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Fractal-based image coding is based on the theory of iterated function systems (IFS)
which was originally developed for creation of a deterministically self-similar fractal in
the 1980s. Using this theory, an image may be represented by a dynamical system, known
as a fractal transform, whose attractor is close to the image being coded. For natural
images, the parameters of such a dynamical system can usually be coded very compactly,
which makes this method suitable for image compression.

In these methods, the problem of coding an image is that of designing such a dy-
namical system. To do this, an image is first partitioned into segments and each is
approximated, in part, with another larger segment in the same image. These coding
methods take advantage of the redundancies in the image at different scales. The decod-
ing is done by finding the attractor of the dynamical system and is typically an iterative
process.

In this thesis, we will first review the theoretical foundations and implementation
issues of fractal-based image coding methods. The concepts of fractals, iterated function
systems, and local iterated function systems are discussed and different implementations
of compression of both still images and image sequences are reviewed.

The fractal/attractor coding systems will also be analyzed in light of linear systems
theory and graph theory. We will show that the attractor decoder may be modeled as a
linear system whose stability is a necessary and sufficient condition for its convergence.
We will also address the relationship between the iterative nature of the fractal image
decoders and the noncausality of their encoders and propose the use of a causal fractal

encoder that results in a fast noniterative decoder.
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A new extended fractal transform is then proposed. The new transform is designed
to overcome some of the major shortcomings of most other types of fractal transforms
designed for image coding. Using this method, the process of finding the fractal transform
is based on approximating every block in the image by a linear expansion on an over-
completed set of library vectors. The library is made up of a fixed and an adaptive part.
The latter is made up of blocks taken from the original and the decimated image, and
makes the algorithm able to exploit both the inter- and intra-scale redundancies in the
image.

For a given image, the problem of finding the optimal transform of the above form
is mathematically intractable. In fact, this problem is a special case of a more general
optimization problem that has recently been of interest in signal analysis, coding, control
theory and statistics. A general and flexible method called matching pursuit is developed
that provides a solution to this problem. This new transform is then used for coding and
resolution enhancement of still images, and coding of video sequences. Using this method,
we will also evaluate the effectiveness of using inter-scale prediction inherent in the fractal
coding.

In the context of coding, the new method provides a flexible and powerful generalized
method by unifying the block transform coding, vector quantization, and most of the
earlier fractal compression methods. In the context of video coding, the block prediction
methods such as delta pulse code modulation (DPCM), adaptive block prediction meth-
ods such as block motion compensation methods, and hybrid coding methods such as
motion compensation combined with transform coding of residual errors are also special
cases of this algorithm.

This dissertation will also present a comparative study on the resolution enhancement

of images using the inter-scale prediction inherent in the fractal transforms.
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PREFACE

Work on this research began in the summer of 1991 when I came to University of
[linois. At that time Professor Huang suggested that I look into fractal image coding. My
first introduction to fractals was through the classic book entitled The Fractal Geometry
of Nature by B. B. Mandelbrot [1]. Since then, the theory of fractals and its vast scientific
and philosophical consequences have fascinated me.

In the field of image coding at that time, there were claims by Barnsley that com-
pression ratios of 10000:1 were possible using a fractal compression method [2]. Later,
Professor Kiyo Aizawa, who was visiting the University of Illinois at the time, gave me
a copy of Jacquin’s paper in ICASSP’90 [3] and I obtained a copy of Jacquin’s thesis [4]
soon after.

After studying the principles of iterated function systems and Jacquin’s algorithm, I
implemented a version of this algorithm and applied different variations. It soon became
clear that neither the compression of this method nor simple variations could provide
compressions extremely higher than those reported by Jacquin, and the extremely high
compressions claimed by Barnsley were not realistic for natural images except for super-
high resolutions. To ensure no omission of important facts, a comprehensive literature
search was done on all of the papers published on fractal image compression and closely
related subjects, specifically, papers by Barnsley and his group working at Georgia In-
stitute of Technology, and later at Iterated Systems, Inc. Reviewing these literature
findings confirmed my conclusions which was later summarized in a comprehensive study
published in the form of a book Chapter [5].

Since then, I have continued the literature search which has resulted in more than 600
references at the time of this writing. The interest in the subject of fractal image compres-
sion seems to have grown during recent years. The majority, and the most promising, of

algorithms proposed for fractal image compression are based on the algorithm by Jacquin.

vii



There seemed to be several areas in the Jacquin algorithm for which major improve-
ments were possible. Two of the most promising ones seemed to be a) using freely shaped
regions instead of square blocks, b) using multiple domain blocks to encode each range
block, and ¢) applying the transformation in the Wavelet domain. After some prelim-
inary tests on these ideas, I focused my attention on the second area. I later realized
that it could be further improved by including multiple fixed blocks. This idea made the
basis for papers in ICASSP’93 and PCS’93 [6, 7], which approximated a range block with
a near orthogonal set of basis blocks, some of which were transformed blocks selected
from the output of an orthogonalization process applied on image blocks. However, this
approach had a drawback that despite its novelty, the search in it was always limited to
the dimension of the vectors being coded (which is the same as the number of pixels in
the range blocks). We later realized that this algorithm could be further improved in
flexibility and generality by using a series of extensions. However, to include these exten-
sions, it required a basic type of mathematical optimization that had not been addressed
in the signal processing literature, and seemed to have a large application in coding.

In June 1992, I developed a method to resolve this problem and discussed it with
Professor Huang. This approach, which is discussed in Chapter 4, provides a powerful
method for the solution to the very basic mathematical approximation problem of finding
the optimal linear expansion of a vector over an over-complete set of library vectors.
This solution has applications in the general area of coding and is used in the algorithm
described in papers in ICIP’94 [8] and PCS’94 [9]. Its application was further developed
for compression of still images in VCIP’96 [10] and on video in ICIP’96 [11].

However, in December of 1994, during discussions with my colleague and friend Aria
Nosratinia and later with Professor Kannan Ramchandran, I was pointed to a recent
work by Mallat et al., proposing a method named ‘matching pursuit.” In fact, Mallat
and Zhang in December of 1993 [12] and Davis et al. in July of 1994 [13] had published
results on the application of such an algorithm in the context of pattern extraction in
image analysis. However, our papers in PCS’94 and ICIP’94 were the first to apply this

technique to image and video compression almost simultaneously with Neff and Zakhor
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[14] and Vetterli and Kalker [15], who also published results on the application of such
an approach to video coding.

The combination of the generality of the coding approach that we proposed and the
powerful mathematical solution to the above-mentioned approximation problem made
the proposed coding method capable of unifying the methods of block-based transform
coding, standard and gain-shape VQ, and most of the earlier fractal compression methods
making them only special cases of a general case. Due to the flexibility of the proposed
method in the context of video coding, the method seamlessly covers the cases of block
prediction methods such as DPCM, the adaptive block prediction methods such as block
motion compensation, and hybrid coding methods such as motion compensation com-
bined with transform coding of residual errors.

In addition to being among the first to develop the theory of orthogonal, nonorthogo-
nal and rate-distortion optimized matching pursuit, we also, for the first time, proposed
using multiple domain blocks in fractal coding and explicitly addressed the relationship
between noncausality of the fractal encoder and the iterativeness of its decoder (simul-
taneously with [16]). In this light, we developed a very fast method for noniterative
fractal decoding, successfully exploited intra-scale self-similarities of natural images in
fractal coders, developed a lossless fractal coder, and studied fractal transform as a tool
for spatial resolution enhancement of images. We also studied the fractal transform in
the light of the linear system theory, addressed the issue of stability of the decoder in
contrast to the contractivity of the fractal transform, and provided more general suffi-
cient conditions for the stability of this system using a graph theory view of the fractal
transform. The use of intra-scale self similarities was also viewed as an extension of the
Lempel-Ziv algorithm from 1-D to 2-D.

Realization of the above ideas in a general framework was a difficult task and they
were implemented using around twenty thousand lines of code, written by this author,
which have been evolving constantly during the last few years.

The organization of this dissertation is as follows. Chapter 1 gives a review of the con-

cept of fractals and its applications, especially in image compression. The mathematical
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principles of iterated function systems (IFS) and local IF'S are studied in Chapter 2. Local
IF'S makes the basis for most fractal-based image compression methods. Different imple-
mentations based on this theory for compression of both still images and image sequences
are also reviewed. In Chapter 3, a system/graph theoretical analysis of attractor/fractal
coders is provided, and the close links between different concepts in attractor coding, sys-
tems theory and graph theory are established. In Chapter 4, the general mathematical
optimization problem mentioned above and the solution provided by matching pursuit
are studied. In Chapter 5, the new fractal transform is proposed. Chapter 6 addresses the
application of this transform to coding of still images. Coding of video sequences using
this transform is studied in Chapter 7. In Chapter 8, application of this fractal trans-
form for enhancement of the resolution of images is investigated. Finally, in Chapter 9,
conclusions are drawn.

Although the focus of this work is on images and video sequences, most of the theory
and algorithms introduced are general and applicable to any kind of single or multidi-
mensional digital data. However, the parameters of most of the algorithms are tuned to

work well on digital photographic images of natural scenes.
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CHAPTER 1

INTRODUCTION

Fractal-based image coding or fractal image coding is a new method of image com-
pression. In this method, similarities between different scales of the same image are used
for compression. The method is rooted in the work of Mandelbrot, who introduced the

concept of fractals and the fractal dimension.

1.1 Fractals and Self-Similarity at Different Scales

In late 1970s and early 1980s, Mandelbrot showed that many natural and man-made
phenomena have the very fundamental characteristic of invariance under change of scale
[1, 17, 18]. Mandelbrot coined the name fractal for the geometry of these phenomena.

Intuitively, fractals are sets that reveal details at every scale. These sets are in con-
trast to regular sets like lines, curves and planes that are typically studied in Eucledian
geometry and become smooth when sufficiently magnified. To define such sets mathemat-
ically, the concept of dimension is used. There are several types of dimensions defined for
sets in mathematics, and for nonfractal sets they typically coincide. However, for fractal
sets, they give different values.

The mathematical definition of fractals suggested by Mandelbrot is that they are sets
for which the Hausdorff-Besicovitch dimension D is strictly larger than their topological
dimension Dr [1]. However, computing the Hausdorff-Besicovitch dimension is often
difficult, and in many cases the fractal dimension [19] is used instead. Fractal dimension

is defined as

D = lim In Nl(d)
d—0 ]n(a)

(1.1)



where N(d) is the minimum number of balls of diameter d which are needed to cover the
set.!

This definition implies that if d is small enough, we can write the approximate power
law

N(d) = K(1/d)” (1.2)

where K is a constant. This means that as d decreases, N(d) grows with the Dth power
of 1/d, no matter how small d is. D can be considered as a measure of the roughness of
a set, where rougher sets have larger Ds [22]. A classical example of a natural fractal set
is the coastline of an island, and an example of an artificial fractal set is the Koch curve
[1]. In practice, a natural set is considered fractal if its D is stable over a wide range of
scales.

Figure 1.1 shows different steps in the construction of the Koch curve. In this con-
struction, we begin with a line segment of length 1 (Figure 1.1(a)). Then, divide the line
into three equal parts and replace the middle part with two line segments of length 1/3
as shown in Figure 1.1(b). If we apply the operation that generated Figure 1.1(b) from
Figure 1.1(a) on every line segment in Figure 1.1(b), we will get Figure 1.1(c). Repeat-
ing this process once more results in Figure 1.1(d), and continuing to apply this process
infinitely, results in the set shown in Figure 1.1(e), which is known as the Koch curve.

It is easy to show that the set shown in Figure 1.1(e) has a fractal dimension of

_ln4"_ln4~126>1_D
T In3n  In3 -

The power law in Equation (1.2) states that dividing d by any factor a, always in-
creases N (d) by a factor a?, for any small value of d. In the case of integer Ds, this result
seems trivial, but when D is not an integer this means that, for example, magnifying any
part of a fractal curve does not result in a curve that is smoother than the original curve.

This power law means that a fractal set has the same roughness, independent of scale.

Therefore, one can say that a fractal set is self-similar at different scales in the above

!For more detailed information on the definition of fractals and different dimensions, see [20] or [21].
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Figure 1.1 Different stages of construction of the Koch curve.

general sense. Of course, many simple, nonfractal geometrical sets, such as lines and
planes are also self-similar in this sense, but are not fractals because they are not ‘rough’
sets and always become smooth when sufficiently magnified. Fractals always reveal more
details under magnification which do not diminish by future magnification.

Some fractals possess self-similarities in a more restricted sense. The self-similarity
of this class of fractals can be either deterministic or statistical. The deterministic self-
similarity is when the shape of the set is similar to itself in a deterministic way as the
scale changes. Particular kinds of fractals of this class are those with exact self-similarity
that are not altered at all under change of scale, e.g., the Koch curve.

The statistical self-similarity is when the fractal set retains all of its statistical pa-
rameters at different scales. For these fractals, a deterministic relationship does not

necessarily exist between different scales of the set.

1.2 Applications of Fractals

Fractal geometry in nature is more the rule than the exception. Since the introduction
of the concept of fractals by Mandelbrot, the concept has been used in many different
branches of science including mathematics, physics, chemistry, geophysics, botany, biol-

ogy, computer graphics, computer vision, and image processing.



Fractals with statistical self-similarity have been of great interest in the area of com-
puter graphics, where the concept was used to generate complex and strikingly natural-
looking graphics of natural scenes using simple rules [1, 23].

In the area of computer vision, the fractal dimension has been used for image mod-
eling, segmentation and shape extraction for natural scenes by Pentland [22, 24] and
others [25]-[33]. The fractal dimension of natural objects can be different from each
other or from those of man-made objects. On the other hand, under certain conditions,
2-D images taken from some 3-D fractal geometries are also fractals. Pentland [22] used
the fractal dimension as a parameter for segmenting images. This method can be used
to discriminate between different natural objects in a scene or between man-made and

natural objects [30, 31].

1.3 Fractal-Based Image Compression

Fractal geometry has been used for image compression in a few, basically different
ways.

Fractal curves, especially the Peano curve, were used for scanning images instead of
the standard raster scanning [34]-[37].

A ‘yardstick’ method was used for image compression [38]-[40] and for shape classi-
fication [41].

Fractal dimension has been used as a tool in different aspects of image compression

algorithms.

e Fractal dimension was used in a fractal image coder for adjusting error thresholding
[42]. Also, in [43, 44], fractal dimension was used for image segmentation. After
segmentation, fractal dimension was used as a measure of the complexity of the

segment to determine how the segments should be coded.

e In the context of image coding, fractal dimension was also used for selecting the

optimal scale parameter in an edge detector [45].



Wavelet decomposition has also been used to exploit self-similarities of images at
different scales. In this approach, a wavelet decomposition is applied to an image and
the similarity of same-size blocks in different subbands is used to reduce the size of the
code needed for representing them [46]-[49]. Pentland and Horowitz [46] report typical
compression ratios of 38:1 with 33 dB PSNR for 256 x 256 pixel images and Rinaldo and
Calvagno [47] report compression ratios of about 54:1 (PSNR of 31.4 dB) to 20:1 (PSNR
of 35.5 dB) for 512 x 512 test image Lena.

However, the method that has attracted the most attention, and will be discussed in
more detail in this chapter, is based on the work by Barnsley et al. [2], [19], [50]-[68],
summarized in [67].2 His work was based on that of Hutchinson [70], who set up a theory
for deterministically self-similar sets and studied transformations that can generate these
kinds of sets. These transformations, which Barnsley later named Ilterated Function
Systems (IFS), were originally used for generating fractals, but because many nonfractal
sets can also be deterministically self-similar, these sets can also be generated by IFS.
Iterated function systems will be discussed in detail in Section 2.1.

Barnsley’s early work was based on the following assumptions:

e The images of many natural objects can be approximated by members of a class of

deterministically self-similar sets.

e These sets can be generated by IFS transformations which have a relatively small

number of parameters.

Barnsley observed that even very simple IFS transformations with very short codes
can generate complex sets with infinite details that resemble natural objects. The IFS
transformations describe the relationship between the whole image and its parts, and
exploit the similarities that exist between an image and its smaller parts.

Given an IF'S, generating the image corresponding to it is quite straightforward and

easy. However, the inverse problem of finding the IFS, which can generate (or closely

2The methods based on Barnsley’s work have a strong relationship with some of the wavelet methods
mentioned earlier. For studies on this, see [49, 69].



Figure 1.2 The essence of fractal coding methods is to try to approximate each segment
of the image by applying some (contractive) transformation on some larger segment(s)
in the image.

approximate) a given image, has yet to be solved. In other words, the problem was that
of how the similarities between the whole image and its parts could be found automat-
ically. Another problem was finding what could be done for images where the smaller
parts do not resemble the whole image. To solve the second problem, in 1988, Barnsley
generalized the theory of IFS to the theory of Local Iterated Function Systems which
exploited similarities between parts of the image which were of different sizes. Using this
theory, image parts were not required to resemble the whole image; they only needed to
be similar to some other bigger parts in the image, as shown in Figure 1.2. But there
was still the first problem of how these similarities could be found automatically. In the
early implementations of this theory, these similarities were found by human interaction
and, hence, the images were encoded by interactive computer programs. This resulted
in codes for images which were extremely compact in size, but their decoded images
had very low quality [19]. This was the result until the work of Arnaud E. Jacquin (a
student of Barnsley) who automated this method for the first time [3, 4, 71, 72]. The
code generated by Jacquin’s program for an image was not as compact as before, but the

compression ratio and the quality of the decoded images looked promising. The work



by Jacquin provided a platform for others to continue this line of research. Since then,
several extensions and generalizations of this method have been found, and many of its
properties are better understood, which has resulted in more efficient algorithms. Some
of these methods will be discussed in Section 2.2.

In 1987, Barnsley and Sloan founded Iterated Systems, Inc., for the development of
products based on the fractal theory and patented some of the basic algorithms in fractal
coding [64, 65]. This company has made various hardware and software products for im-
age and video compression/decompression, especially for personal computers. Although
many articles have been published on the basics of Barnsley’s theory, many of the details

of the algorithms used in these products have not been revealed.

1.4 Fractal Techniques in Second Generation Image
Coding

Second generation image coding methods 1) take special advantage of the properties
of the human visual system and 2) many of them are segmentation-based. In this section,
we will briefly look at how fractals are related into these two features of second generation

coding methods.

e Fractals and the Human Visual System
Many researchers have studied the relationship between fractals and the human

visual system [22, 24, 73].

— To the human eye, many fractal curves and surfaces, look very similar to
natural curves and surfaces, and for this reason they have been extensively
used in computer graphics. In model-based coding, this similarity has the
potential to be used for coding of natural images by modeling the underlying

processes that generate parts of these images.

— Experiments have shown that the fractal dimension of a curve or set is closely

related to human perception of its roughness [22]. Although fractal dimension



alone is not enough for generating a visually good approximation of a set

[25, 74], it may be used as one of the parameters for its representation.

— It is a known fact that the human visual system’s sensitivity to details in any
part of an image is dependent on the amount of activity in the background
surrounding that part. Fractal dimension of image regions has been used as

an objective measure of this activity [42].

o Segmentation Using Fractal Dimension
Many researchers have used fractal dimension for image segmentation [22, 27, 43,
75, 76, 77, 78]. Fractal dimension is usually computed locally [79, 80] and is used

as the texture feature for segmentation.

e Fdge Detection Using Fractal Dimension
In the context of image coding, fractal dimension was also used for selecting the op-
timal scale parameter in a multiscale edge detector [45]. In this method, edge points
were detected by wavelet transform and the dilation parameter was controlled by

the fractal dimension.

e Fractal Coding of Contours
One of the first applications of the theory of iterated function systems proposed by
Barnsley and Jacquin, was in contour coding [4, 55]. A similar method was later

used for this purpose by Jacobs et al. [81].

o Jacquin’s Method as a Second Generation Method
Fractal coding methods based on Jacquin’s method use redundancies in an image
at different scales, i.e., they use the fact that different parts of the image at different
scales are similar. Due to computational complexity limitations, most fractal coding
methods find similarities between image blocks after applying limited transforma-
tions, even though the most natural choice is finding similarities between objects
or segments with more free deformations. The use of blocks instead of segments

is more a matter of speed than anything else, especially because fractal coders are



usually computationally intensive. In the basic theory, the shape of the domain
segments is not restricted in any sense. Simple block splitting methods have been
used by many researchers, including Jacquin, for adjusting the size of the blocks to

the feature sizes of the image.

Thomas and Deravi [82, 83| devised a method for merging of blocks using a region
growing procedure based on fractal coding. This method results in range regions
with rather free shapes that are adapted to the content of the image. Using this
method, a region in the image is approximated with another larger region in the

same image, but with a similar shape.

Franich et al. [84] proposed a method for merging the quadtree block splitting
method for shape description with the quadtree block splitting method used for

fractal coding and used it in an object-based video coding system.

