other features, for example the variance as Y. Fisher did for
his classification scheme. This would enlarge the search tree and thus is not favourable.
Another possibility, which we investigated, is monitoring the matching error during the
search of a range block and ”climb up” the tree if ambiguities would lead into a bad branch.
At the same time a threshold check is done if the matching error is for example better than
35 dB, so that the time spent on upclimbing the tree is compensated in other cases. In total
the simulation time can be brought down to about 10 seconds for a 512 by 512 Lenna image



ratio of 35:1.

Fig. 6 Lenna encoded fractally (left) and accoding to JPEG (right) at compression ratio 35:1.

It should be mentioned that the storage of block information in internal nodes does not
follow the common k — d tree scheme, where data are stored in external nodes. For the
application of search trees to invariants however it is more practical and does not increase
the requirements of memory capacity. In case of larger blocks it is possible to use the
same approach by increasing the number of keys. If this is not wanted, pixel weighting and
subsampling may be applied to come down to 4x4 blocks again.

4. Fractal magnification

During decoding any encoded IFS may be applied to arbitrary resolutions, since it only
conveys the mapping of Np X Np sized domain blocks to N X Ny sized range blocks where
Np = aNp. While a is fixed (typically @ = 2), in the decoder Ng can be determined without
respect to the encoded block format as the IFS is continuous in space. For magnification
Npgr has to be increased while for an image shrink it has to be decreased. Compared to
classical interpolation methods this technique is therefore resolution independent.

For quality issues the above described extended luminance transform has been devel-
oped and applied. Like the affine mappings the polynomial approximation surface can
be calculated for any block size. Supposed an original range block size Np is magni-
fied to Nj; = mNp , the polynomial surface is given by the values p(z/m,y/m) Yz,y €
{0,1,...,mNgr — 1}. This polynomial surface has to be added to the mapped domain
blocks of size Np = amNgr = aNy,.

Assessments were done by visual evaluation, since PSNR measures are not applicable.
Our results have shown, that the quality of magnified pictures is proportional to the poly-
nomial order (up to order 2 has been investigated) of the approximation surface and inverse
proportional to the quantization of the polynomial parameters and of Ny with the restric-



application high compression rates are of minor priority, except for very low bitrate coding,
where there also is a strong interest of zooming the small QCIF pictures.

For magnification factors higher than 8 per spatial dimension, postfiltering has to be
applied for the suppression of blocking artifacts, which visually appear as a grid overlay.
In combination with postprocessing methods, predominating benefits of fractal zoom are
acute preservation of edges without serration effects and increased brilliance compared with
interpolation blur, cf. Figures 7 and 8 featuring Lenna’s right eye. In the fractal zoom
example no postfiltering has been carried out to demonstrate the blocking effects. By
Polidori and Dugelay'* another trick to cope with the block artefacts has been shown.
Overlapping ranges were used and weighted to suppress the effects.
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Fig. 7 Fractal agnlﬁcation 16x16 of Lenna’s Fig. 8 Convential nonlinear interpolation 16x16

right eye. of Lenna’s right eye.

5. CONCLUSIONS

The purpose of the extended luminance transform is the increase of self similarity. It can
be exploited to improve the picture quality whenever this is required. Examples are fractal
zoom, applications with medium compression and high quality or small image formats with
rather restricted domain pool. Although more parameters need to be encoded, the extended
luminance transform makes sense in quadtree approaches where the amount of large blocks
can be increased. In practical implementations a speedup of the encoding process has been
achieved by applying modified k — d trees in combination with a simple class of invariant
features that are optimal for the isometries commonly used in fractal coding. Computa-
tional complexity has been further reduced by a split between parameter calculation of the
polynomials and IFS encoding of the residual luminance signal. The encoding time on a
HP715 workstation for video coding of QCIF sequences is reduced to one second per frame.
Another potential application due to the split is scalable encoding/decoding: the polynomi-
als can be used for a fast low resolution representation of the image while the residual part
can be decoded separately and added when available. In case of transmission, the channel
encoding part may also take advantage by allowing a higher bit error rate for the fractal
part than for the polynomial part. In case of error prone environments first the fractal part
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