From this viewpoint, the fractal coding techniques originated by the work of Jacquin
can be well adapted to both first and second generation image coding techniques,
although during recent years, most of the advancements of fractal coding techniques

have been in the direction of combining them with waveform-based coding methods.



CHAPTER 2

FRACTAL IMAGE CODING

2.1 Basic Theory

In essence, fractal image coders take advantage of across-scale redundancies in natural
images. In most fractal coders, this is done by approximating each segment of the
image by applying a contractive transformation on some larger segment(s) in the image.
These approximations define a dynamical system, known as a fractal transform, whose
attractor is close to the image being coded. For natural images, the parameters of such
a dynamical system can usually be coded very compactly, which makes this method
suitable for image compression. One can then reconstruct the image (with some error)
by finding the attractor of this dynamical system [19, 67]. In these methods, most of
the information in the image is basically encoded by coding relations among different
segments of different sizes of the image. The mathematical framework of this theory is

presented in the following sections.

2.1.1 Iterated function systems

We begin with a complete metric space (X, d), where d(.,.) denotes the metric." Now,
consider a transformation w: X +— X, for which there is a constant s such that for all
z,yeX,

d(w(z), w(y)) < s d(z,y).

'For more details on the basic theory brought in this section, see [19], [66], or [67].
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If 0 <s< 1, then w is said to be contractive (or a contraction) with contractivity factor

s. If w is contractive, then according to the Contraction Mapping Theorem,

*

(1) w possesses a unique fixed point z* € X, i.e., w(z*)=z*.
(2) For any z€ X, lim,_,o w™(2) = z*.
The transformation w defined on X also induces a transformation on subsets of X.
This can be done by defining
w(B) ={w(z),Vz € B} VB C X.

Let (H(X), h) denote the metric space whose points are nonempty, compact subsets
of X, and h is the Hausdorff Distance [67]. An Iterated Function System (IFS) consists
of a complete metric space (X, d) and a number of contractive mappings w; defined on
X, ie, {X;w;,i=1,...,N}. The fractal transformation associated with an IFS is the
transformation W: H(X)— H(X) as defined by

w(B) = Jwi(B) 2.1)

.
—_

for all B € H(X). If the mappings w; are contractive with contractivity factors s;, i =
1,2,..., N, then W is also contractive with contractivity factor s = max s;, and W has
(2
a unique fixed point A€ H(X) for which
A=W (A)= | w;(4),

=1
and for all B€ H(X) we have lim,,_,,. W™ (B)=A. A is called the attractor of IFS. The

w;’s are usually chosen to be affine transformations. For the two-dimensional case, this

T a; b T €;
w _| i (2.2)

Y ¢ d; Y fi

defined on points in R%. For the three-dimensional case (grayscale images), this becomes

z G114 Q125 013, z bl,z’
w; Y = | G21, Q22; 023; Y T | bay | (2.3)
I(% y) az1; 032; a33; I(xa y) bs,i

11



where I(z,y) denotes the grayscale value at location (z,y). For an image, the fractal
code is made up of the parameters of the fractal transformation W, which consists of the
number N and the parameters of w;’s. The mappings w; defined by (2.2) and (2.3) are
contractions under suitable constraints on the parameters and, therefore, the resulting
W:s are also contractions.

As an example of an IFS and its attractor in R?, let us consider an IFS of the form

{R27 w1, W, w3}7

where
| z ] [ 05 0 11 z ]
wy = (2.4)

Y 0 0.5 Y

2] o5 0 [[2z] [os
Y 0 0.5 Y 0

2] 05 0 ||z 0
Y 0 0.5 Y 0.5

The attractor of this IFS can be found by iteratively applying the induced W on any
nonempty, compact subset of X. Figure 2.1 shows how a sequence of sets generated by
the iterative application of W on an arbitrary initial set B converges to the attractor of
W and how the attractor is dependent only on W and not on the initial set.

In general, A is completely described by W and is independent of B. Therefore, W
gives a complete representation of A, and the set of parameters that represent W can be
considered as a code for A. In the above example, it can be seen that A has a visually
complex shape, but W has a very simple mathematical form which can be specified by
three affine transformations. Considering the plot of A as a black and white image, the

parameters of W make the code for this image.
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Figure 2.1 Sequences of sets generated by iterative application of the IF'S transforma-
tion W defined by (2.1), (2.4), (2.5), and (2.6) on two different arbitrary initial sets (B)
converging to the attractor of IF'S.
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2.1.2 The Collage Theorem

Although the theory of generating the attractor of an IFS is well developed, the
inverse problem of finding the IFS code for approximating an arbitrary given set, like
many other inverse problems in mathematics, has proven to be a rather difficult problem.

Several studies have been made to find the exact mathematical solution to this inverse
problem using tools such as the Fourier transform [85], wavelet transform [86, 87], moment
method [88]-[101], chaotic optimization [95, 102], genetic algorithms [103], combination
of the wavelet transform and the moment method [104]-[106], fuzzy sets [107] and other
methods [108, 109]. However, this problem, in the general sense, has not yet been solved.

As discussed before, given W, the decoding process is based on the Contraction
Mapping Theorem. The transformation W is applied iteratively on an arbitrary initial
image until the transformed image does not change significantly. As W is contractive,
the convergence of this sequence of images is guaranteed by the Contraction Mapping
Theorem.

However, for a given set C, the encoding problem of finding a contractive transforma-
tion W such that its attractor A is close to C is a rather difficult problem. The Collage
Theorem [19, 53] provides a guideline for solving this problem. It says that for a set C

and a contraction W with attractor A,

h(C,W(C))
1—s
This means that in order for C' and A to be close, it is sufficient that C and W(C') be

h(C, A) < (2.7)

close, i.e., W may be found in such a way that W (C) is as close to C as possible. W (C)
is sometimes called the collage of C.

In terms of w;, we have

W(C)~C N
N = |Jw;(C) = C.
W(C) = Jwi(C) g”
i=1
This can be done by partitioning C' into parts C;,

N
c=¢

i=1
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such that each C; can be closely approximated by applying a contractive affine transfor-
mation w; on the whole C| i.e.,

Ci = wZ(C’)

If we denote h(C,W(C)) by er and call it the encoding error or collage error, and
denote h(C, A) by ep and call it the decoding error, then according to (2.7),

1
< 2.8
€D S 1_ SEE ( )

which gives an upper bound for €p in terms of .

2.1.3 Local iterated function systems

For most natural images, it is not possible to closely approximate all parts of the
image by a small number of transformations applied on the whole image. To solve this
problem, the theory of Iterated Function Systems was extended to Local Iterated Function
Systems [66] and its associated fractal transform. In contrast to an Iterated Function
System, which approximates each part of the image by a transformed version of the whole
set, in the Local Iterated Function System, each part of the image is approximated by
applying a contractive affine transformation on another part of the image. In this case,
the image C is partitioned into range segments C;, where C' = U}, C;. Then, each range
segment C; is approximated by a transformed version of a bigger domain segment D;,
ie., C; ~ wy(D;) = C =~ W(C) = UY, w;(D;) as shown in Figure 2.2. The decoding
process for Local IFS is very similar to that of IFS.

2.1.4 Resolution independence

When the above theory is used for image compression, it is implemented in a discrete
setting. However, the fractal code generated by encoding a digital image describes re-
lationships, in the form of affine functions, between various segments of the image and
is independent of the resolution of the original image. In other words, the fractal code

is a resolution independent representation of the image and theoretically represents a
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Figure 2.2 Approximation of a range block by a transformed domain block in a local
iterated function system.

continuous image approximating the original image. A decoder may decode this code to
generate a digital image at any resolution. The resolution of the decoded image may as
well be higher than the resolution of the original image. This increase of resolution is
sometimes referred to as fractal zoom.

The higher resolution obtained is not created by a simplistic technique such as repeat-
ing the pixels of the image, but more detail is actually generated in the decoded images.
In fact, the additional higher resolution information is generated using information from
the image at a lower resolution. When an image is reconstructed at the same resolution
as the original encoded image, in the decoding process domain blocks of the image are
shrunk (lowpass filtering followed by subsampling), which eliminates some of the details
of the domain blocks. However, if the image is reconstructed at a higher resolution, in
the shrinking of the domain block, the details of the domain block are only shrunk to
generate the extra resolution in the range block. In fact, details of the domain blocks
are used for missing details of the range block. The details in the domain block are also
generated to some extent from details of other domain blocks used for encoding each
part of it. In other words, it is implicitly assumed that if the range block is similar to its
corresponding domain block, then the details of the range block, which are beyond the

resolution of the originally encoded image, are also similar to the details of the domain
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block, which are within the resolution of the encoded image. This assumption is a typical
property of self-similarity of fractal sets at different scales and the resolution indepen-
dence is a property of the code generated by fractal-based methods. This issue is studies

further in Chapter 8.

2.2 TImplementations

In view of the theory discussed in the previous section, some of the basic questions

to be answered are:

e how to segment the image,
e what transformations to use,
e how to find the parameters of the transformations, and

e where to find the matching segments.

These issues will be discussed in this section along with compression results reported

for both still images and video sequences.

2.2.1 Compression of still images

In 1989 and 1990, Jacquin [3, 4, 71, 72] developed an automatic implementation of
the Local TF'S method by restricting B;s to squares of two fixed sizes, and restricting the

affine transformation to the following special case,

x 1,15 A1,24 0 x b;
W Y = | a1, a22; O Y |
I(z,y) 0 0 pio I(z,y) Di1
where
a1,15 G1,24 +a 0 0 +a
= or ,
a2,1,; A22; 0 +a +a 0
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Partition image into range blocks, ... find amatching block of a bigger
and for each range block ... size somewhere in the same image.

Figure 2.3 A demonstration of Jacquin’s algorithm.

and the origin of the z and y axes is the center of the domain block, a = 0.5 and p; o < 1.
For each ¢, the p; g, b;, and ¢; are found by search, and p; ; is computed. The essence of
Jacquin’s method can be summarized as partitioning the image into square range blocks
and searching the image for matching domain blocks of twice the size of the range block,
as shown in Figure 2.3. In finding a matching block, we are allowed to apply simple
transformations on the domain block, which include shrinking, adding a single value to
the grayscale of the pixels in the block, and scaling by a number less than one. Some
shuffling of the pixel locations (isometric transformations) are also allowed, which include
rotation by multiples of 90 degrees, and/or reflection against vertical or horizontal axes.
The encoding process is also enhanced by a two-level hierarchical block splitting method
and a range and domain block classification scheme for a faster search. For the 512 x 512
standard Lena image, PSNRs of 30.1 dB and 31.4 dB were reported at bitrates of 0.57
and 0.6 bits per pixel (bpp) [71, 110].
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In 1991, Gien et al. [111] extended this method to

x 1,1, A1,24 0 x b;
w; Y =1 ag1; az2; O Y + |
I(z,y) d; € Do I(z,y) Di

In this case, for each 7, values of d;, e;, p;o, pi1 are found by least squares methods,
and b;, ¢; are again found by search. Using this method, the 512 x 512 Lena image was
encoded at a bitrate of 0.5 bpp with a 30.8 dB PSNR.

In 1992, Monro and Dudbridge [112, 113] suggested partitioning an image into small
square images and for each small image, an IFS (and not a Local IFS) was to be found.
This is equivalent to a Local IFS with the domain block for each range block being a
predetermined block which contains the range block.

Fisher [114, 115] and Jacobs, Fisher, and Boss [116] studied the effect of using blocks
of different shapes including squares, rectangles, and/or triangles combined with a mul-
tilevel hierarchical block splitting method. They also compared the trade-offs between
compression ratio and signal-to-noise-ratio (SNR) for their method [116]. In two of their
experiments, the 512 x 512 Lena image was coded at 0.22 bpp with PSNR of 30.71 dB
and at 0.45 bpp with PSNR of 33.40.

In 1993, Gharavi-Alkhansari and Huang [6, 7] extended Jacquin’s method and showed
that one can use a linear combination of a series of fixed and transformed domain blocks
instead of only a single domain block and one or a few fixed blocks. They also provided
an algorithm for making a selection among all of the possible domain and fixed blocks.

Thomas and Deravi [82] used blocks of relatively free shapes in Jacquin’s algorithm
and showed that this could improve the performance of Jacquin’s method for simple
images. For the 512 x 512 image Lena, they obtained a PSNR of 27.7 dB at 0.30 bpp.

Lepsgy et al. [117] introduced a noniterative decoding algorithm for fractal-based
image compression.

Also, Vines and Hayes [118] suggested limiting the search on b; and ¢; by looking

for matching domain blocks only in the neighborhood of the corresponding range blocks.

19



Using this method and a multilevel block-splitting scheme, the 512 x 512 Lena image
could be compressed at a bitrate of 0.47 bpp with PSNR of 31.5 dB.

Up until 1993, most of the attention of the papers published on fractal coding were
concentrated on the fractal transform. Since then, more attention has been paid to
the entropy coding stages following the fractal transform and on the problem of how the
fractal transform parameters could be best modeled for entropy coding. This has resulted
in more efficient algorithms.

In 1994, Barthel et al. published results on a fractal-based coding method with a
performance of 35 dB PSNR at 0.35 bpp for the 512 x 512 Lena image [119]. In this
method, after approximating a range block with a domain block, any spectrum coefficient
of the range block in DCT domain that is not well-approximated by the domain block, is
individually coded using transform coding. These spectral coefficients are then excluded
from being approximated by the domain block. Rate-distortion optimality is also used as
the criteria for selecting the best possible choice in places where there are several possible
alternatives in the encoding process.

Also, in 1994, Gharavi-Alkhansari and Huang proposed a generalized image block
coding method for unifying the three methods of block transform coding, vector quanti-
zation, and fractal-based coding methods [8, 9]. In this method, every block in the image
is approximated by a linear combination of one or more blocks selected from a possi-
bly large dictionary of (not necessarily orthogonal) library blocks. In the case of video
coding, block prediction methods such as DPCM and adaptive block prediction methods
like block motion compensation methods are also special cases of this algorithm. They
also proposed that the iterative nature of the fractal image decoders is related to the
noncausality of the encoder and using a causal encoder results in a noniterative decoder
that converges in one iteration.

Lin [16] also studied fractal image coding as a generalized predictive coding method

and showed how noncausal prediction in fractal coders necessitates an iterative decoding.
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Figure 2.4 PSNR vs. bitrate for compression of 512 x 512 Lena image with some
fractal-based and nonfractal-based methods. See Table 2.1 for references.

In 1994 and 1995, Rinaldo and Calvagno [47, 48] used similarities between blocks in
different subbands of image for image coding and reported a performance of 32.78 PSNR
at 0.26 bpp [47].

Figure 2.4 shows the reported performance of some fractal compression methods,
along with some nonfractal compression methods, in terms of PSNR and bitrate for
the 512 x 512 Lena image.? Different curves in this plot are assigned letters which are
described in Table 2.1. Curves “g,” “d,” and “a” are for JPEG, wavelet-based zerotree,

and improved wavelet-based zerotree methods which are nonfractal methods and are

2The data shown in this plot are brought here only for a rough comparison. PSNR is not always a
good measure of image quality. Also, in regards to the 512 x 512 8 bits per pixel grayscale test image
Lena, authors are aware of at least two versions of this image that may have been used by researchers
for obtaining these results. Some of the mentioned methods also did not use optimal entropy coders for
coding of the fractal transform parameters.
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Table 2.1 References for Figure 2.4

H ‘ Year ‘ Researchers ‘ Reference ‘ Method ‘
a | 1994 | Xiong et al. [120] (Nonfractal) Wavelets
b | 1994 | Rinaldo and Calvagno [47] Fractal-Wavelet
c | 1994 | Barthel et al. [119] Fractal-DCT
d | 1993 | Shapiro [121] (Nonfractal) Wavelets
e | 1995 | Fisher and Menlove [122] Fractal
f | 1995 | Culik and Kari [123] Fractal
g | 1991 | JPEG [124, 125] (Nonfractal) JPEG
h | 1992 | Fisher et al. [114, 115, 116] | Fractal
i [ 1994 | Kim and Park [126] Fractal
j | 1993 | Lepsgy et al. [117] Fractal
k | 1993 | Vines and Hayes [118] Fractal
1 11994 | Lu and Yew [127] Fractal
m | 1993 | Thomas and Deravi (82, 83] Fractal
n | 1990 | Jacquin [71] Fractal

introduced here only for comparison. The JPEG results brought here are based on
the “Independent JPEG Group’s free JPEG software” implementation of JPEG. For an
implementation based on JPEG standard with a significantly better performance, see

Crouse and Ramchandran [128].

2.2.2 Compression of video sequences

Fractal-based techniques have also been explored for coding image sequences.

In 1991, Beamount [129] used fractal-based techniques for video compression. He tried
two different approaches for this purpose. In one method, he extended Jacquin’s method
and used three dimensional blocks, i.e., rectangular cubes, of video sequences instead of
the 2-D blocks in still images. He reported that although the high compression could
be achieved using this method, the quality of the decoded images was not good. Using
another method, Beamount applied the 2-D Jacquin method on individual frames, but
for each frame (except for the first frame) took the domain blocks from the previous

frame instead of the same frame. It was reported that 10 frame-per-second 352 x 288
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grayscale video sequences could be coded at a data rate of 80 Kbits/s with “reasonable
quality.”

In 1992, Hurd et al. [130] from Iterated Systems, Inc., published results on fractal-
based video compression claiming compression ratios from 21:1 (average PSNR of 39.2
dB) to 79:1 (average PSNR of 30.8 dB) for a 160 x 120, 8-bit grayscale video sequence. In
their method, they encoded the first frame using regular fractal coder. For the following
frames, they always used the previous frame as the source of domain blocks. To approx-
imate each range block in one frame they either (1) applied motion compensation and
found a matching same-size domain block from previous decoded frame (no contraction)
or (2) a single matching larger size domain block with a contractive transformation ap-
plied on it from the previous decoded frame was found. No residual error was sent for the
frames. As the coding of this method was causal, the decoding process was noniterative.
In fact, due to the low complexity of the decoding algorithm, this method had a very
fast decompression.

In 1993, Hiirtgen and Biittgen [131] applied fractal techniques for low-bitrate video
coding. They applied prediction by frame differencing with no motion compensation.
Then, for each frame, they applied the fractal transform only to regions of the frame
where prediction failed. For these regions, they used a still fractal coding scheme. For
range blocks located in these regions, domain blocks from the entire same frame were
searched. In contrast to previous methods, for these regions they did not use previous
frames. They also used a 3-level block splitting method in their algorithm. The 352 x 288,
8 1/3 Hz (25 Hz subsampled by 3) Miss America video sequence was reported to be
coded at 128 Kbits/sec with an average PSNR of 36-37 dB, and at 64 Kbits/sec with an
average PSNR of 34-35 dB, and at 32 Kbits/sec with an average PSNR of 30-32 dB. As
the domain blocks for each range block were selected from the same frame, the decoder
is iterative in this method.

Also, in 1993, Li et al. [132] tried an extension of the still image compression method
developed by Monro and Dudbridge [113] to video compression and showed how com-

pression ratios from 25:1 (average PSNR of 36.2 dB) to 51:1 (average PSNR of 27.2 dB)
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can be achieved for the 256 x 256, 15Hz Miss America sequence. In this method, the
video sequence is partitioned into 3-D blocks. Each block is then partitioned into eight
3-D sub-blocks each of which is approximated by a contractive transformation applied
on the block that contains it.

In 1994, Lazar and Bruton [133] also extended Jacquin’s 2-D algorithm to 3-D and
used 3-D range and domain blocks for image compression. They also used a 3-D block
splitting method and the search for selecting domain blocks is done only in the neigh-
borhood of the range block. They reported an average compression ratio of 74.39 at an
average PSNR of 32-33 dB for the 360 x 280, 8 bit/pixel, 30 Hz Miss America video
sequence.

Other researchers have also contributed to the theory and implementation issues of

fractal video coding [84], [134]-[141].

2.2.3 Complexity

In terms of complexity, fractal-based image coding is asymmetric, i.e, the complexity
of the encoder is typically much higher than that of the decoder. Complexities of these
encoders are typically much higher than those of transform coders and vector quantizers.
The most time consuming part of the encoding procedure is usually the search for finding
the best matching domain blocks. Different techniques have been studied for limiting,
structuring, and approximating the search procedure [142]-[144].

In many implementations of fractal image coders, the search is limited to the neigh-
borhood of the range block where finding a good match is more likely. In the extreme
case, the search may be totally avoided by using a predetermined domain block at the
location of the range block. The search in Jacquin’s original method included search-
ing domain blocks that were generated by applying some isometric transformations on
the image blocks (e.g., rotation by multiples of 90 degrees or reflection against horizon-
tal or vertical axes). It has been found that it is more likely that the best match is the

domain block taken from the image rather than from among the isometrically transformed
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versions and, therefore, in many fractal image and video coders these transformations
are not used.

In other implementations, the domain and range blocks are classified based on some
criteria of structure of the blocks. Then, for each range block, the block matching search
is done only among the domain blocks that are in the same class as that of the range
block.

Another approach to reducing the search is by doing a coarse-to-fine search. The
search is done first using a coarse measure of the similarity of the blocks, then another
search with a finer measure of similarity is done among the blocks that had high similarity
in the coarser measure.

On the other hand, complexity of the fractal image decoders is usually much lower
than their corresponding encoders, and, in some cases, even less than some transform
coding methods. This makes this method more suitable for publishing or broadcasting
where the image is compressed once by a central processor and decompressed several

times by smaller receiving processors.
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CHAPTER 3

A SYSTEM/GRAPH THEORETICAL ANALYSIS
OF ATTRACTOR CODERS

In Chapter 2, we saw how some types of deterministically self-similar fractals may
be constructed as attractors of fractal transformations. These attractors typically have
visually complex structures, while the mathematical description of the IFS generating
them is simple. On the other hand, some of these attractors have similarities to natural
objects. This motivated the use of IFS for image compression. The theory of IFS was
further extended to Local IFS, which eventually provided a tool for practical image
compression.

The fractal transformations associated with Local IFS are only a small subset of
all transformations with attractors and the above study provides a motivation for the
more general theory of attractor coding. In this theory, an image is represented as the
attractor of a transformation, or equivalently, the steady-state of a dynamical system.
The encoding process is done by encoding the parameters of this dynamical system.

In the literature, the expressions attractor coding and fractal coding are used inter-
changeably. This is due to the fact that nearly all of the study on attractor coding has
been concentrated on the fractal coders. In this dissertation, we emphasize the distinc-
tion between these two expressions and the fact that one is only a subset of the other. In
fractal coders, the compression is done by using the basic property of fractals, namely,
the property that different segments of different sizes in the signal can be similar in some
sense. In fact, in this dissertation, we will study attractor coders that do not use this

type of self-similarity.
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In this chapter, we will look at the theory of attractor coding from a general point of
view. We will begin the study from a broad point of view and narrow it down to more
special cases as we progress. We will specifically focus our attention on linear systems,
and make use of some of the results of linear systems theory. From this novel approach,
it will soon become clear how the concept of the stability of a dynamical system provides
a much more direct path to the convergence of attractor coders compared to the concept

of contractivity, which is being widely used in the literature of fractal coders.

3.1 Mathematical Model of Images

The theory of IFS is based on transformations defined on the metric space (H(x), h).
The attractors of these transformations are compact, nonempty subsets of the metric
space (X, d). In order to use an IFS for representing a natural image, the image must be
represented by a compact, nonempty set. Black and white continuous-space images may
be represented by subsets of R? where black points are members and white points are
not members of the set. Grayscale images may be represented by subsets of R3, where
for each point with (z,y, z) coordinates, the z and y are the spatial coordinates and z
is the intensity of the image at (z,y). To apply this theory to discrete-space images,
one possible approach is to assume that a discrete-space image is a sampled version
of a continuous-space image, which is the attractor (or close to attractor) of an IFS.
This representation of grayscale images has several difficulties. For the continuous-space

images, we need to put the following restrictions on the sets representing images:

(1) The projection of all points in the set onto the zy plane completely covers a subset

of R? of the form I x J where I and J are closed intervals in R.

(2) For each (z,y) in I x J, there must be one and only one point of the form (z,y, 2)

in the set.

In the discrete-space case, there is the additional problem that this method does not

provide a clean representation and, in practice, is more difficult to implement and analyze.
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The theory of IFS has been extended to measures and IFS with probabilities [3, 19] in
which images may be represented as measures. This provides a more suitable approach
for modeling grayscale images in terms of attractors of IFS.

However, an alternative approach, which we will use in this dissertation, is to model
continuous-space images as functions from I x J — R, and discrete-space images as
functions from {1, 2,..., N1} x {1, 2,..., No} — R, where N1 and N, are some positive
integers. In either case, the set of all such functions makes a vector space and each
image is a vector in the space. In the case of continuous-space images, the space is

infinite-dimensional, while the dimension of discrete-time case is finite.

3.2 An Operator Point of View

Consider a complete metric space X, and an operator 7 : X — X. If we apply T
iteratively on an initial o € X, we obtain a sequence (z,) described by the recursive
equation

Tnr1 = T (Tn), n > 0. (3.1)
If for any arbitrary initial zo € X, the sequence (x,) converges to the same point z* in
the space, then z* is called the attractor of 7. In such case, x* is completely described
by 7, and given 7, z* may be obtained by iteratively applying 7 on any x € X, i.e.,
zt=T>(z), Vz € X.
We call 7 an attractor representation of x*. We consider two special cases.

Case 1: The trivial case of 7 being constant
Vz e X, T(z) = a,

then
Ve € X, T(z) = a.

In this sense, any process that generates a specific image may be interpreted as an
attractor representation of that image. However, by default, when we refer to attractor

representation of an image, we mean representation by a nonconstant operator.
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Figure 3.1 A discrete-time system.

Case 2: X is a vector space and 7 has the form
Vz € X, T(z) =Ax+ B (3.2)

where A is a linear operator and B is a constant operator. This is the most common
form of operator used in attractor coding and will be discussed further in the following

sections.

3.3 A System Point of View

3.3.1 Discrete-time system

An alternative point of view for analyzing attractor coding systems is to look at them
as discrete-time systems. Let us consider a discrete-time system with input u,, output
Y, and state x,, as shown in Figure 3.1. The set of equations that describe the relation
between input, output, and state are called dynamical equations. We are interested in

discrete-time systems whose dynamical equations are in the form
Xpp1 = h(x,,u,,n) (3.3)
Yn = g(Xp, Uy, n). (3.4)

Equation (3.3) describes the behavior of the state of the system and is called the state
equation. Equation (3.4) describes the output of the system and is called the output
equation.

If the system is t¢éme-invariant, these equations become

Xpi1 = h(xg,uy)

Yo = g(Xn, un)'
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Figure 3.2 Block diagram of a linear, time-invariant, discrete-time system.
If the system is linear, then (3.3) and (3.4) may be written as

Xpn+1 — Anxn+Bnun
yn = C,x, + D,u,
where A,, B,,, C,, and D,, are linear, time-dependent operators, and A, is called the
state-transition operator.

If the system is both linear and time-invariant, then the dynamical equations may be

written as

X,41 = Ax,+ Bu, (3.5)
This linear, time-invariant (LTI), discrete-time system may be represented by a block

diagram as shown in Figure 3.2.

3.3.2 Continuous-time system

Let us consider a continuous-time system with input u(¢), output y(¢), and state x(t),

as shown in Figure 3.3. We are interested in continuous-time systems with dynamical
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Figure 3.3 A continuous-time system.

equations in the form

x(t) = h(x(t),u(t),t) (3.7)
y(t) = g(x(¢),u(?)), (3.8)
where
k(t)‘i:efd);—it)

x(t) = A(t)x(t) +B(t)u(?) (3.9)
y(t) = C()x(t) + D(t)u(t)
where A(t), B(t), C(t), and D(¢) are linear, time-dependent operators.

If the system is both linear and time-invariant, then the dynamical equations may be

written as

x(t) = Ax(t) + Bu(t) (3.10)
y(t) = Cx(t) + Du(t). (3.11)

A linear, time-invariant, continuous-time system may be represented by a block diagram

as shown in Figure 3.4.
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Figure 3.4 Block diagram of a linear, time-invariant, continuous-time system.

Table 3.1 Interpretation of continuity in time and space for images

H H continuous time ‘ discrete time H
continuous space || continuous image continuous image
evolving continuously | changing only
in time in time steps
discrete space discrete image discrete image
evolving continuously | changing only
in time in time steps

3.3.3 Representation of operators

If x, y, and u are finite-dimensional signals (e.g., discrete-space images), then we may
represent them by column matrices and A, B, C, and D may be represented in matrix
form. However, in the infinite-dimensional case with x, y, and u being functions from
R™ — R (e.g., continuous-space images), A, B, C, and D may be represented by their
corresponding kernels. For the case of the images, we should emphasize the distinction

between continuity in time and space, as shown in Table 3.1.
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3.4 Comparison of the Two Viewpoints

Note that the operator point of view described by (3.1) and (3.2) is equivalent to
Equation (3.5) of a linear, time-invariant system when u,, is constant. In other words, we
may consider z € X as the state of a system which changes at each time step according
to 7. The systems point of view, in this sense, has the operator point of view embedded
in it. It also provides for a more general class of attractor coders and for systems that
change continuously in time, as well as makes the connection between the young field
of attractor coding and the well-established field of systems theory. Using the systems
method, the output of the system may be defined to be different from (although a function
of) the state of the system.

A comparison of Equations (3.2) and (3.5) also shows that the most common type of

system being represented by attractor coders is, in fact, a linear system in which

e the image is the state of the system,
e the input is constant,
e the initial image is the initial state of the system, and

e the attractor is the steady-state of the system.

More interesting situations occur if we take the output Equation (3.6) into account and
define y,, as the final decoded image in attractor coding. Then, if C is not the identity
matrix, there may be state variables that are variable in time whose changes indirectly
affect the output image. This has a strong relation to the concept of hidden variables
defined in [19]. For example, x,, may be an evolving 3-D set and y a projection of that
set into 2-D. The final decoded image is the projection of the attractor of the state into
a 2-D plane.

We note that linearity is defined when the signals being studied are members of
vector spaces. In the original theory of IFS, images are only nonempty compact sets

and cannot be analyzed by linear systems. However, implementations of this theory
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(Jacquin’s method and those based on it) can be well analyzed using the linear systems
theory.

The continuous-time system case introduced in Section 3.3.2 has no equivalent in
the theory of attractor coding. Nevertheless, signals in a discrete-time system may be
represented as samples of signals in a related continuous-time system, which brings up

the concept of continuous-time attractor coding.

3.5 Modeling Fractal Coding with Linear Systems

In this section, we present a linear system model for fractal coding. As described in
the previous chapter, fractal coders typically encode an image by representing it with
the parameters of a dynamical system whose attractor is close to the given image. The
analysis provided in this chapter is for the 1-D case. For the 2-D case, the analysis and
properties will be very similar to that of the 1-D case.

We begin with real discrete-time signals of finite length N. These signals may be

represented by N-dimensional vectors in RY. Let

T

T2

TN

be such a signal. In the 2-D case, x may, for example, be generated by scanning an
image row-by-row. Then, x may be coded by designing a transformation 7 such that

the dynamical system described by the equation

Xpr1 = T (Xp) (3.12)
has the property that for any initial vector x, € RY,

T (x0) ~ %,

and the number of bits needed for representing 7 is smaller than that of x. The Con-

traction Mapping Theorem provides a sufficient condition for convergence of (3.12). A
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more relaxed sufficient condition is that 7 must be eventually contractive (see Section
3.9.1).
In practice, linear transformations are generally used, so 7 may be represented by
matrices A and B such that
T(x)=Ax+B

and (3.12) may be written as
X1 = Ax, + B. (3.13)

In fractal image compression, each signal is typically partitioned into K range blocks
X;, 1 =1, 2,..., K, each of size M, i.e.,
N = KM,
T X1

T2 X2

| T(i-1)M+M |

and for each x;, a domain block d; of size LM (with L > 1) and an operator 7; : RFM

RM is found such that

B; is a shift in grayscale

- - Mx1

35



and o; is a scalar factor. P; is an M x M matrix generated by a permutation of the rows
of the identity matrix. It corresponds to a shuffling of the elements of the domain blocks,
and, in the 2-D case, can, among other things, apply rotation of blocks by multiples of
90 degrees, and/or reflection against vertical, horizontal, or diagonal axis.

G is a shrinking matrix, which, in the 1-D case, typically has the form

w 0 --- 0 O
0O w -+ 0O
G= ,
0 0 w 0
_O o --- 0 Wi
where
=i ],

However, G may be generalized to represent decimation, i.e., lowpass filtering followed

by subsampling, in which case it may be written as

G'MXLM = SMXLMFLMXLM

where
a, Qo az --- ap_1 Qp o 0 ---0 0 O --- 0
0O a a --- ap—o ap—7 a 0 --- 0 0 O --- 0
F = o 0 o0 --- 0 0 0 0 -+ 0 ap ay -+ ap ;
ar, 0 o --- 0 0 0 0 --- 0 0 a, -+ apr—1
| a4z a3 ag - ap 0 o 0 ---0 0 O -+ a |
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and is a circular matrix.? L’ is the length of the filter and, in general, may be different

from L. S is the subsampling matrix and may be written as:

(s 0 0
0 s 0

S: I
0 O <. 8
L dvxom

where

s=]1 00 ---0 .

L 1xL

In the 2-D case, F should represent a 2-D filtering operator and S should represent a 2-D
subsampling by a factor L.
The operator 7; transforms a domain vector d; to an approximation of a range vector
x;. All of the operators 7;,7 =1, 2,..., K, together define a transformation 7 for x such
that
x ~ T (x) (3.14)

where
K
T(X) = ZHZ
1=1
K
= Y H; ((e;P;Gd;) + By)
i=1

K
= Y oH;P;Gd, +ZHB

i=1 =1

= (fj oH;P,GK; ) x + (i HiBZ-) : (3.15)

i=1 =1
K;, 7+ =1, 2,..., K are fetch operators, generating d; from x, i.e., d; = K; x. If we
denote the index of the first element of the domain block corresponding to x; by I;, then

K; = [ Ormx(ri—1) Iomxeasr Onmx(v—(5—1)-zm) :|LM><N'

!There are many ways to treat boundaries. Here, the simplest case is presented.
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Hi,i:

Hixi =

O¢i-1ymx1
XZ 9

| Ok —iymrxa Vol

OG—1mxm

IM><M

Note that (3.15) has the form

| Ox—iymrxmr Nl

T(x) = Anxnx+ Byxa
where A is of the form
LM
-~
O!1P1G IM
a2P2G
A= O£3P3G
O!KPKG'

1, 2,..., K are put operators generating a component of x from x;, i.e.,

(3.16)

v

and the horizontal location of each matrix o;P;G is determined by I;. B has the form

B,

- 4 Nx1
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In fractal coders, the matrices G and H;, i = 1, 2,..., K are typically independent
of x and are fixed both at the encoder and the decoder, and are not part of the code.
But matrices B;, K;, P; and values «;, for i = 1, 2,..., K need to be specified for the
decoder through the code.

Due to the structure of B;, it can be specified by sending b;, i =1, 2,..., K, i.e., for
each range block specify the offset of the mean of the range block with respect to the
mean of the domain block. To specify K;, one needs only to specify I;, i =1, 2,..., K,
i.e., for each range block specify the address of its domain block. P; typically represents
one of a few types of permutations and one needs to specify which one is used for each
range block. Many researchers use only P; = I and do not need to specify it in the code.
The «; is quantized and included in the code.

So, the information needed to fully define 7 for the decoder is {(ay, b;, I;, P;), i =1,
2,...,K}.

3.6 Generalized Model

In the previous section, we showed that typical fractal coders may be modeled by
linear systems with dynamical equation of the form (3.13) and are fully described by
A and B. Given A and B, the output is fully determined by the initial state and the
input. Also, given the system, the steady-state (if it exists) is fully determined by the
input and is independent of the initial state. The goal of the encoder is to send enough
information to the decoder for it to construct the steady-state. This information consists
of A, B, and u. However, the matrices A, B, and u must be structured so that they can
be represented by a very small numbers of bits compared to the final state. The fractal
coder studied in the previous section is only one such structure. In the following section,
we will analyze the problem for general A and Bs to gain insight from a more general

point of view.

39



Y

B ——~F)— delay

Xn_|_1 Xn

Y

Figure 3.5 A block diagram representation of (3.17).
3.7 Finding the Steady-State

Now, we concentrate our attention on Equation (3.5), assume a constant input u,,

and represent Bu,, simply by B:
Xn+1 = Ax, + B (3.17)

with the initial state xo. Figure 3.5 shows a block diagram representation of (3.17). This

leads to the following series of equations.

X1 = AX()+B (318)
X, = Ax;+B=A%%,+(A+1)B

x3 = Axy+B =A%+ (A’+A+1)B

x, = Ax, 1 +B=A"X+ (A" '+A"?+...+1)B (3.19)

From digital control systems theory it is known that the sequence (x,) converges, if and
only if, the system described by (3.17) is stable. This happens when all the eigenvalues

of A are within the unit circle. Then (3.19) may be written as
X, = A"+ (I— A")(I— A)"'B (3.20)
and by letting n — oo, we get
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Xeo = A®x0+ (I-A®)(I-A)'B
= 0+(I-0(I-A)"'B

or

X = (I- A) 'B. (3.21)

Equation (3.21) may also be obtained by noting that x, is the fixed point of 7 and we
have

X = AX, + B

which leads directly to (3.21).
From (3.21), it is clear that the steady-state of the system is independent of its initial
state and is a linear function of B. By substituting (3.21) in (3.20) we get

x, = A"xg + (I — A™)xo
which may be written as
Xy — Xoo = A" (X9 — Xoo) (3.22)

which shows an exponential convergence, if the state sequence (x,) is convergent. Figure
3.6 provides a simple graph for visualizing (3.22) when A is 1 x 1 and also contractive.
We note that for large n, (3.22) corresponds to the power method [145] for computing the

eigenvalue of A with the largest magnitude. It can be proven that
lim (x, — X&) = V1,

where v, is an eigenvector corresponding to the eigenvalue A; of A with largest magni-
tude. However, this is true if vy is real. If A has more than one eigenvalue with the
same maximum value, then the limit will be a linear combination of the corresponding

eigenvectors. In such a case, for large n,
Xni1 — Xp & A (Xn — Xoo)

or

Xni1 & AMiXy + (1 — M) Xeo-
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Figure 3.6 Exponential convergence of state vector to steady-state beginning from an
arbitrary initial state.

3.8 Encoder and Decoder Errors

Let us assume that we apply the recursive formula of Equation (3.17) with x, being

the original signal (image) that is encoded. Using a notation similar to that of Section
2.1.2, we define

e — Xp—Xi (323)
€ep d:é X0 — Xxo (324)
and
def
er = |len||
def
ep = |len||

and call g the encoding error (or the collage error), and call ¢ the decoding error.
These variables are shown in Figure 3.7 for a case of A being contractive.

Then, substituting xq from (3.18) in (3.23) we get

ep = Xp — (AX() -+ B) = (I — A)XO —B (325)
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Figure 3.7 Convergence of state vector to steady-state when x; is the original encoded
signal (image).

and substituting x, from (3.21) in (3.24) we get
ep = xo—(I-A)"'B (3.26)
(I-Alep = (I—A)x,— B.
Comparing (3.25) and (3.26) gives
eg=(I—-A)ep (3.27)

or

ep=(1I-A)""eg (3.28)

which provides an explicit relationship between the encoding error vector er and the
decoding error vector ep, in contrast to the inequality (2.8) of the collage theorem.

Equation (3.27) may be used to obtain bounds for ¢
er = |lep|| = |[(T— A)ep|| < [[I—All[len]| < (|[T]| + [[Al])en.
Therefore,

€E

ep > —2 (3.29)
1+ [|A]|
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Figure 3.8 Bounds of ep/cp vs. ||A].

We can also rewrite (3.27) as
e = ¢€p — AeD
erp +AeD = €p
llesl[ + [|All[lenl] = |lenll
s > (1= |IAlDep.
Then, if [|A|| < 1,
EE
ep< B (3.30)
1—[|A]

which is the collage theorem in the discrete case. Inequalities of (3.29) and (3.30) may

be rewritten as

€E €E
—  <egp < ——. (3.31)
1+[|A]] 1—|[A]l

Figure 3.8 shows the bounds of ep/eg vs. ||A||. If we use the notation
MY 1-A)" (3.32)
then, we can rewrite (3.21) and (3.28) as

Xs = MB (3.33)
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Figure 3.9 Block diagram representing the relation between B, X, eg, €p, r, and Xg.

ep = MeE (334)

which may be added to give

X +€p = M(B+ep)

Equations (3.33) and (3.34) clearly show that the relationship between e, and eg is
exactly the same relationship that x., has with B. One may expect that selecting B
close to x4, (or possibly to xq) will make ep closer to er. However, this may not be true
in general.

Equations (3.33), (3.34) and (3.35) are summarized in Figure 3.9 and suggest that
adding eg to B changes the approximate output x., to the exact output xq. This may be
interpreted that both B and ey represent some type of residuals in the encoding process,
with the difference that B is transmitted to decoder, while eg typically is not.

Let us denote B + eg by r, i.e.,

def
réB—i-eE.
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Then, using (3.23) and (3.18), we have

Xo = Axo+T (3.36)

in contrast to

Xg ~ Axy+ B

from (3.14) and (3.16). Ax, represents the self-similarly encoded component of xq, and r

represents the residual component of xy, and B is, in fact, the approximation of r which

is sent to the decoder. If r was sent to the decoder without any error, then

r=B = eg=0 = ep=0 = xX5=X

or using (3.32) and (3.36), we would have

Xo = Mr.

This provides new insight into the encoding process:

(1)

ep is the error in transmitting the residual r = xo — Ax( to the decoder. At the
decoder, this error in the input causes an error ep at the output, making the output

X different from xq by ep.

By transmitting B to the decoder, the encoder is practically encoding the residual
of the image after range blocks are approximated by domain blocks. Although this
encoding is usually done by a simplistic method of sending the average value of the
residual over each range block, more advanced techniques may be used for better

encoding of this residual.

In order to make a lossless coder/decoder, one obvious method is for the encoder
to decode the image, find ep, and send it to the decoder in addition to the code
for the fractal transform 7. However, (3.35) suggests the alternative approach of
the encoder sending ey rather than ep to the decoder. The decoder may then add
er to B and begin decoding. This removes the task of image decoding from the

encoder and, thereby, reduces its complexity.
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If we denote the eigenvalues of A by A1, A9, ..., Ax, and its corresponding eigenvectors
by vi, Va,..., vy, then from (3.32), it is easy to show that the eigenvalues of M are
1/(1 — Ay, 1/(1 — Ag),...,1/(1 — Ax) with eigenvectors vy, vo,...,vy. If any of the
eigenvalues of A is close to 1, the magnitude of the corresponding eigenvalue of M
becomes large and any component of eg, along its eigenvector, can cause a corresponding

large component in ep causing large decoding error.

3.9 Stability vs. Contractivity

3.9.1 Eventual contractivity

The proper operation of the attractor decoder requires the convergence of the sequence
(x,,). There have been studies on this convergence from the operator point of view of
Section 3.2. A sufficient condition for the convergence of (x,) is for the operator 7 to
be contractive (see Section 2.1.1). A more relaxed condition for convergence of (x,),
proposed by Fisher et al. [146, 147, 148], is eventual contractivity. An operator T is
eventually contractive if there exists a positive integer N such that 77 is contractive.
Obviously, all contractive operators are eventually contractive. It is known that eventual
contractivity of 7 is a sufficient condition for 7 to have a unique fixed point z* € X,
such that for any = € X,

' ="T(z") = lim T"(x)

n—00
(see for example [148, page 36]). However, eventual contractivity is not a necessary
condition. To show this, consider the function f : R — R, where f(z) =2 —1if z > 2
and f(z) = z/2 if x < 2. Tt is easy to show that although (f"(z)) is convergent to zero
for any x, there is no N for which fV is contractive in R.

The relation between contractivity of 7, eventual contractivity of 7, and the conver-

gence of sequence (x,) may be expressed as

T contractive T eventually contractive = Vz, (T"(x)) convergent to z*.
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The following theorem provides a necessary condition for convergence which is similar,
but not the same as, eventual contractivity.

Theorem: Let (X, d) be a complete metric space with 7 : X — X. Also, assume
that there is a point z* € X such that for any point z € X,

" = lim 7T"(x). (3.37)

n—o0

Then, given any s € R, and for every y;,y2 € X there exists a K, such that for alln > K,

d(T"(y1), T"(y2)) < s d(y1, o).
Proof: According to (3.37),

Ve >0, AN > 0, such that n > N = d(T"(y1),2%) <e (3.38)

Ve >0, dM >0, such that n > M = d(T"(y2),2") <e¢ (3.39)

Now, let ¢ = %s d(y1,y2) and let K be the maximum of M and N for this € according to
(3.38) and (3.39). Then

V> K, d(Tw),2") < %sd(yl,yz) (3.40)
, d(T"(y2),7%) < %8 (Y1, ya)- (3.41)

Using the triangle inequality for metric d, we get
d(T"(y1), T"(y2)) < d(T™(y1), 27) + d(T"(y2), 27). (3.42)
Combining (3.42) with (3.40) and (3.41) gives

d(T™(y1), T"(y2)) < %8 d(y1,y2) + %s d(y1, y2), (3.43)

and, therefore,

Vn > K, d(T"(y1), T"(y2)) < sd(y1,y2). O (3.44)

3.9.2 Stability

The notions of contractivity and eventual contractivity are the main basis for analysis

on convergence of attractor decoders in the literature on fractal coding. However, from

48



the systems point of view, the convergence of the sequence (z,) is extensively studied in
terms of the stability of its generating system. In this section, we bring some definitions
and results from the systems theory. For further details, the reader may see [149]. In
what follows, x is assumed to be an N-dimensional vector and A is represented by an
N x N matrix.

Theorem: The solutions to x(t) = A(t)x(t) form an N-dimensional vector space.

Definition: A fundamental matriz ¥ of x = A(t)x is an N x N matrix whose columns
are linearly independent solutions of %(¢) = A(¢)x. It is easy to show that ¥ = A(¢)®.

Definition: The matrix ®(¢,t) defined as

B(t, 1) & W) T (t,) Vt, to € (—00, 00)

is called the state transition matriz of X = A(t)x, where ¥ is any fundamental matrix of
x = A(t)x.
It can be proven that ®(t,%y) is independent from the choice of ¥. We denote the

solution to (3.9) with the initial condition x(%y) = xo and input ug (zero for t < 0) by

d)(ta th X0, uO)-
Theorem: For (3.10)

B(t,t)) = erl) =&t — 1)

t
B(t, o, xp,u) = eAl)xy+ [ AT Bu(r)dr.
to

Definition: At time ty a system is called relazed iff the output for ¢ > t; is excited
only by u(t) for ¢t > t.

Definition: A system is called bounded-input-bounded-output stable or BIBO stable if
its output to any bounded input is bounded.

Definition: A state x, is called an equilibrium state iff
\V/t 2 t() Xe = ¢(t, t(), Xe, O)
Definition: We call an equilibrium state x. stable in the sense of Lyapunov at ty iff

Ve >0 36 >0, |0 — x| <0 = |[|@(t,t0,%0,0) — x|| < &
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where § depends on ¢ and t,.
An equilibrium state x. is also called uniformly stable i.s. L. (in the sense of Lyapunov)

for t > tq iff
Ve >0 36 >0, l|Xo — Xe|| <0 = ||d(t,ty,%0,0) — Xc|| < €

where § only depends on & and not on t.
Definition: An equilibrium state x. is called asymptotically stable at t iff it is stable
i.s.L. at ¢y and for any initial state xq close to x, we have lim;_,,, x = x.. More precisely,

Vt1, o > 0 such that |[x(t1) — x¢|| < « implies
Ve>0 3T >0, Vt>t1+T, ||od(t,t1,%x(11),0) — x.|| < e.

In the above definition, if x, is uniformly stable i.s.L. for ¢ > ¢3 and T is independent of
t1, then x, is called uniformly asymptotically stable for ¢ > .

Linear systems have the property that if they have one stable equilibrium state they
will be globally stable or stable in the large.

Definition: A linear dynamical equation is called totally stable iff both the output and
the state variables are bounded for any initial state and any bounded input.

Theorem: If a linear time-invariant dynamical equation is both controllable and

observable,? then the following statements are equivalent:

(1) The system is totally stable.
(2) The system is BIBO stable.
(3) The system is asymptotically stable.

(4) The real component of all the eigenvalues of A are negative.

2For the definition of controllability and observability, the reader may refer to [149] or [150]. Here, we
only mention that in (3.10) and (3.11), in the case of B =T and C = I, the system is both controllable
and observable.
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So, the system described in (3.5) and (3.6) is stable iff the eigenvalues of A have negative
real parts (i.e., are located in the left-hand side of the complex plane).

The concept of stability for continuous-time systems can be easily applied to discrete-
time systems. However, the condition of stability for these systems is different. The
system described in (3.5) and (3.6) is stable iff the eigenvalues of A have magnitudes less
than 1, i.e., are located within the unit circle [149]. If A is an N X N matrix, and )y,
A2, ..., Ay are its eigenvalues, then

p(A) = max [\

1<i<N

is called the spectral radius of A. Hence, the stability of the system of (3.5), (3.6) may
be expressed as

p(A) < 1.

3.10 Convergence

The whole operation of attractor coding is based on the convergence of the sequence
generated by the decoder and makes the analysis of convergence of the decoder an im-
portant issue in attractor coding. However, the rate of convergence is also of great

importance because
(1) it determines the speed of decoder, and

(2) it determines how much additional error is introduced into the decoded signal by

the decoder, as can be seen from (3.31).

In the literature, the rate of convergence of attractor decoders is typically analyzed in
terms of the contractivity factor of the operator 7, and sometimes in terms of its Lip-
schitz constant. For the linear time-invariant case, this is reduced to ||A||. However, in
this work, we propose that using the eigenvalues of A provides a more powerful tool for

analysis of convergence in attractor decoders. Eigenvalues of matrix A have also been

o1



used for analysis of convergence by Lundheim [151] and Hiirtgen and Simon [152]. How-
ever, computing the norm of A for some norms is easier than computing the eigenvalues

of A. For ||.||1, ||-]|2, and ||.]|cc, it can be shown that

N
Al = max (Dam)
J i=1

|Allz = /p(ATA)
N

Al = max 3 fa
j=1

and for any norm,

. ni L ni 1
p(A) = lim ||[A"||7 < - < ||AM|w <--- < [|A?]]2 < |JA]].

n—oo

In the next section, we will investigate methods for computing the eigenvalues of A using
flow graphs.

Convergence, just like eigenvalues, is independent of the norm being used. In terms
of convergence, all norms are equivalent. There are A’s for which some norms are greater
than 1 and some are less than 1. Although ||A|| < 1 is a sufficient condition for con-
vergence, the reverse is not true. And, also, small ||A|| guarantees a fast convergence,
but again, in general, the reverse is not true. On the contrary, p(A) < 1 is both a nec-
essary and sufficient condition for convergence and p(A) directly dictates the speed of
convergence in the long run as can be expected from (3.22). In fact, the long-term be-
havior of discrete-time systems is typically determined by the eigenvalue with the largest
magnitude, and its corresponding eigenvector. This eigenvalue is called the dominant
eigenvalue. In the case of continuous systems, the dominant eigenvalue is the one with
the largest real part.

Regarding eventual contractivity, this author is not aware of any practical method

for its computation based on its definition.
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3.11 Graph Theoretical Approach

In the previous sections, we established the importance of eigenvalues of A in analysis
of the attractor coder system described by dynamical Equations (3.5) and (3.6).

In fractal coding, image pixels are encoded by approximating them with other pixels
in the same image. The structure of matrix A is determined by the pattern and level
of interdependence of image pixels. However, each image pixel is typically dependent
on only a small number of other pixels, and hence, the matrix A is very sparse. These
dependencies may be better analyzed if represented by a flow graph. In such a represen-
tation, pixels are represented by vertices (nodes) and their dependencies by weighted arcs
(arrows). The resulting flow graph also provides a representation of matrix A. Interest-
ingly, many features of A, including its eigenvalues, have graph theoretical equivalents.
In this section, we investigate these equivalencies and their implications on properties of
the attractor coding system. This study sheds new light onto the difficult problem of
analysis of convergence of attractor coders of images.

In Section 3.11.1, some basic terminology in graph theory is briefly introduced, which
will help us in developing the concepts of the following sections. In Section 3.11.2, we
will study different patterns of dependencies and their interpretations from the viewpoint
of graph theory, structure of matrix A, eigenvalues of A, and properties of the attractor
coder in terms of causality and stability. The two theorems presented in Sections 3.11.2.5
and 3.11.2.6 will cover the most general cases studied here and constitute the highlights

of this section.

3.11.1 Concepts in graph theory

A graph is a pair of sets (V, E) where E is a set of unordered pairs of members of V.
A graph is called finite if both V and E are finite. In this dissertation, we will only study
finite graphs and refer to them simply as graphs. The elements of V' are called vertices
and V is called the vertez-set of the graph. Also, the elements of E are called edges and
E is called the edge-set of the graph. If e = {a,b} € E, then a and b are called the end
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Figure 3.10 Representation of (a) a graph, (b) a digraph, (c) a labeled graph, and (d)
a weighted graph.

points of e. We denote e by ab and write e = ab, and e is said to join vertices a and b
and we call a and b adjacent vertices. In such case, a and b are also called neighbors of
each other.

If F is a set of ordered pairs instead of unordered pairs, then the graph is called a
directed graph or a digraph and the members of E are called arcs. If e = (a,b) € E, we
again denote e by ab and say e joins vertex a to vertex b.

Graphs may be represented by diagrams like Figure 3.10(a) where vertices are repre-
sented by points and edges are represented by curves connecting their end-point vertices.
Similarly, digraphs may be represented as in Figure 3.10(b)

A labeled graph is a graph where the vertices are numbered 1 to N where N is the
number of vertices in V' (Figure 3.10(c)). If a number is assigned to each edge of a graph,
the graph is called a weighted graph (Figure 3.10(c)). A labeled weighted digraph is called
a flow graph. The degree of a vertex v in a graph, denoted by d(v), is the number of edges
that have v as an endpoint. The in-degree and the out-degree of a vertex v in a digraph
G are the number of arcs e = (u,v) € E(G), and e = (v,u) € E(G), respectively, and
are denoted by d~(v) and d*(v).

A graph G is called regular of degree K if

Yo e V(G), d(v)=K.
A digraph G is called regular of degree K if

Yo e V(G), d*(v)=d (v) =K.
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For a graph G, we may also denote the vertex-set by V(G) and the edge-set by E(G). A
graph H is called a subgraph of a graph G if V(H) and E(H) are subsets of V(G) and
E(G), respectively. In the special case of V(G) = V(H), H is called a spanning subgraph
of G. An isolated vertex is a vertex which is not adjacent to any other vertex in the
graph.

A path is a graph (V, E) where V and E have the form

V = {Ul,Ug,...,Uk},

E = {{vi,v},{vo,v3}, ..., {vk-1,vk}}.

A path is fully described by its list of vertices or edges. Note that a vertex cannot be
repeated in the list. A cycleis a path of the above form with the additional edge {vy,v1}.
The length of a path or a cycle is the cardinal number of its edge-set.

A directed path and a directed cycle are digraphs defined similarly to a path and a
cycle, except that edges are ordered pairs instead of unordered pairs.

In a directed cycle C, the product of the weights of all of the arcs is called the loop
gain of the directed cycle and is denoted by ¢(C) or £ when C' is specified. A self-loop is
a cycle or a directed cycle of length 1. Two cycles or directed cycles are called touching
if the intersection of their vertex-sets is not empty.

A digraph is called acyclic if it contains no directed cycles. A graph is called connected
if every two distinct vertices in the graph are connected by a path.

A digraph is called strongly connected if every two distinct vertices u, w in the graph
are connected by a directed path from u to w and by a directed path from w to w.
A connected subgraph of a graph is called a component of the graph if it contains the
maximal number of edges. For a digraph G, a strongly connected subgraph with the
maximal number of arcs is called a strong component or strongly-connected component of
G. Isolated vertices of the GG are also called strong components of G.

An n-factor of a digraph G is a spanning subgraph of G which is regular of degree n.
For example, Figure 3.11(a) shows a digraph and Figures 3.11(b) and 3.11(c) show its
1-factors. Also, the graph of Figure 3.10 has no 1-factors.
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Figure 3.11 (a) A digraph, and (b), (c) its 1-factors.

U1 (Y
V2
V3

(a) (b)

Figure 3.12 Sectional subgraphs of Figure 3.11(a) with (a) V; = {v1,v2}, and (b)
Vs = {v1,v2, v3}.

For a digraph G, with the vertex-set V', let V; C V. The sectional subgraph of G
associated with V;, and denoted by G[V}], is the subgraph of G whose vertex-set is Vj
and its edge-set is the set of all edges in G which connect any pair of vertices in V.
Figure 3.12 shows two sectional subgraphs of the digraph of Figure 3.11(a). Given a
square matrix A, with elements a; ;, the Coats graph [153] of A is a flow graph which
has an arc with weight a; ; from vertex labeled j to vertex labeled 7 iff a; ; # 0. If G is a

Coates graph of A, for simplicity we call G the graph of A, and call A the matrix of G.
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V2 U3

Figure 3.13 Coates graph of matrix A in (3.45).

Figure 3.13 shows the Coates graph of matrix

0 a c
A=|5 0 0]|- (3.45)
0 do

The Mason graph [153] of a A is the Coates graph of A + 1.

3.11.2 System analysis using flow graphs
In this section, we will analyze attractor coders with state equation of the form
Xn+1 = ANxNXn + By (3.46)

using graph theory. In the following sections, we will refer to the system whose state
equation is of the form (3.46) as the system of A or as the system of flow graph of A.

We also assume that all elements of A are real.

3.11.2.1 Single-path flow graph

Consider a flow graph made up of a single directed path of length N — 1 as shown in
Figure 3.14(a). The matrix of this flow graph is

0 0o --- 0 0
921 0 0 0
A.: 0 a3,2 O 0 )
i 0 0 rr ON,N-1 0 1 nen
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Figure 3.14 (a) A flow graph made up of a single directed path, and (b) location of
eigenvalues of its matrix.

where all of the shown a;; are nonzero. A has an eigenvalue of 0 with multiplicity N
and p(A) = 0; therefore, its system is stable. Furthermore, from the flow graph of A,
it is intuitionally clear that the system of A reaches its steady-state at most after N
iterations. This can also be verified by showing that A" = 0 and using (3.22).

Note that any permutation® of A has the same eigenvalues and stability. Its graph
will also be same as Figure 3.14(a), except for labeling. Also, the resulting system is not
spatially causal, but it can be made causal by changing the order of the elements of x in
(3.46), which is equivalent to a spatial reordering of the signal being coded.

Note that for such a system, during the decoding one needs not compute the value
of all vertices at each iteration. The decoder may first compute only the value of state
variable corresponding to vertex 1, then compute only vertex 2 from the value of vertex
1, and so on. Computationally, evaluation of the values of all vertices in this way has the
same complexity as computing Ax, + B only once. This method of decoding causally

encoded signals will be discussed further in later sections.

3A permutation of matrix Anxn is a matrix PAPT, where P is an N x N matrix obtained by
reordering rows of Inyxn. Note that A and its permutation have the same eigenvalues, however, their
eigenvectors are different only by row permutations.
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(a) (b)
Figure 3.15 (a) An acyclic flow graph, and (b) location of eigenvalues of its matrix.
3.11.2.2 Acyclic flow graph

Consider an acyclic flow graph for which the vertices are labeled such that for each
arc uw, the label of u is less than the label of w. Such a flow graph is shown in Figure

3.15(a). The matrix of such flow graph is of the form

0 0 0 0 0
a1 0 0 0 0
A=|a3; azg2 0 - 0 0 , (3.47)
| avy an2 ans - ann-1 O .

which is a lower triangular matrix with all diagonal elements being zero. Note that the
signal-path graph of Section 3.11.2.1 is a special case of this graph. Let us denote the
length of the directed path in G' with the greatest length by L, where L < N — 1. The

system of this graph reaches its steady-state at most in L + 1 iterations and
At =0

p(A):/\lz/\QZZ)\N:O

Any system whose state transition matrix A can be reduced to the form of (3.47) by a

permutation, also has the same stability and convergence properties.
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(a) (b)

Figure 3.16 (a) A regular flow graph of degree one, and (b) location of eigenvalue of
its matrix.

3.11.2.3 Single-cycle flow graph

Let us consider a regular flow graph of degree 1. Such a digraph consists of a single
cycle. Figure 3.16(a) shows such a flow graph with more than one vertex and Figure

3.17(a) shows it with only one vertex. The matrix of the former case has the form

0 0 0 ay
Q921 0 0 0

A - 0 0/3,2 0 0 )

0 0 *t GN,N-1 0 1 vwn

which is a circular matrix with one nonzero element per row. In the latter case, we have
A= [al,l].

In either case, A represents a spatially-noncausal system. If we denote the loop gain of

the directed cycle by /, i.e.,

A (ann-1)(an—1,n—2) - (a32)(az,1)(a1,n)

then, it is easy to show that

AN = 0TIyun (3.48)
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Figure 3.17 (a) A one-vertex regular flow graph of degree one, and (b) location of
eigenvalues of its matrix.

and the characteristic equation of A is
MV —¢=0,
which has the solutions
A = YjefCrivit)/N i=0,1,...,N—1. (3.49)

Hence, the eigenvalues of A are uniformly distributed on a circle of diameter {/|¢| with
center (0,0) in the complex plane. Figures 3.16(b) and 3.17(b) show this for £ > 0 with
N > 1 and N = 1. Therefore, we have

p(A) = Yl

The system converges iff / < 1, in which case, the system is guaranteed to reach its

steady-state only at n = co. Combining (3.48) and (3.22) shows that
XpN — Xoo = PF(Xg — Xoo) k=0,1,2,...

i.e., after each NV iterations the difference between each element of x,, and x, is multiplied

by 4.
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3.11.2.4 Multiple-component flow graph

In this section, we analyze properties of a digraph G made up of K nonempty com-
ponents. As there cannot be any arc between vertices of two different components of the

flow graph, the matrix of G can always be made block diagonal in the form

A,, 0 0 - 0

0 Ay, 0 --- 0
A: 0 0 A3,3 0 ’
| 0 0 0 - Agxk I van

by proper labeling of vertices in G. If we denote the collection of eigenvalues (including

multiplicities) of any matrix M by A(M), then it can be shown that

K
A(A) = |J A(AL). (3.50)
i=1
and, therefore,
p(A) = 12%3}( p(Ai). (3.51)

Matrix A and its flow graph represent a system with isolated subsystems which do not
have any interdependence while their internal structure is specified by A,;;s. Such a

system is stable iff all of its subsystems are stable, as may be seen from (3.51).

3.11.2.5 Not-strongly-connected flow graph
We first introduce the concept of reducibility in matrices. A matrix M is called

reducible* iff there exists some permutation matrix P such that

Ml,l 0
M., My,

PMPT =

where M ; and My 5 are square matrices. M is said to be irreducible if it is not reducible.

A reducible matrix M represents a system which can be partitioned into two subsystems

4Some authors define reducibility only for nonnegative matrices [145, page 324], but here we do not
impose nonnegativity.
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with matrices M;; and My, whose interrelation is only one way from system of M ;
to system of My, and is determined by M o.

We note that a flow graph is strongly connected iff its matrix is irreducible. On
the other hand, if a flow graph G is not strongly connected, then it has K > 2 strong
components. If A is the matrix of G, then it can be written (ignoring permutation) in a

block lower triangular form

Ay 0 0 0
A, A,y 0 0
A= ,
Ak 11 Ag_1p -+ Ax_ 1k 0
I Ak, Ako -+ Agrk1 Axkk 1 nun
where A1, Agg, ..., Ak i are irreducible square matrices. Furthermore, A; 1, Agso,. ..,

A k are matrices of strong components of G. In this case, the eigenvalues of A and
A1, Ay, ..., Ak i are again related by (3.50). These results may be summarized in
the following theorem [153, page 208][154].

Theorem: If GG is the Coates graph of a matrix A, then the eigenvalues of A are the
union (including multiplicities) of the eigenvalues of submatrices of A corresponding to
strong components of G.

Here, matrix A and its flow graph G represent a system which can be partitioned
into interconnected subsystems whose interdependence is spatially semicausal. This de-
composition is maximal, i.e., the subsystems cannot be partitioned further this way. The
submatrices A;; represent the internal structure of these subsytems, while A, ;, i # j
represent their interdependence. This system is again stable iff all of its subsytems are
internally stable. The one-way interconnection of the subsytems does not affect the
stability of neither the whole system nor its subsytems.

Due to the existence of directed cycles in the subsystems (as the subsystems have
graphs which are strongly connected), the system is guaranteed to reach its steady-state
only after infinite iterations. The only exception is when all the strong components of G

are isolated vertices with no self-loops.

63



2,1

> (5

ai

a2 a11 033

(a) (b)

Figure 3.18 (a) Flow graph of a spatially semicausal system, and (b) the location of
its eigenvalues in the complex plane.

Example: Spatially semicausal system
Consider a flow graph G of the form shown in Figure 3.18 (weights are not shown). This

flow graph has the lower triangular matrix

aii 0 0

A= azy1 azo 0

a3y azz G3;3

This flow graph is not strongly connected but has three strongly connected components,
which are the vertices and their self-loops. The eigenvalues of A are the eigenvalues
of these strong components, namely a;1, a2, and asz3. The system of G is stable iff
la;i| <1, fori=1,2,3.

Example: Multiple isolated cycles with acyclic interdependencies

Figure 3.19 shows a flow graph G. This flow graph is not strongly connected; for example,
there is no directed path from node 9 to node 3. Flow graph G is made up of three

strong components, each of which is a directed cycle. Note that, in general, these strong
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Figure 3.19 (a) A flow graph which is not strongly connected made up of three strong
components, and (b) location of its eigenvalues on the complex plane.

components need not be only directed cycles. The matrix A of this flow graph is

0 0 0 au|/0 0]0 0 0]
a1 0 0 0[]0 0[]0 0 O

0 ase 0 0|0 0[]0 0 0

0 0 a3 0|0 0|0 0 0

A=la; 0 0 0] 0 ae| 0 0 0 ;

0 a2 0 0 |ags 0| 0 0 0

0 0 0 0 |azs 0] 0 0 arg

0 0 0 0|0 agglagr O O

0 0 0 a0 0|0 ag 0 |

which has the form
A;;, 0 0

A=|Ay; Ay, O ;
As1 Ajp Ajs

)
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where A, Aso, and Aj3 are matrices representing the three strong component of G,
each of which is a directed cycle. As;, Asi, and Aj, are rectangular matrices repre-
senting the interconnection between the strong components or subsystems. Although the
subsystems of this system are not spatially causal, their interdependence is semicausal.
According to the above theorem, the collection of eigenvalues of A is the union of
eigenvalues of Aj 1, Ay, and As3. On the other hand, the eigenvalues of A;;, Ay, and
Aj;; can easily be found from (3.49). Hence, the system is stable iff the magnitude of

the loop gain of the directed cycle in each of the three subsystems is less than 1.

3.11.2.6 Touching cycles

The previous sections covered analyses of several types of matrices, their flow graphs,
and their systems. Any flow graph G that contains no touching directed cycles can
be analyzed, as in Section 3.11.2.3, if G’ contains a single, directed cycle, and as in
Section 3.11.2.5, if it contains multiple directed cycles. On the other hand, touching
cycles significantly complicate the eigenvalue problem. Yet, there are cases where the
eigenvalues may still be found. We have already seen systems made up of subsytems
that are interconnected causally. Here, we study subsystems that are interconnected in
the form of a directed cycle to make a larger system.

Let A be a block circular matrix of the form

0 0 0 Ak
Ay; O 0 0
A: 0 A3,2 O 0 I
[ 0 0 o Agxa O |

where the shown zero diagonal submatrices are square. In other words, the number of
columns in A;; is the same as the number of rows in A, ;. Figure 3.20 shows the flow

graph of such a system. Note that A represents a spatially noncausal system.
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Figure 3.20 Flow graph of four subsystems with cyclic interdependence.
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It can be shown that AX is a block diagonal matrix of the form

R, O 0 0
0 R, 0 0
A = , (3.52)
0O 0 Rx;y O
I 0 0 0 Ry | vaw
where
Ri = Ak Axkk-1 Ax_ix-2-AszsA,;,
Ry = Ayi Ak Axr-1 - -AszAzo,
Rx = Axx 1Ax 1k 2Ak oKk 3 --As1A k.

Note that R, R, ..., R are all square matrices with possibly different dimensions. The
system of AX is made up of K isolated subsystems and (3.50) may be used to compute
the eigenvalues of Rg.

Note that (3.52) shows that after each K iteration, the state of the subsystems is
dependent only on their own values before the K iterations and not the other subsystems.
The square matrices R;, 2 = 1, 2, ..., K represent internal dependencies of the subsystems
after the K iterations.

Lemma: Let P = MM, and Q = M>M; be square matrices. Then, any nonzero

eigenvalue of P is also an eigenvalue of Q (and vice versa).

Proof: Let A be a nonzero eigenvalue of P, and let x be its corresponding eigenvector,

ie.,
Px = \x, (3.53)
where
x # 0,
A # 0.
Equation (3.53) may be rewritten as
M Myx = Ax.
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Multiplying both sides by My from the left-hand side gives
M2M1M2X = )\MQX (354)
Q(MQX) = )\(MQX),

which shows that A is an eigenvalue of Q with eigenvector Myx if Myx # 0. We prove
M,x # 0 by contradiction. If Myx = 0, then we multiply both sides of (3.54) by M;

M1M2M1M2X =0
P’x = 0

Mx = 0,

which cannot be true as neither A nor x is zero. O
Using this lemma, it is easy to show that the nonzero eigenvalues of Ry, R, ..., R

are the same. Let J be the index of R; with the smallest dimension, i.e.,
dim(Ry) = in dim(R;),

and let
D = dim(Ry).

D is the dimension of the smallest subsystem of the K subsystems. Then, AX has, at
most, D distinct nonzero eigenvalues and the rest of its eigenvalues are zero. Therefore,
A has, at most, KD distinct eigenvalues located on J circles centered at the origin in the
complex plane. For example, in the flow graph of Figure 3.20, just by looking at the flow
graph, one can say K = 4, D = 2 and, that A has, at most, KD = 8 nonzero eigenvalues

located on D circles centered at the origin. In general, in terms of the spectral radius of

p(A) = Vp(Ry).

The stability of this system can be determined from interdependence of the state elements

A we have

of the smallest subsystem after K iterations. Using an argument similar to that of Section
3.11.2.1, it can be shown that it is possible to apply K iterations of x,,; = Ax, + B in

a manner that is computationally equivalent to computing x,,; = Ax, + B only once.
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3.11.2.7 The general case

In terms of stability, there are methods for determining the stability of a system from
the coefficients of its characteristic equation without solving the characteristic equation
(e.g., Section 8-6 in [149] or Section 6-3 in [155]). On the other hand, the coefficients
of the characteristic equation have graph theoretical interpretations in terms of directed
cycles of the Coates graph of matrix A. However, combining the two does not seem to
give any simple and intuitional graph theoretical interpretation of the concept of stability.

Here, we bring only a theorem describing the relationship between coefficients of the
characteristic equation of A and directed cycles in its Coates graph [153, pages 206—-210].
Theorem: Let A be an N x N matrix and G be its Coates graph. Let S;1,Si2,...,Siu,
for 1 <4 < N be the i-vertex sectional subgraphs of G. Let f;;1, fijo2,- .-, fijr, for
1<i<N,1<j<U, be the 1-factors of S; ;. For any f, let ¢(f) denote the number of

cycles in f, and let p(f) denote the product of the weights of all the arcs in f. Then,

U; Fi;
N —A| =)V + ivj ANV (Z Z ik p(fiin )) ) (3.55)
i=1 =1k=1

Example: Let
a b

c d
The Coates graph of A, its i-index sectional subgraphs, and the 1-factors of these sectional
subgraphs are shown in Figure 3.21. Using (3.55) and with the help of Figure 3.21 we

can write

M —A| = M+ A [(=Da+ (=1)d] + X°[(=1)%ad + (—1)"bc]
= M —(a+d)\+ (ad — be).

3.11.3 Spatial causality

In this section, we study properties that are related to spatial causality of the system
and may refer to spatial causality simply as causality. In this dissertation, we call a

system spatially causal iff some permutation of A has zero elements, on and above the
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i-vertex sectional 1-factors of 7-vertex
Graph of A subgraphs of A sectional subgraphs of A
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Figure 3.21 A flow graph, its i-index sectional subgraphs, and the 1-factors of these
sectional subgraphs for evaluating (3.55).
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diagonal, i.e., is lower triangular with zero diagonal elements, or equivalently, if the flow
graph of A is acyclic.

We also call a system spatially semicausal if some permutation of A is lower triangular.
This happens iff the only cycles in the flow graph of A are self-loops.

In Section 3.11.2.2, we saw that for any spatially causal system with the longest
directed path of length L. < N —1, the system reaches its steady-state in L+ 1 iterations.
In other sections, we also saw that for some cyclic graphs the system is guaranteed to
reach its steady-state only after infinitely many iterations. This brings up the question
of whether only spatially-causal systems may reach their steady-state in a finite number
of iterations. In other words, we know that spatial-causality is a sufficient condition for
finite-iteration convergence, but is this a necessary condition? To answer this question,
we first review some concepts from matrix theory.

We know that for any N x N matrix A, there are linearly independent vectors vy,

Vo, ..., vy (which are called generalized eigenvectors of A), such that for
Q = [V15V2a"'avN]:
we have
Q'AQ=A,

where A has a Jordan canonical form, has eigenvalues of A on diagonal, and has 0 or
1 on the superdiagonal [149, Section 2-6]. Matrix A is block diagonal with each block

being a Jordan block of the form

(A 10 - 00 0]
0A1 --00 0
00 A -~ 00 0
(3.56)
000 - A 10
000 -0 A1
00 0 00 A

- - mXm
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Figure 3.22 Coates graph of a Jordan block.

A A A A A
(d)
1 1 1
Figure 3.23 The form of components of the Coates graph of a matrix with Jordan
canonical form.

If the eigenvalues of A are all distinct, then A s diagonal and vy, vy,..., vy are the
eigenvectors of A. Note that (3.56) represents a flow graph of the form shown in Fig-
ure 3.22. Hence, we may conclude that the graph of A is only made up of components of
the form shown in Figure 3.23. The forms (a) and (b) happen only for zero eigenvalues
and the forms (b) and (c) happen only for some repeated eigenvalues. This shows that
any system can be transformed into a semicausal system by a proper change of basis. If
all of the eigenvalues are zero, then it can be transformed into a causal system made up
of only single-path components. If we further require that the basis be orthonormal in
C¥, then we may use Schur’s Theorem [145].

Schur’s Theorem: For any N x N matrix A, there is a unitary matrix U such that

U AU is upper triangular.
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In this case, the diagonal elements of U¥? AU are the eigenvalues of A and UYAU
represent a general semicausal system. Again, U# AU will be causal iff all eigenvalues
of A are zero. The answer to the question proposed earlier is given by the following
theorem.

Theorem: If the system x,,.1 = AnxnX,+Bnx1 reaches its steady-state in M iterations

for any initial state xg, then

(1) all the eigenvalues of A are zero,

(2) the system also reaches its steady-state in exactly N iterations (nontrivial when

N < M),

(3) there is a basis in CV such that the representation of A in that basis has a graph
made of only directed path(s) with weights 1, and

(4) there is an orthonormal basis in C" such that the representation of A in that basis

has an acyclic graph.

Proof: As the system reaches its steady-state in M iterations
Xy = Xoo-
Using (3.22) we get
Vxo, AM(x¢—Xs) =0,
or

vx, AMx=0

Y

and, therefore, A = 0. If ) is an eigenvalue of A, then 3v # 0 such that

Av = )v.
Therefore,
AMy = My
0 = WMy
A =0



Hence, all of the eigenvalues of A are zero and the characteristic equation of A is

AN =0. (3.57)
Then, according to the Cayley-Hamilton theorem [149], A satisfies (3.57), too, i.e.,

AN =0, (3.58)
which may be combined with (3.22) to give

Xy — X = 0,

XNy = Xgo-

For the third part of the theorem, this basis is the same basis that converts A into its
Jordan canonical form, and as all of the eigenvalues of A are zero, the Jordan form has
diagonal elements 0 and superdiagonal elements 1 resulting in components that are only
of the forms of Figures 3.23(a) and 3.23(b).

For the fourth part, this basis forms the columns of the unitary matrix of the Schur’s
theorem. O

As there are matrices like
a a

5 (3.59)

—a —a
whose all eigenvalues are zero but do not represent a spatially-causal system, spatial
causality is not a necessary condition for finite-iteration convergence. However, the above
theorem shows that there is a change of basis that converts such systems to spatially

causal systems with acyclic graphs. If the eigenvalues are not zero, then the system may

only be transformed to a semicausal system.
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CHAPTER 4

MATCHING PURSUIT

Approximation of the members of a vector space by a linear combination of a small
number of members in a possibly large set (dictionary) of redundant vectors in that space
has been of interest in different areas of science. More specifically, one may be interested
in finding the smallest number of vectors in the dictionary whose linear combination
approximates the given vector within a given error threshold. In the general case, this is
a rather difficult optimization problem.

More formally, given a vector x € RM, a scalar error threshold ¢, and a set
U={u,uy,...,up} C RM,
the problem is to find a subset
U ={uy,uy,...,u} CU 1< J,Jo,...,Js <P
with smallest S, and a corresponding collection {1, as, ..., as}, such that
(1w, + aouy, + -+ asuy,) — x| <e. (4.1)

If we use the notation

U = u
Ji U uy )
1 2 S MxS
(031
%)
o = 5
g
~ def *
X = (X1UJ1+01211J2+"'+04511JS:U a,
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then (4.1) may be written as

[x — %] <e.

If the number S and the set U* are found, the corresponding {a, as,...,as} can
simply be computed by least squares methods. A similar and equally difficult problem
is that if a positive integer L is given, find the L vectors in the dictionary whose linear
combination can best approximate a given vector in the vector space.

These problems are difficult combinatorial optimization problems. In fact, it has re-
cently been proven that, in the general case, finding the optimal solution is NP-hard
[156, 157]. However, an efficient suboptimal greedy solution to this problem has been
discovered by different researchers in different contexts but with basically the same un-
derlying mathematics.

In statistics, this greedy algorithm was found and named projection pursuit [158]. Tt
was used for the computation of conditional expectation of random variables. In control
theory, such a method was developed for nonlinear system identification [159]. In the
context of time-frequency decomposition, it was named matching pursuit [12] and was
used in signal analysis for extraction of patterns from noisy signals. In the context of
image coding, it was developed for a generalized image coding method unifying transform
coding, vector quantization, and fractal coding [8]. In this chapter, we will refer to this
method as matching pursuit.

Matching pursuit has recently been used for video coding. Vetterli and Kalker used
a rate-distortion optimized version of matching pursuit for motion compensated video
coding [15]. Neff and Zakhor used matching pursuit for coding motion residual images
of video sequences [14, 160].

The orthogonal matching pursuit, described in Section 4.3, was developed indepen-
dently by Chen et al. [159], Pati et al. [161], Davis et al. [13], and Gharavi-Alkhansari
and Huang [9, 162]. The rate-distortion optimized matching pursuit, described in Section

4.4, was proposed in [10], [11], and [15].
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For a detailed mathematical description of matching pursuit, the reader may refer to
the above references. In this chapter, we only review the basic principles of matching

pursuit and the motivation behind its design.

4.1 A Simplistic Approach

The first approach that may come to mind for solving the problem mentioned earlier
is to first find the u in U that best resembles or approximates x, call it uy,, and include
it in U*, i.e., set U* = [uy,]. Using least squares, find the best approximation of x that
can be obtained by a factor of uy,. If the norm of the residual error is below ¢, we stop
the procedure. Otherwise, we select the next best member of U in terms of similarity
with x, include it in U*, i.e., U* = [uy, uy,], and repeat the process. This approach
is summarized in Figure 4.1. If the members of U are orthogonal, then this approach
leads to the optimal solution. However, when the members of U are not orthogonal and
possibly not even linearly independent with P > M, then the solution could be far from
optimal. A major problem with this approach is that it happens quite frequently in
practice that there is a cluster of vectors in U that are very similar to each other and
to x, and selecting only one of them is nearly as good as selecting all of them. If one
of the members of this cluster is selected at any stage, there is a good chance that the
other members of the cluster will be selected in the following iterations, even though all
of the contributions they can make to coding x have already been achieved by selecting
the first member. This situation is especially serious when the angle between members

of the cluster is very small.

4.2 Standard (Nonorthogonal) Matching Pursuit

To avoid this problem in matching pursuit, when a member uy, of U is selected,
x is orthogonolized with respect to uy;,. The essence of matching pursuit is that for a

given vector x to be approximated, first choose the vector from the dictionary which has
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U= 1)
r=x
k=0

while ||r|| > ¢

{

k:=k+1
=X Ui VieT
[ ui|

Jp = arg(r?ea%x c;)
T:=T— {Jk}

U =[ U uy, |

%= U/ (UTUY) T U x

A~

r =X—X

S =k

a:= (U0 'U"x

Figure 4.1 Algorithm of the simplistic approach.
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the strongest correlation coefficient (highest absolute value) with x. Then, remove any
component of its form from x, i.e., orthogonalize x with respect to the selected dictionary
vector, and obtain the residual of x. The selected dictionary vector is, in fact, the one
that results in the residual of x with the smallest energy. Repeat this process for the
residual of x with the rest of the dictionary vectors until the residual becomes smaller
than a threshold or until no other dictionary vector has significant correlation with the
residual. This algorithm is shown in Figure 4.2. In this recursive procedure, the norm
of r reduces at each iteration. In the matching pursuit, the vectors u;, us,...,up in
the dictionary U represent different features and structures that may be present in x.
The structures typically have overlaps, i.e., some features may be present in different
structures. P is typically larger than M, and, in such case, u;,us,...,up cannot all be
orthogonal.

The motivation for this algorithm is that at each iteration £, the algorithm finds the
vector uy, in the dictionary which is most similar to the residual r. Then, it finds the
optimal approximation of r which can be obtained by multiplying a scalar c;, to uy,.
The best c;, in the least squares sense is the one that is obtained by projecting r onto

normalized uy,, i.e.,
uy,

IS

CJk—

Removing the component c;, - from r generates the new residual with the smallest

|| kll

possible norm, and the new residual is orthogonal to u;,, 1 < ¢ < k. By removing

cy from r, in a sense, r is exhausted from the feature represented by u,;, and the

res1d|1|11;i]kll|as no component of its form. Then, r is replaced by the new residual and the
process repeats. Structures u;, which were strongly similar to x in the first iteration but
were not selected then because they were not as good a match as u; in that iteration,
do not necessarily have strong similarity in this next iteration. Their new similarity,
measured by inner products, is only affected by new features they have that were not
represented or coded by uy,. In other words, x does not have any component of the

form u;, anymore, and if some u; were similar to x, mainly due to the u;, component,

then there is no point in using them anymore because that component has already been
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U* =]
r=x
k=0

while ||r|| > ¢

{

k=k+1
C:=Tr- Ui VieT
[Jug ]
Ji = arg(r?eaTx )
T:=T—{J}
U= U uy, ]
r=r-—cy bl
' gl
S:=k
o= (U*TU*)_IU*TX
or
CJI CJ2 CJS
o =
IEVA A [EVA

Figure 4.2 Algorithm of the basic standard matching pursuit.
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coded. However, if they have some other features in addition to u;, that are still present

in x, they may be selected in this next iteration due only to these features.

4.3 Orthogonal Matching Pursuit

In the standard matching pursuit, when a member u;, of the dictionary is selected it
is used to completely exhaust r from any component of its form. So, in the following iter-
ations, in choosing uy, . ,, among u;s, any component of the form u, present in u;s should
not influence their choice. However, in the standard matching pursuit, orthogonolization
of r, with respect to uy,, in the following iterations favors selection of the remaining u;s,
which have little projection on uy,. In other words, the components of u; present in
u;s mislead the following selections. This problem can be solved by orthogonolizing u;s
with respect to uy,. This leads to a more powerful algorithm, which is called orthogonal
matching pursuit, and its basics are shown in Figure 4.3. The residual is guaranteed to
reach zero if the procedure is repeated M times.

So, in orthogonal matching pursuit, after a vector in the dictionary is selected, one
removes any component of its form not only from r, but also from all other dictionary
vectors before repeating the process. Orthogonal matching pursuit is computationally
more expensive than the nonorthogonal version, but typically gives significantly better
results in the context of coding. However, if all the dictionary vectors are orthogonal,

then the results for both the orthogonal and the standard matching pursuit are the same.

4.3.1 Finding the coefficients of the selected vectors

For each vector, after the selection is made among the library vectors, we use least
squares [145] to find the coefficients of the selected library vectors. However, in the
orthogonal matching pursuit, the computations done for selecting the vectors from the
library include most of the computations that are necessary for finding the coefficients of

the selected vectors. In this case, the least squares can be done by a QR decomposition
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U* =]
r=x
k=0

while |[r|| > ¢

{

k:=k+1
ci::r-L VieT
||

Jy = arg(r?ea%x ;)
T:=T — {Jk}

U =[U" u |

ri=r— ¢y
' i
T
u;u
u; = u; — i "’51 VieT
([,

S =k

o= (UTU)  U"x

Figure 4.3 Algorithm of the basic orthogonal matching pursuit.
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[145] of the matrix U*, i.e., by writing

*
U'arxs = QurxsRsxs,

where the columns of Q are orthonormal and R is an upper-triangular matrix. Then, «
can be found from!

Ra = Qx.

The upper triangular matrix R and the vector Q7 x are computed directly in the process
of selecting the library vectors. Therefore, a can be found with a small number of

computations after the library vectors are selected.

4.4 Rate-Distortion Optimized Matching Pursuit

The standard matching pursuit or its orthogonal version tries to find the smallest
number of vectors in the dictionary that can approximate a given vector within a given
error threshold. In the context of coding, after the selection process is done, the coeffi-
cients of these dictionary vectors need to be quantized and entropy coded along with their
indices, and the number of selections made. Different dictionary vectors have different
costs in terms of bitrate depending on the probabilistic model used for their entropy cod-
ing. Hence, a better performance is expected if, instead of selecting the smallest number
of vectors from the dictionary, one selects vectors that need the shortest code collectively.

More specifically, for each 7 = 1,2,..., K, we would like to approximate each vector
x; by vectors selected from a dictionary U; of vectors. After this selection is made, each
of the coefficients of the selected vectors are quantized and the number of selections,
indices, and quantized coefficients are entropy coded. The goal is to do this using the
shortest possible code.

In other words, we want to encode vectors x;, i = 1,..., K by entropy coding of the

numbers S;, 2 =1,..., K, the indices J;x, 2 =1,..., K, k=1,...,5;, and the quantized

IFor a proof, see for example [145, page 238].
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coefficients &, x, @ = 1,..., K, k = 1,...,S;. Also, let us denote the distortion (error

energy) of each of the vectors x; by D;, i.e.,
D,:”Xz—fizng, izl,...,K,
denote the rate (number of bits) spent on coding x; by R;, and use the notation
¢ K
DY S D,
i=1

Assuming a target rate of R for % R;, the coding problem is that of minimizing
K
D= Z D;(R;)
i=1
subject to the constraint .
g ¥S R -R=0.
i=1

This constrained minimization problem may be solved using Lagrange multipliers [163]

by minimizing
h = D+ Mg (4.2)

= gDi(Ri)H(gRi—R)

— (z (Di (R;) + )\Ri)) — AR, (4.3)

i=1
where h is called the Lagrangian. If we assume that D; is a continuous function of R;,

we may take partial derivatives with respect to R;, 2 =1, 2, ..., K and A, and set them

to zero. This gives

on oD, .

_ _ —19... K 4.4
R, or, =0 =520, (4-4)
oh K
= LR-R=0.

=1
Equation (4.4) corresponds to minimizing each term of the sum in (4.3) individually.

So, the minimum can be found by computing the minimum of D; + AR; for each x;.

Equation (4.4) may be rewritten as

5D1 aDQ aDK
OR, OR, ORk A (4:5)
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Replacing partial derivative with ¢ in Equation (4.5) gives

5D, 6D, 6Dg

6—&_@_"'_@:_/\'

Regarding the selection process in the matching pursuit, we note that for each vector

Xi,

(1) selection of each dictionary vector is based on §D;, i.e., on how much it reduces the

energy (distortion) of x;, and

(2) the selection process stops when the distortion D; of the x; goes below a threshold.

Therefore, the selection criterion and the stopping criterion are both based on distor-
tion of the residual of x; and do not take into account the bitrate cost of the selections.

This can be improved by changing both the selection and the stopping criteria.

Selection Criterion. Due to the entropy coding stage, the number of bits required
to encode x; is not exactly proportional to the number of vectors used for coding it.
In other words, the number of bits required for representing an index or a quantized
coefficient depends on the frequency of selection of the dictionary vector or the quantized
coefficient. Therefore, the best dictionary vector to be selected at each stage is not the
one which gives the greatest reduction in distortion D;, but the one which gives the
greatest reduction in D; + AR;. In other words, the best vector to select is the one with
the smallest d D; + Ad R;, where 0 D; is the change in the energy of the residual (distortion)
of x; and JR; is the number of bits spent on coding the index, and the coefficient of the
newly selected vector plus any change in the cost of previously selected vectors. So,

rate-distortion optimized matching pursuit uses this improved selection criterion.

Stopping Criterion. In the standard and orthogonal matching pursuit, the encoder
tries to encode all of the x;s with approximately the same distortion energy €2 using a
minimum number of dictionary vectors. However, this is not optimal because by doing

this, some x;s select many dictionary vectors with each one contributing slightly to the
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reduction of the error energy. Many of the bits used for coding these vectors may be
used to make a larger reduction in D if they are used for coding other vectors.

This suggests that an optimal solution is obtained when §D;/dR;, rather than D, is
kept the same for all x;s. This modifies the stopping criterion for the selection process.
In rate-distortion optimized matching pursuit, the goal is to minimize D; + AR;. So,
the selection process stops when D; + AR; cannot be decreased any further, which is
equivalent to 6D; + AJR; becoming greater than zero. For dR; > 0, this means that
—0D;/dR; becomes smaller than the threshold A.

D, is typically a decreasing function of R; and, therefore, §D;/JR; is usually negative
and —0D;/JR; represents how much the distortion D; (and, therefore, D) is reduced for
every bit of R; spent for this reduction. Threshold A\ determines the trade-off between
dD; and 0 R;. Requiring —dD;/0R; > ) means that for every bit spent, D; must decrease
by at least A. Note that rate-distortion optimality can be applied to both the standard

and the orthogonal matching pursuit.
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CHAPTER 5

THE NEW METHOD

In this chapter, a new block-based image coding method is proposed. This method,
which was originally aimed at solving some major shortcomings of fractal coders, results

in a very general framework for image and video coding.

5.1 Motivation

In block transform coding methods like JPEG, each block in an image is encoded by
approximating it with a linear combination of fixed basis blocks as shown in Figure 5.1.
In these methods, the set of basis blocks is the same for all of the blocks being encoded
and is also independent of the image. These methods are usually not adaptive in the
sense that they cannot take into account image structures like repetitions or similarities
between blocks that are located at different parts of the image. The basis blocks cannot

change from one image to another or from one block to another.

approximation of

image block
(03] =/_L: Q3
042{
fixed M
library vectors

Figure 5.1 Selection of vectors from library in block transform methods.
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Figure 5.2 Selection of vectors from library in V(@ methods.

On the other hand, vector quantization (VQ) methods are designed for a class of
images. They have codebooks that can suitably approximate any block in the class of
images for which they are designed. In vector quantization, each block of an image is
approximated by a single block from the codebook (Figure 5.2).

So, in contrast to block transform coding, which uses a linear combination of (typically
orthogonal) blocks to approximate a given block, VQ uses a single block, which is, of
course, chosen from a larger set of blocks. Although in standard VQ the codebook is
designed for a class of images, it is typically not adaptive to single images and blocks
because it is not efficient to send a new codebook for every image or every block in an
image.

Fractal-based methods may be viewed as block coding methods that approximate a
range block by a linear combination of up to a few fixed blocks (typically for dc and
low frequency components) [4, 111, 132], and a single other block made by applying
some contractive transformation on a domain block in the same image (for encoding
details of the range block) as shown in Figures 5.3 and 5.4. So, it is similar to VQ! in
the sense that it uses a single block from a large library of blocks to approximate the
details of the block. However, fractal-based methods are adaptive because the codebook
can be different from one image to another and, in some methods, different from one
range block to another range block without the need for sending the codebook each time.

This adaptivity has more potential for image compression. In fact, because fractal-based

1For a comparison between VQ and Jacquin’s method, see either of the following references [3, 4, 72].
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Figure 5.3 Selection of vectors from library in basic fractal methods.

methods approximate each part of an image by another part, they have the potential to
exploit global relationships better than VQ or block transform coding (e.g., DCT).
However, fractal-based methods have the problem that the codebook, although very
adaptive, is not very controllable. The codebook is limited to blocks that exist in the
image (possibly limited to the neighborhood of the range block) or simple transformed
versions of them. This pool is not always capable of providing a good approximation to
highly detailed or unique range blocks in the image. In fact, due to this limitation, very
detailed image blocks cannot be encoded very well. And, more generally, fractal methods
usually cannot efficiently encode images at arbitrarily high PSNRs. Fractal methods are
also crucially dependent on a strong dc component being present in image blocks and
put special emphasis on encoding dc components of image blocks and are not suited for
data types with small dc components. Also, when an image block is similar to several
other domain blocks in the image, fractal coders always use the best match only, and
cannot take advantage of the similarity of other blocks. Although fractal coders exploit
self-similarity of images at different scales (inter-scale self-similarity), they do not take
advantage of self-similarity of images at the same scale (intra-scale self-similarity). Many

researchers have unsuccessfully tried using such self-similarities in fractal coders.
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Figure 5.4 Selection of vectors from library in generalized fractal methods.

In this chapter, we propose a method that efficiently solves these shortcomings of
fractal coders while keeping their advantages. This work begins by adding a series of
major revisions in the way fractal coding is done and results in a very general algorithm
that unifies the three methods of block-based transform coding, VQ, and most of the
earlier fractal image coders. The utilization of intra-scale image self-similarities in the
case of video coding makes the block prediction methods, like DPCM, adaptive block
prediction methods like block motion compensation, and hybrid coding methods like
motion compensation combined with transform coding of residual errors, special cases of
the proposed coding method.

However, the new coding algorithm requires the solution to the important and chal-
lenging mathematical problem addressed in Chapter 4. The matching pursuit solution
allows the encoder to automatically detect the type of redundancy present in the image
block and the order of approximation that makes the most efficient code for the block.

Figure 5.5 shows the structure of a general compression system. Different components

of this system are described in this chapter for the proposed method.

91



Original ~ |
Signal : Entro :
——— > Transformer » Quantizer > by
: Coder I
! |
Code
Decodled ~ -~~~ -~ -~~~ ~" -~~~ "~~~ -" - -~ °-°-=-°-°=-°=°7° '
Signal : Inverse . Entropy :
-+ < < <
I | Transformer Dequantizer Decoder |
! |

Decoder

Figure 5.5 Structure of a general compression system.
5.2 The Transform

The transformation used in the proposed method is an extension of the basic form
described in Section 3.5. In this transform, an N; x N, image is first partitioned into
nonoverlapping range blocks of size M; x M,, where Ny = K1M; and Ny = KyM,. Each
range block is considered as an M = MM, dimensional vector. There are K = KK,
range blocks denoted by x;,7=1,2,..., K. For each range block, a library U; of blocks
of size M, x M, is made and a small number of them are chosen such that their linear
combination gives a good approximation of the range block (Figure 5.6). The number and
the index of these selected library blocks and their corresponding coefficients constitute
the code for the range block. It is notable that the library can be different from one
range block to another and its adaptive components are neither necessary nor sent for

the decoding process and are not part of the code.
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Figure 5.6 Selection of vectors from library in the proposed method.

5.2.1 Making the library of blocks

For each range block x;, + = 1,2,..., K, the library U; is made up of two disjoint

subsets.

5.2.1.1 Fixed library blocks (FLB)

This set is denoted by F' and contains a series of blocks f;, j = 1,2,..., Pr which
are independent of the range block being encoded. This set is designed by the encoder
designer. For example, it can be the M orthonormal M-dimensional basis blocks used
in DCT, the set of blocks in the codebook of a vector quantizer designed for the class of
images being encoded, or merely a very small set of orthonormal blocks that the range
block has strong components of their form.?

This set of FLBs is the same for all of the range blocks in the image being encoded
and must be sent to the encoder offline. The presence of these blocks in the library can

serve the following purposes:

e The encoder can use shorter codes for the indices of some of these blocks that are

commonly present in the range blocks in the form of a strong component.

2As will be mentioned later, depending on the type of FLBs, a limit may be put on the maximum
number of FLBs used, e.g., this may be 1 if a VQ codebook is used.
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Enable the decoder to encode range blocks more accurately which are very different
from other blocks in the image and, therefore, cannot be well encoded by other

subsets of the library.

5.2.1.2 Adaptive library blocks (ALB)

This set is denoted by A; and contains library blocks a; ;, j = 1,2,..., P4, that are

generated by applying some transformation 7; on domain blocks in a neighborhood of the

range block. This set is range-block dependent, i.e., it may be different from one range

block to another. There are many ways of making these library blocks using the guideline

that it must be possible to represent 7 with a short code and 7 can generate blocks that

are very similar to the block being encoded. Two such sets of ALBs are described below

and will be used for obtaining experimental results. There are several other possibilities

that are not explored in this dissertation.

(1)

Higher Scale Library Blocks (HSLB)

These are blocks that are generated by lowpass filtering and subsampling (shrink-
ing) domain blocks of size LM; x LM, of the image (L > 1) in both directions
by the factor L to give M; x M, library blocks. The filtering is typically a sim-
ple averaging.® The set may also be complemented by adding rotated or reflected
versions of the above blocks, which are more generally called pixel shuffling or

isometric transformation.

Same Scale Library Blocks (SSLB)

These are blocks that are taken directly from the image (with no shrinking) and
are restricted to be in parts of the image that are already encoded. In other words,
these blocks are selected causally. This subset may again be complemented by

adding rotated or reflected versions of the SSLBs.

3The issue of optimal choice of L is studied by some investigators [4, 164], but the optimal choice of
filter is still an open problem.
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The set of ALBs introduces adaptiveness to the encoding algorithm as each range
block can use a different set of ALBs. This can potentially increase the efficiency of the
encoding algorithm.

The HSLBs exploit fractal properties of the image by using its inter-scale similarities.
However, the assumption of self-similarities of image at different scales typically implies
self-similarities of the image at the same scale. In other words, when one larger part of
an image is similar to smaller parts of the image, smaller parts are also similar to each
other. These same scale, self-similarities of images are what is exploited by the SSLBs.
In fact, some experimental results suggest that self-similarities of natural images at the
same scale are typically stronger than self-similarities of images at different scales when
simple shrinking transformations are used [6], i.e., for a range block, the best match is
more likely to be found among SSLBs rather than HSLBs. The SSLBs actually allow
the process to use the code of parts of the image that are already encoded to be used for
parts that are not encoded yet. The concept of encoding data by copying parts of the
data that are already encoded was introduced for lossless compression of 1-D data first
by Ziv and Lempel [165]. It was extended to lossy compression of 2-D grayscale images
by Saito et al. [166]. For video sequences, this method has proven to be very effective

and forms the basis for all motion compensation methods.

5.2.2 The selection process

Using a notation similar to that of Chapter 4, we denote the members of U; by u;

i=1,2,...,P, ie.,

e

Ui = {ui,la U;2,..., ui,Pi} = {fz’,la fz‘,2, ce ey fi,PFa ;1,342 --- ,ai,PAi},

P =Pp+Py.

This dictionary is typically overcomplete (P; > M) and the problem of making the opti-
mum selection among the dictionary blocks is an important part of the transform. This

problem is the problem that is addressed by matching pursuit algorithms as discussed
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in Chapter 4. In this system, we use the rate-distortion optimized standard/orthogonal

matching pursuit.

5.2.3 Substitution of the range block with its approximation

After finding the coefficients of the selected library blocks for the current range block,

the encoding process may be continued in either of two ways.

(1) Encoding without Range Block Substitution
Begin encoding the next range block using ALBs constructed from the original

image and the FLBs.

(2) Encoding with Range Block Substitution
Make the approximation of the current range block by multiplying the computed
coefficients by their corresponding library blocks and adding them together. Then,
update the image by substituting the current range block in the image by its approx-
imation. By doing so, the ALBs for the following range blocks will be constructed

from the updated image instead of the original image.

The motivation for the second method is as follows. At the decoder side, at the
iterations following the convergence of the reconstructed image (attractor), the ALBs for
each range block will be constructed from the converged image and not from the original
image. So, at the encoder side, it is reasonable to try to make the best approximation
of the range block by using the ALBs from the best guess that we can have from the
attractor. After encoding each range block at the encoder, substituting the range block
in the image with the approximated range block, moves the image closer to the attractor
and, hence, gives a more accurate set of ALBs for approximating the following range
blocks.

All of the fractal-based compression methods published earlier use the method of
encoding without range block substitution. However, our experiments have shown that
encoding with range block substitution significantly improves the quality of the decoded

image without affecting the performance of the encoder.
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This substitution method is applicable to all fractal/attractor coding methods and
corresponds to different matrices A and B in (3.17). Using the notation of Section 3.7,

we define a new transformation

7:(x) = H;7;(d;) + E;x,

where
Ti-nymx@-nm 0 0
E; = 0 Onrx s 0
0 0  TLik—iymxE—im
Then,
7, = (H,P,GK, + E;) x + H;B,
and

A may be computed as
K

=1

and for B we have

K-1 K
B= 3} ( II (oH;P;GK; + Ej)) H,B; + HxB.

i=1 \j=i+1
5.2.4 Comparison with other methods

We make the following observations on our proposed encoding process.

e Most other fractal-based image coding methods are close to special cases of this
method where maximum number of FLBs is set to 1 (for dc component) or a small

number and no SSLBs are allowed.

o If the maximum number of ALBs is set to 0, the maximum number of FLBs is
set to M, and the FLBs are selected orthogonal, this method reduces to a block

transform coding.
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e On the other hand, if the maximum number of ALBs is again set to 0 and the
maximum allowed number of FLBs is set to 1, then this method reduces to a vector

quantization method.

The resulting fractal coding method has the following advantages over most fractal

coding methods:

o [t typically gives better compression performance due to a better and less con-

strained method of selection of blocks from the dictionary.

e Because the dictionary provides an over-complete set of vectors for approximation
of each range block, this method provides a method for arbitrarily high PSNR and

even lossless image coding.

e This method performs relatively well even when the image blocks do not have a

strong dc component, e.g., in residual images or some nonphotographic 2-D signals.

e The compression time is only moderately increased with the increase of PSNR of

the decoded image.

5.2.5 Structure of the code

To construct the code for each range block, the values oy, as, ..., ag obtained in the
previous section will be quantized using uniform quantizers. We denote these quan-
tized values by @i, ao,...,as. The number of selected library blocks S, their indices
J1, Jo, ..., Js, and their corresponding quantized coefficients &, Qis, . . . , g represent each

range block x;, i.e.,

d N N
X; =% Siy @ity Jin)s -« -5 (Qis;, Jiss;)-
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5.3 Quantizer/Dequantizer

Among the code parameters generated by the transform, only the coefficients «; ; have
continuous values and need to be quantized. A uniform quantizer is used which takes a
continuous value o and generates an index I(«) to a quantization bin. If we denote the

quantization bin size (step size) by A, then

I(a) = round (%) :

Under mild conditions, it is proven that uniform quantizers are optimal in a rate-
distortion sense, when the quantized values are entropy coded [167, Section 9.9].

Note that the quantization error can also be included in D of Section 4.4 to im-
prove the quality of decisions made by the rate-distortion optimized matching pursuit
algorithm.

The task of the dequantizer is to convert bin numbers to quantized values, i.e.,
a=A I(a).

Selection of A affects both the rate R and the distortion D. To select A optimally in
a rate-distortion sense, it must be selected so that it minimizes the Lagrangian D + AR.

Consider the linear expansion
S
X= Z ;4
i=1
where u;, 2 = 1, 2,...,5 are orthonormal. The average additional distortion generated

by quantizing each q; is

1
D= _—_A”
12
On the other hand, the dependence of R on A may be formulated as [167, Section 9.9]
+o0
R=— [ " f(a)1og, f(ai)da; — log, A,

where f is the probability distribution function of «;. Minimizing D + AR, with respect
to A, gives
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5.4 Entropy Coding

For the coding method to be efficient, the code represented in Section 5.2.5 should
be entropy coded to construct the final code for the image. All entropy coders use some
underlying probabilistic model of the source signal, either explicitly or implicitly. Given
this probabilistic model, entropy coders differ on how well they can compress the source
signal. However, there is an upper bound for the performance of these coders called the

Entropy, which is denoted by H, and is a function of the source model.

5.4.1 The coder

The two general, most commonly used coding methods are Huffman coding [168] and
arithmetic coding [169]. Huffman code can perform close to optimal if the probabilities
of the alphabet of the source are close to powers of 2. Arithmetic coders, on the other
hand, can perform close to optimal for any arbitrary alphabet probabilities. Due to this
advantage, an arithmetic coder was used in the system implemented for this work. The
implemented arithmetic coder is a version of the one proposed by Bell et al. [169] and
Witten et al. [170]. In this algorithm, the source model and the coder are made quite
separate, which makes it easily adaptable to different source models, some with complex
structures. The precision to which symbol frequencies may be held in the program
provided for this algorithm is 14 bits. In another version of this program implemented
by Neal [171], this precision is increased to 27 bits. This later version was modified by
the author to allow more flexible models for the source and was used for entropy coding

in the encoder.
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5.4.2 The source model

The implemented arithmetic coder uses three different models for S;, J; ;, and &; ;.
Each of these models will be described in the following sections. However, in the imple-

mentation, each of them have the following features:

(1) Each model may be initialized with some initial statistics (histograms). These
statistics should either be known to the decoder or should be sent to it through a

header in the code. Otherwise, all symbols are given the same probabilities.

(2) The model may be updated during the encoding (and, therefore, also during de-
coding), i.e., by encoding each new symbol and the frequency of the symbol that
is being tracked by the encoder is incremented. These frequencies must also be
computed adaptively at the decoder. Otherwise, the probabilities are always based

on initial statistics.

5.4.3 Model for the number of selected blocks S;

Sis were modeled in the simplest way and their model uses the frequency of each S;
(including initial statistics). S; can have values ranging from 0 to M. In other words,

this model is based on P(S;) approximated by

n(k
P(S;=K) = ,
( ) ijvion(])
= 1,2,..., K,

where n(z) represents the number of times x blocks were selected for approximating a

range block.

5.4.4 Model for the indices of selected blocks J; ;

As mentioned before, the selection process of matching pursuit is an iterative process

and is done in iterations or stages. The library blocks for range block x; are selected in .S;
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stages 7 = 1,2,...,5;, resulting in indices J; ; and coefficient «; ;. Experimental results
show that the probability of a specific library block being selected is highly dependent
on the stage number j at which it is selected. Therefore, the indices J; ; are modeled
using the conditional probability P(J;;|j). At each stage j, the model estimates the
probability of occurrence of a specific index by computing
_ (k)

Yion(lls)’

where n(z|y) denotes the number of times a library block with index = was selected at

P(Ji,j = k)

stage y.

5.4.5 Model for the quantized coefficients &; ;

The probabilities of &; ; are conditioned on J; ;, as they are highly correlated, i.e.,

n(z|Ji; = y)
Yozl iy =1vy)

P(ay,; =) =

where n(u|J;; = y) is the number of times the quantized coefficient u has been selected

for library block number y.

5.5 The Inverse Transform

The decoding algorithm, in the most general case, is similar to the one proposed
by Jacquin [3, 4, 71, 72] and is based on the Contraction Mapping Theorem. Using the
notation of Chapter 3, we begin with any initial image x and for each range block x; bring
the blocks from the image that have the same address as the selected domain blocks and
apply the corresponding transformations 7; on these blocks to make an approximation
of the selected ALBs. Then, these approximated library blocks and the selected FLBs
are multiplied by their corresponding coefficients and are added together to make an
approximation of the range block. This process is repeated for all range blocks until the

resulting image does not change significantly with further iteration.
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The convergence of the decoding process is proven only for the case where the maxi-
mum allowed number of ALBs is 1 and their combination coefficients are less than 1 [4].
However, experimental results suggest that the decoder converges even when the maxi-

mum number of allowed ALBs is greater than 1 [6].

5.5.1 Immediate vs. delayed substitution

There are two methods for updating the image at each iteration in the decoding
process. These methods differ in the time at which the computed range block at each
iteration substitutes the old range block in the image so they can be used in the con-

struction of the ALBs for the following range blocks.

(1) Decoding with Delayed Substitution
The ALBs needed for making the range blocks in image at each iteration are made
from the image in the previous iteration. In other words, the approximated range
block computed from the image at iteration n is used as part of the image in
iteration n + 1. The following range blocks in iteration n do not use the new

approximated block as part of the image.

(2) Decoding with Immediate Substitution
At each iteration, immediately after a range block is computed it substitutes the
corresponding part of the image and the following range blocks in the same iteration

will use the updated image for making their ALBs.

Jacquin’s method and nearly all of its following fractal-based methods use the first
method. The second method was proposed by Kaouri in 1991 [172] and has a much faster
convergence.

So, the performance of the decoder is affected by the way the approximated range
blocks are used both in encoder and decoder. Encoding with range block substitution
improves the quality of the reconstructed image in decoder and decoding with immediate

substitution improves the rate of convergence in the decoder.
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5.5.2 Noniterative decoding by causal encoding

As mentioned before, the SSLBs are restricted to be chosen causally from the image,
but the HSLBs are not. If we restrict the HSLBs to be also chosen causally and use
encoding with range block substitution and decoding with immediate substitution, then
the whole encoding system becomes causal and the decoding process needs only a single
iteration to converge (i.e., it becomes noniterative) and there are no restrictions on the
coefficients of the library blocks (except due to possible numerical stability issues). This
issue was studied in Chapter 3 and is further described below in the context of the new
coding method.

If the HSLBs are selected causally in the encoder, then during the encoding of each
range block, the approximation of the range block is made from FLBs and ALBs that
are constructed from already encoded parts of the image and the result is put back in
the image.

At the decoder, the approximated range block is made from FLBs and ALBs that are
constructed from already decoded parts of the image and, then, the result is put back in
the image.

It is clear that at each step of encoding, the encoder is using informations that are all
available to decoder at the similar step and, therefore, the approximation of the range
block that the decoder reconstructs at the first run through the image is exactly the same
as the approximation that the encoder makes.

So, the decoder not only reaches the attractor in one iteration, but, also, the attractor
is exactly the approximation of the image made at the encoder and no additional error
is introduced into the image during the decoding. In fact, no restriction of contractivity
is put on the transformations that are used by the encoder.

In this case, using the notation used in Section 2.1, we have A = W (B) giving
h(B, A) = h(B,W(B))

in contrast to the error limit given by the Collage Theorem
h(B, W (B))

1—s

h(B,A) <
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In fact, this method can be classified as an adaptive block prediction coding where the
prediction parameters are being sent to the decoder.

However, selecting domain blocks noncausally, as it is done in almost all fractal-based
methods, provides a larger variety of ALBs for encoding a range block and also makes
the encoding quality of all the range blocks uniform, (i.e., there is no difference in the
ALBs available for encoding a range block at the beginning of the image and one located
at the end). Although imposing causality on the HSLBs can cause a major problem for
the fractal-based coders that used a single ALBs and one or a few FLBs, it does not
seriously affect the performance of the generalized coding method proposed here, when
the number of FLBs is large enough.

In summary, selecting the HSLLBs noncausally makes the encoding of the range blocks
more uniform, which is important in some cases. On the other hand, the price of using
HSLBs noncausally at the encoder is that for the image to be reconstructible at the

decoder side, the following is required:

(1) The decoding process needs to be iterative.

(2) Some additional error is introduced during the decoding process. (An upper limit

to this error is given by the Collage Theorem.)

(3) T needs to be contractive.

105



CHAPTER 6

COMPRESSION OF STILL IMAGES

In this chapter, we present the results of applying the algorithm of Chapter 5 to

natural still images.

6.1 Settings of the Experiments
The parameter settings listed below are used in these experiments.

e The rate-distortion optimized orthogonal matching pursuit is used for the selection

of dictionary vectors.

e The histograms are trained using eight training images: “Airplane,” “Baboon,”
“Peppers,” “Sailboat,” “Splash,” “Aerial,” “Stream,” and “Bank.” They are used
three times and the histograms are accumulated. These histograms are then used

for encoding the actual test image.
e For FLBs, the M DCT basis blocks are used.

e 128 SSLBs and 64 HSLBs are used. The SSLBs are selected from the causal neigh-
borhood of each range block, i.e., they are taken from a square area in the image
with the range block at its center, while avoiding parts of this square that are not
encoded yet as shown in Figure 6.1. The HSLBs are selected from the (noncausal)
neighborhood of range blocks. The size of the neighborhood is not the same for the
SSLBs and the HSLBs and, in either case, any parts of the square that fall out of

the image are not used.
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IMAGE

Figure 6.1 The neighborhood of a range block with the shaded region representing the
causal part.

e In practice, it was found that using pixel shufflings, such as rotation by multiples of
90 degrees or reflections, only slightly affect the performance of the coding system

and largely increase the computation time, and, therefore, were not used.

e The method of encoding with range block substitution (see Section 5.2.3) was used

for its smaller decoding error.

e In practice, it was found that in nearly all range blocks, the constant DCT basis
block, corresponding to zero vertical and horizontal frequencies, was selected as
the first match in the matching pursuit process. This is due to the presence of a
strong dc component in blocks of natural images and the low cost of these blocks
in terms of bitrate due to their frequent use. Therefore, in the selection algorithm,
the constant DCT basis block was forced to be selected as the first selection for all
range blocks. The coefficient of this basis block is also predicted from the quantized

coefficients from the top and the left side range block approximations.
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Figure 6.2 Five iterations of the decoding process.
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Figure 6.3 Original 512 x 512, 8 bits/pixel Lena image.
6.2 Test Results

Figure 6.2 shows the iterative decoding of the 512 x 512 test image Lena'. This
image was compressed to 0.43 bits/pixel using 8 x 8 range blocks. Beginning with an
initial 512 x 512 black (all zero) image, the decoder generates a sequence of images that
converge to the decoded Lena image. Figure 6.2 shows images resulting from the first five
iterations having PSNRs of (b) 24.22 dB, (c) 27.74 dB, (d) 30.42 dB, (e) 32.21 dB and
(f) 33.24 dB. After about 10 iterations, at a PSNR of 34.50 dB, the change in the image
becomes negligible. The original Lena image is shown in Figure 6.3 and the final decoded
image is shown in Figure 6.4. Figures 6.5 and 6.6 show the Lena image compressed at
0.22 bpp (31.2 dB PSNR) and 0.15 bpp (29.2 dB PSNR).

Figure 6.7 shows PSNR vs. bitrate for compression of the 512 x 512 Lena image with
the method of this chapter (curves u,v, and w) and other fractal-based methods (see

Table 2.1 for references). In this figure, the curves “u,” “v,” and “w” correspond to

compression using range blocks of size 16 x 16, 8 x 8, and 4 x 4, respectively. Figure

! Available from “ftp://ipl.rpi.edu/pub/image/still/usc/gray/” at the time of this writing.
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Figure 6.4 Decoded Lena image: 0.43 bits/pixel at 34.5 dB PSNR.

Figure 6.5 Decoded Lena image: 0.22 bits/pixel at 31.2 dB PSNR.
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Figure 6.6 Decoded Lena image: 0.15 bits/pixel at 29.2 dB PSNR.

6.8 shows a similar comparison with some nonfractal methods (DCT-based and wavelet
based). The curve “o” corresponds to an optimized version of baseline JPEG coding
method [128]. See Table 2.1 for other references.

At bitrates below 0.2 bpp, using 16 x 16 range blocks provides a better performance
compared to using 8 x 8 blocks. Figures 6.9, 6.10, and 6.11 show decoded images using
16 x 16 range blocks at bitrates of 0.088, 0.038, and 0.019 bpp, and PSNRs of 28.6, 25.9,
and 23.8 dB. The encoding compression times depends on the value A and is typically
about one minute on a Hewlett-Packard Apollo Series 735 workstation computer. The
decoding time typically takes a few seconds if the encoding is done noncausally, and less

than a second if it is done causally.

6.3 Comparison

These results suggest that in terms of compression ratio and PSNR,
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Figure 6.7 PSNR vs. bitrate for compression of the 512 x 512 Lena image with the
the method of this chapter (u,v,w), and other fractal-based methods (see Table 2.1 for
references).
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Figure 6.8 PSNR vs. bitrate for compression of the 512 x 512 Lena image with the
the method of this chapter (u,v,w), and some nonfractal methods (see Table 2.1 for
references).
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Figure 6.9 Decoded Lena image: 0.088 bits/pixel at 28.6 dB PSNR.

Figure 6.10 Decoded Lena image: 0.038 bits/pixel at 25.9 dB PSNR.
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Figure 6.11 Decoded Lena image: 0.019 bits/pixel at 23.8 dB PSNR.

e The performance of the proposed method, is far better than the original Jacquin’s
method and many of its variations, and better than most other published fractal
methods. The only two other published fractal-based methods that are reported
to perform better are those by Barthel et al. [119], and Rinaldo and Calvagno [47].
The former uses a quadtree partitioning, which is not used in the method proposed
in this work, and seems to be able to improve the performance of the system. The
latter uses matching of range and domain blocks in the wavelet domain and takes

advantage of better compression properties of this domain.

e The proposed method performs better than typical implementations of JPEG. At
very low bitrates, for the same level of image quality, the method can compress
more than 3 times the JPEG implementation. Compared to an optimized version
of JPEG [128], the performance of the system is the same at around 0.3 bpp, but
somewhat behind at higher bitrates. At very low bitrates, the performance of the

proposed system is very close to the wavelet-based zerotree methods and does a
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much better job of preserving sharp edges. However, the blockiness of the images

is disturbing at very low bitrates.

e In contrast to most published fractal image coders, the proposed method can ap-
proximate an image with arbitrarily small distortion and the compression time only

moderately increases with the increase of PSNR of the decoded image.

6.4 Conclusions

In this chapter, sample experimental results for the algorithm of Chapter 5 were
provided. These results show that the proposed method is a highly efficient fractal coder
and gives a compression ratio 4 to 5 times better than the original Jacquin’s method,
and is among the top three fractal coding methods ever reported. The coder works very

well in coding sharp large edges, even at very low bitrates.
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CHAPTER 7

COMPRESSION OF VIDEO SEQUENCES

In this chapter, we present results of applying the algorithm of Chapter 5 to natural

video sequences.

7.1 The Approach

The method of Chapter 5 can be easily extended to encoding of image sequences.

The extension can be done in either of the following two ways:

(1)

By considering a sequence of images as a three dimensional set and use 3-D blocks
instead of 2-D blocks. In this case, 3-D transform coding becomes a special case of

the proposed method when only FLBs are allowed for encoding image 3-D blocks.

By considering a sequence of images as a series of two dimensional images and
for the range blocks of any image, allow the domain blocks to be chosen from the
neighborhood of the range block which includes parts (or possibly all) of neighboring

frames.

In fact, when only one SSLB (with its coefficient restricted to 1) and no HSLBs
are allowed, block prediction methods like DPCM, and adaptive block prediction
methods like block motion compensation [173], become special cases of this algo-
rithm. Also, hybrid coding methods [173] like motion compensation combined with
transform coding of residual errors (which is equivalent to DPCM of transform co-
efficients of blocks shifted according to motion vectors) is equivalent to using the

basis blocks of the transform coding as FLBs and allowing one SSLB.
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The second method is used for the test results provided in this chapter. It treats the
temporal direction differently from the spatial directions, as they are very different in
nature, and it is very close to the well established method of motion compensation which
has proven to be a very powerful method of coding for video sequences.

The above method is applied to natural image sequences, some examples of which are
brought in this chapter. All of the experiments reported in this section are done under

the following settings:

e The rate distortion optimized orthogonal matching pursuit is used for the selection

of dictionary vectors.

e For the initial statistics of the entropy coders, no prior training is done. The en-
coder/decoder gathered these statistics as they progressed, i.e., an adaptive entropy

coder is used.
e No pixel shuffling (rotation/reflection) of domain blocks is done.
e The first frame is coded only using FLBs.

e Each of the following frames extract their ALBs from the previous frame. For both
SSLBs and HSLBs, a spiral pattern is traversed around the position of the range
block in the previous frame. As the selections are made from previous frame, the
coding is being done causally, and neither SSLBs nor HSLBs are restricted to be
only on top or left of the range block.

e Due to a causal encoding process, the decoding process is noniterative and the
decoder reaches its steady-state in only one iteration (see Sections 5.2.3 and 5.5.1).
In other words, because the adaptive part of the dictionary for each block is made
from the previous frame, the encoder is causal. This makes a noniterative decoder

possible as the decoder is aware of the dictionary used by the encoder at all times.

Higher-scale dictionary blocks are taken from the neighborhood of the range block in

the filtered, subsampled previous frame. These blocks are introduced to let the encoder
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Table 7.1 Parameters of the test sequence Miss America

Number of frames 150

Format grayscale CIF/PAL
Number of grayscale levels | 256 (8 bpp)

Width of frames 360 pixel

Height of frames 288 pixel

Frame Rate 25 Hz

take advantage of the inter-scale redundancies in the sequences and make the fractal
element of the coding. Same-scale dictionary blocks are taken directly from the neigh-
borhood of the range block in the previous frame. These blocks are introduced to let
the coder take advantage of the intra-scale redundancies in the image, similar to motion

compensation methods.

7.2 Experimental Results

The standard Miss America test sequence' was used obtained for the experimental

results of this chapter. Table 7.1 shows the parameters of this sequence.

7.2.1 Experiment 1

Figure 7.1 shows three original (a), (c), (e) and decoded (b), (d), (f) frames of the 12.5
Hz (25 Hz subsampled by 2) Miss America video sequence. The test sequence was coded
at 80 Kbits/sec with an average PSNR of 36-37 dB. For these results, 8 x 8 range blocks
were used. The 64 DCT basis blocks were used as the fixed dictionary blocks. For this
experiment, 128 causal same-scale and 64 higher-scale blocks were used for the adaptive
part of the dictionary. The higher-scale dictionary blocks were obtained from lowpass
filtering followed by subsampling of 16 x 16 domain blocks. No rotation or reflection of

domain blocks was used.

! Available from “ftp://ipl.rpi.edu/pub/image/sequence/missa/” at the time of this writing.
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Table 7.2 General coding parameters

M and M, 8

L 2

FLB type 2-D DCT basis vectors
Pr 64

Py, 200

Number of SSLBs | 100

Number of HSLBs | 100

Table 7.3 Coding parameters for Section 7.2.2

Number of coded frames 150
Frame step 1

A 41
Step size in fetching SSLBs and HSLBs 2

Method of gathering statistics

each frame individually

Initial statistics for each frame

statistics of previous frame

Average bit/pixel

0.124

Average bit/frame

12.8 Kbit/frame

Bitrate

321 Kbit/sec

Average number of library blocks used per image block | 1.52
Average PSNR 38.0 (dB)
Average CPU time for encoding per frame 23.0 sec
Average CPU time for decoding per frame 0.45 sec

As mentioned earlier, both the encoder and the decoder use the previous decoded

frame for making the adaptive part of the dictionary for each range block in the current

frame of the sequence.

7.2.2 Experiment 2

Table 7.2 provides the parameter setting common to this experiment and the following

experiments.

Table 7.3 gives the additional settings specific to the experiment of this section and

the main coding results. In this test, all the 150 frames of the sequence were coded at

321 Kbit/sec with an average PSNR of 38.0 dB. Figures 7.2 and 7.3 show frame number
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Figure 7.1 Three original (a, ¢, e) and decoded (b, d, ) frames of the Miss America
video sequence.
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Figure 7.2 Frame number 11 of the original Miss America sequence.

Table 7.4 The histogram of number of blocks used for encoding image blocks of the
last frame in Section 7.2.2

| # of selections [0 1 | 2 | 3 | 4[5 [6[7[8]9[10]11]12][13]rest |
I count [0]1038 442101 [10[24]0[0]0[3] 0|1 ]0[1] 0 |

11 of the original and the decoded sequence. The difference between these two is shown
in Figure 7.4.

Figures 7.5 and 7.6 show the plot of bit per pixel and PSNR vs. frame number for
the coded sequence. The high rate and low quality of the first frame is in part due to
the fact that it does not use any ALBs and, in part, because it does not use any initial
statistics for its entropy coding. Figure 7.7 shows the average number of library blocks
used per image block in the coded sequence. Except for the blocks of the first frame,
which use an average of more than 2 vectors from the dictionary, the following frames
on the average use between 1.4 to 1.6 selections per range block. Table 7.4 shows the

histogram of the number of blocks used for encoding image blocks of the last frame.
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Table 7.5 Coding parameters for Section 7.2.3

Number of coded frames 50

Frame step 1

A 41

Step size in fetching SSLBs and HSLBs 1

Method of gathering statistics cumulative

Initial statistics for each frame cumulative statistics
of all previous frames

Average bit/pixel 0.10

Average bit/frame 10.4 Kbit/frame

Bitrate 261 Kbit/sec

Average number of library blocks used per image block | 1.08

Average PSNR 37.4 (dB)

Average CPU time for encoding per frame 22.6 sec

Average CPU time for decoding per frame 0.43 sec

7.2.3 Experiment 3

In this experiment, only the first 50 frames of the sequence were coded. The step
size in fetching SSLBs and HSLBs is set to 1 and the cumulative statistics of all previous
frames (except the first frame) is used for the entropy coder. The complete setting of
parameters of this experiment and the coding results are provided in Table 7.5. In Figure
7.8, the decoded frame number 11 of the sequence is shown. Figures 7.9, 7.10, and 7.11
show the bit per pixel, PSNR, and the average number of selections per range block
for each coded frame. Table 7.6 presents the histogram of the number of blocks used
for encoding image blocks of the last 48 frames of the sequence. Changing the search
resolution and using the cumulative histogram instead of the histogram of the previous
frame, has significantly reduced the average number of blocks used for each range block
and has reduced the bitrate compared to the first 50 frames of experiment of Section 7.2.2.
The histograms of the FLBs, the SSLBs, and the HSLBs are shown in Figures 7.12, 7.13,
and 7.14, respectively. These histograms clearly show that the selection process favors
the SSLBs far more than the HSLBs and the FLBs. Even among the SSLBs, the first
few SSLBs are by far the best choices for finding matches for the range blocks.
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Table 7.6 The histogram of number of blocks used for encoding image blocks of the
last 48 frames of the sequence in Section 7.2.3

Hnumberofselections‘O‘ 1 ‘2‘ 3 ‘ 4 ‘ 5 ‘6‘7‘8‘9‘10‘1"6813“
I count 0] 77562 [ 0] 1309 [ 174 [310]0]19[3]0[ 3] 0 |

Table 7.7 Coding parameters for Section 7.2.4

Number of coded frames 50

Frame step 3

A 576

Step size in fetching SSLBs and HSLBs 1

Method of gathering statistics cumulative

Initial statistics for each frame cumulative statistics
of all previous frames

Average bit/pixel 0.076

Average bit/frame 7.8 Kbit/frame

Bitrate 65.2 Kbit/sec

Average number of library blocks used per image block | 1.02

Average PSNR 33.5 dB

Average CPU time for encoding per frame 25.8 sec

Average CPU time for decoding per frame 0.49 sec

7.2.4 Experiment 4

This experiment provides an example of coding at lower bitrates. The frame step
is changed from 1 to 3 (skips 2 frames) and the value of A is increased to change the
trade-off between rate and distortion in favor of lower rates. The setting and the coding
results of this experiment are shown in Table 7.7. Figure 7.15 shows the decoded frame
number 10 of the sequence (the fourth decoded frame). Some blockiness has appeared in
the decoded frames. Figures 7.16, 7.17, and 7.18 show the bit per pixel, PSNR, and the
average number of library blocks used per image block as a function of the coded frame
number. Table 7.8 shows the histogram of the number of blocks used for encoding image
blocks of the last 48 frames of the sequence. The cumulative histograms of the usage of
FLBs, SSLBs, and HSLBs for the last 48 frames are shown in Figures 7.19, 7.20, and
7.21. Although the SSLBs, especially the first few ones, are still the dominant part of the
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Table 7.8 The histogram of the number of blocks used for encoding image blocks of
the last 48 frames of the sequence in Section 7.2.4

Hnumberofselections‘ﬂ‘ 1 ‘2‘ 3 ‘4‘ 5 ‘6‘7‘rest‘
[ count [0[78938 |0 ]418[0[22[1[1[ 0 |

Table 7.9 Bitrate and PSNR for the compression of the first 50 frames of the Miss
America sequence, obtained from the proposed method, the H.261, and the H.263.

H H Bitrate ‘ Average PSNR H
Proposed Method || 261 Kbits/sec 37.4 dB
H.261 257 Kbits/sec 36.9 dB
H.263 282 Kbits/sec 32.6 dB

library, the usage of the FLLBs and HSLBs has increased significantly. This is because the
frame step size has increased from 1 to 3, which makes the subsequent decoded frames
less similar, and the SSLBs which typically represent motion in the scene do not give as

good a match as before.

7.3 Comparison with H.261 and H.263 Standards

In this section, we compare the performance of the proposed video compression system
with that of coders based on the H.261 [174] and the H.263 [175] international standards.
For H.261, the PVRG implementation [176] is used. For H.263, the Telenor R&D im-
plementation [177] is used. The results of experiment 3 (Section 7.2.3) are used for this
comparison. Table 7.9 shows the results of compression of the first 50 frames of the Miss
America sequence using these three methods?.

The original frame number 11 of this sequence, and its decompressed versions from

the above three methods are shown in Figures 7.22, 7.23, 7.24, and 7.25.

2For the PVRG, the command “p64 -CIF -a 0 -b 49 -f 25 -x 520000 input” is used. For the Telenor
software, the command “tmn -a 0 -b 49 -x 3 -S 0 -Z 25.0 -R 25.0 -q 9 -i input -0 output” is used. In
both cases, all the color components of the input sequence are set to 0.
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From these results, it can be seen that, for this sequence, and for close bitrates, the
proposed method, and the H.261 perform significantly better than the H.263 method in
terms of PSNR. Visually, the quality of of the decompressed images using the proposed
method is clearly better than the other two methods. While the H.261 decoded images
suffer from significant blockiness at this bitrate, the H.263 result shows noise-like distor-
tion. However, the encoding time for both the H.261 and the H.263 algorithms are much
lees than that of the proposed method.

7.4 Conclusions

This chapter provided a new approach to generalized fractal coding of video sequences
which seamlessly combines the motion compensation techniques with fractal techniques.
It uses the efficient selection process of matching pursuit to make the optimal selection
of FLBs, SSLBs, and HSLBs. In the competition of these subsets of the dictionary,
experiments show that the SSLBs provide the best selection in the majority of cases.
However, as the frame rate decreases and the quality of the matches found by motion
compensation decrease, the system automatically selects more FLBs and HSLBs.

In comparison to other fractal video coding techniques, the approach of this chapter
provides an efficient algorithm, which is among the best in the literature (see [131]-[133],
[138], [139], [178]).
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Figure 7.4 Error between frame 11 of the original sequence and its decoded version in
Section 7.2.2.
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Figure 7.5 Bit/pixel for the Miss America sequence coded in Section 7.2.2.
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Figure 7.6 PSNR (in dB) for the Miss America sequence coded in Section 7.2.2.
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Figure 7.7 Average number of library blocks used per image block for coding of Miss
America sequence coded in Section 7.2.2.

Figure 7.8 Decoded frame number 11 of the sequence in Section 7.2.3.
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Figure 7.9 Bit/pixel for the Miss America sequence coded in Section 7.2.3.
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Figure 7.10 PSNR (in dB) for the Miss America sequence coded in Section 7.2.3.
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Figure 7.11 Average number of library blocks used per image block for coding of Miss
America sequence coded in Section 7.2.3.
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Figure 7.12 Cumulative histogram of FL.Bs used in the last 48 frames of the experiment
of Section 7.2.3 (total count = 1942). Indices increase along a zigzag pattern in the 8 x 8
2-D DCT domain.
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Figure 7.13 Cumulative histogram of SSLBs used in the last 48 frames of the exper-
iment of Section 7.2.3 (total count = 80782). Indices increase along a spiral pattern in
the previous frame centered at the location of the range block. Missing points represent
Zero OCCUITences.
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Figure 7.14 Cumulative histogram of HSLBs used in the last 48 frames of the experi-
ment of Section 7.2.3 (total count = 1198). Indices increase along a spiral pattern in the
previous frame centered at the location of the range block. Missing points represent zero
occurrences.
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Figure 7.15 Decoded frame number 10 of the sequence in experiment in Section 7.2.4.
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Figure 7.16 Bit/pixel for the Miss America sequence coded in Section 7.2.4.
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Figure 7.17 PSNR (in dB) for the Miss America sequence coded in Section 7.2.4.
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Figure 7.18 Average number of library blocks used per image block for coding of Miss
America sequence coded in Section 7.2.4.
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Figure 7.19 Cumulative histogram of FLBs used in the last 48 frames of the experiment

of Section 7.2.4 (total count = 1872). Indices increase along a zigzag pattern in the 8 x 8
2-D DCT domain.
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Figure 7.20 Cumulative histogram of SSLBs used in the last 48 frames of the exper-
iment of Section 7.2.4 (total count = 76372). Indices increase along a spiral pattern in
the previous frame centered at the location of the range block. Missing points represent
Zero OCCUITences.
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Figure 7.21 Cumulative histogram of HSLBs used in the last 48 frames of the experi-
ment of Section 7.2.4 (total count = 2071). Indices increase along a spiral pattern in the
previous frame centered at the location of the range block. Missing points represent zero
occurrences.
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Figure 7.22 Frame number 11 of the original Miss America sequence.

Figure 7.23 Decoded frame number 11 of the sequence in Test 3.
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Figure 7.24 Decoded frame number 11 of the sequence by H.261.

Figure 7.25 Decoded frame number 11 of the sequence by H.263.
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CHAPTER 8

RESOLUTION ENHANCEMENT

8.1 Resolution Enhancement

The code generated by fractal coding of a digital image provides a resolution inde-
pendent representation of the image as this code can be decoded to generate a digital
image at any resolution. When the image is decoded at a size larger than the original
encoded image, image details beyond the resolution of the original image are predicted by
assuming local self-similarity in image at different scales. In this chapter, we (1) present
a formulation of how decoding may be done at a higher resolution, (2) evaluate the accu-
racy of the predicted details using a frequency analysis of fractally enlarged test images,
and (3) propose a method for fractal resolution enhancement without the low-frequency

loss of information due to fractal coding.

8.2 Classical Image Interpolation

Image Interpolation is an important operation in image processing and is used for
image enlargement. One classical method for image interpolation is based on sampling
theory and is done by using the frequency components of the smaller image for the low
frequency components of the enlarged image, and by assuming that the high-frequency
components of the enlarged image are all zero [179]. This principle is shown in Figure
8.1. In this approach, it is basically assumed that the enlarged image is bandlimited.
The high-frequency components of the enlarged image are assumed to be zero because

these information of the original image have been lost in the sampling process. The
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Spatial Domain

Origina (small)
image Enlarged image

Frequency Domain —_—

Frequency components
of the small image Frequency components of
the enlarged image
(shaded areas are zero)

Figure 8.1 Classical image interpolation.

bandlimitedness is usually assumed in the Fourier or DCT domain, however, it may also
be done in the wavelet domain. For example, interpolation assuming bandlimitedness in
the Haar wavelet domain is equivalent to image enlargement by pixel repetition.

The bandlimitedness assumption, however, is not generally true, and if the enlarged
image had been obtained by a direct sampling of a continuous image it would have had

nonzero high-frequency components.

8.3 Prediction of Higher Resolution Information
from Lower Resolution

Multiresolution analysis has many applications in image coding and analysis. Some
wavelet-based multiresolution image compression methods, like zerotree [121], do some
type of prediction of higher resolution information from lower resolution information.

Fractal coders also do this type of prediction, though in a different way [47, 49].
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The fractal code generated by fractal encoding of a digital image describes relation-
ships (in the form of affine functions) between various segments of the image and is
independent of the resolution of the original image. In other words, the fractal code
is a resolution independent representation of the image and theoretically represents an
approximation of the original image in the continuous-space domain. A decoder may
decode this code to generate a digital image at any resolution. The resolution of the
decoded image may be higher than the resolution of the original image. This increase of
resolution is sometimes referred to as fractal zoom. This concept must be distinguished
from the fractal interpolation that is studied in the mathematical literature.

The higher resolution obtained is not created by a simplistic technique such as re-
peating the pixels of the image, but by actually generating more detail. In fact, the
additional higher resolution information is generated using information from the lower
resolution image. When an image is reconstructed at the same resolution as the origi-
nally encoded image, the domain blocks of the image in the decoding process are shrunk
(lowpass filtering followed by subsampling), which eliminates some of the details of the
domain blocks. However, if the image is reconstructed at a higher resolution, in the
shrinking of the domain block, the details of the domain block are only shrunk to gener-
ate the extra resolution in the range block. In fact, details of the domain blocks are used
for missing details of the range block. The details in the domain block are also generated
to some extent from details of other domain blocks, used for encoding each part of it. In
other words, it is implicitly assumed that if the range block is similar to its corresponding
domain block, then the details of the range block (which are beyond the resolution of the
originally encoded image) are also similar to the details of the domain block (which are
within the resolution of the encoded image). This principle is demonstrated in Figure 8.2.
This assumption is a typical property of self-similarity of fractal sets at different scales,
and the resolution independence is a property of the code generated by fractal-based
methods.

For fractal-based resolution enhancement, an N; X N, image is first coded using the

fractal method to generate a code. Then, the decoder generates an s/N; X s/Ny image using
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domain block
—_
reconstructed
range block range block
LLl
similar I '|
(a) Low resolution image (b) High resolution image

Figure 8.2 A demonstration of a simplified version of the resolution enhancement
method: (a) approximate each range block in the original image with a decimated domain
block in the same image, and (b) use the domain block in place of the range block for a
higher resolution.

Ny x Ny image Fractal Code Fractal sN1 X sNp image
Fractal Coder "| Decoder/Magnifier -

Y

Figure 8.3 Block-diagram of a fractal-based resolution enhancer.

this code. This process is shown in Figure 8.3. In this system, the encoder part is that
of a fractal image compression system. However, the decoder needs special provisions.
The decoder has a priori knowledge of G,H;, i =1, 2,..., K, and the code is made up of
information that specifies {c, b;, I;, P;, i = 1, 2,..., K}. This information specifies the
transformation 7 : RN ~ RYN. The decoder uses the information to construct another

transformation 7 : R*N — R*N, where T can be written similar to (3.15) and (3.16) as

T = Ajnusnx+ BsNXl

_ (i aHPGK) x+ <§ HB) | (8.1)
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where

o = Q@
s(z 1)MxsM
I:Ii = sM><sM
| s(K i) M x s M Nst
w 0 0 0
0 w 0 O
(_} = )
0 0 w 0
O 0 --- 0 w
L d sMxsLM
W — 1 1 1
vz -S_L sL 7T L 1><5L’
L = s(I; —1)+1,
Ki = | Oupnrwgimy) Lsomxsinr Ospnrx(sn—(f—1)—sLm) P
bi |
_ b;
B,‘ - !
bi

- - sMx1

Regarding P;, it must represent the same operation that P; does, but for a sM x sM
block. In the 1-D case, for example,

Pi = IM><M

gives

Pi = IsstM:
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and

(00 .- 0 1]
00 -~ 10
P, —
01 00
1000
gives
00 ---0 1]
00 -~ 10
P, =
01 --00
-10...00—8M><SM

It can be shown that decimating X, by applying an averaging filter of length s followed

by subsampling converts X,, to exactly X,. The operator for this decimation has the

form
v 0 - 00
v 0 0
VvV = )
00 v 0
o0 --- v
L 4 NxsN
v = 11 1 .
S S S 1xs
It can be shown that
VX = Xoo-

8.4 Proposed Method

Although there have been many publications on fractal image coding, there have not
been any published studies on the resolution enhancement feature of the fractal coders.

Given a digital image, in order to be able to evaluate the quality of an interpolated
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version of this image, we need to know what the larger image would be if it was obtained
directly by sampling of a continuous-space image at the higher rate of the larger image.
Therefore, we first take an image O,, of size n x n, assuming it is the real larger image.
We then decimate (shrink) it using the classical method of lowpass filtering (to avoid
aliasing) followed by subsampling to obtain the smaller m x m image. Note that the
decimation process removes the high-frequency components of the larger image. This
decimation may be done using ideal lowpass filters, for example, in the DCT domain
or in the Haar domain. In the DCT case, we denote the resulting image by C,,.,,O,,
and in the Haar case by H,,.,0,. We then take C,,.,0, or H, . ,0O, as the initial
image, encode it using a fractal coder to obtain a fractal code, and decode the code
using the fractal decoder/magnifier back to size n x n. We denote the enlarged images
by FrnemCmenOn and Fo mHpe nOn. We can also enlarge Cy,. ,O, and H,,,0O, by
classical interpolation where we denote the results by C,,,CinenOrn and H,, HppnOn.
Note that C, 1, CinenO, is an ideally lowpassed version of O, in the DCT domain and
H, .H,. .0, is an ideally lowpassed version of O,, in the Haar domain. We may then
compare O, with F,_,,C,, .0, and C,_,,C,,,O, at different DCT frequency bands,
or compare (O, with F,_,,H,,,0, and H,_,,H,,,O, at different Haar wavelet bands.
Note that Cp nCrnenOn and O, are exactly the same at low DCT frequencies, and at
high frequency bands C 1, Cpen Oy, is all zero, and similarly for the Haar case. However,
this is not true between F,, . ,,,CnO, and O,, or between F,,_,,H,, .0, and O,.
With a coding application in mind, the final result of the final interpolation is
Frie mCrenOy or Fre nHp ,O,. The fractal coding is typically lossy, which means
that in contrast to C, CmenOn and H, 1 Hye nOp, which have exactly the same low
frequency components as in O,, the low-frequency components of the F, ,,CncnOn
and F,emHmenO, are different from that of O,.! This means that decimation of

FonCmnenO,or FomHpye O, does not result in C,,,.,,0,, and H,,,.,0,,.

!However, for the typical fractal coders, the Haar transform has the property that low-frequency
components of F,. ,, Hyn O, are the same as the whole frequency components of F,« y HppenOn,
but this is not true in DCT domain.
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0
vy dy Uy dy U1 d1

Figure 8.4 Frequency bands of Tables 8.1, 8.2, 8.3, and 8.4.

However, when an interpolation-only application is in mind, the fractal coder may
still be used without loss in low-frequency components by replacing the low-frequency
components of F, ,Cre nOp or Fryi nHp n O, with frequency components of C,,.,O,
and H,, ,0O,, which is the frequency decomposition of the smaller image that is known
by the interpolator. However, this method cannot be used in coding applications as the

CrenO, and H,,.,, 0, are not available to the decoder.

8.5 Experimental Results

The 512 x 512 test image Lena was used as O, with n = 512. Then, Cy,,O,,
H, .0, ChcoCmecnOn, and H,_,,Hy, O, were computed for m = 256 and m =
128. Three different fractal coding algorithms [180]-[182] were used and for each of
them F, ,CenOpn and Fo i Hp O, were computed. The resulting images were then
transformed into frequency domain (DCT domain for C cases and Haar wavelet domain
for H cases). The rms error at different frequency bands between the results and O,
were computed. These results are shown in Tables 8.1, 8.2, 8.3, and 8.4.2 The frequency
bands a;, v;, h;, and d; are shown in Figure 8.4.

In these tables, the rms under “original image” are rms of the original image (not the
difference), while the data under the name of the methods is for the difference with the
original image. Fisher refers to [180] (pp stands for with postprocessing), N&G refers to
[181], and ISI refers to [182]. The original Lena image is shown in Figure 8.5 and images

2The experimental results for Fisher’s program are obtained by Robert DeNardo. The results for
N&G and the ISI are obtained by Yoichi Tenda.
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Table 8.1 Rms of the Original 512 x 512 image and the rms error of its approximations
obtained by interpolation from the 256 x 256 image Hasg. 5120512 at different frequency

bands (Haar).

H H original H classical H Fisher ‘ Fisher pp H N&G H ISI H
[ao | 133.0] 6.7] 6.9] 6.7] 82 63]
ay 265.6 0.0 7.5 75 111 7.5
V1 10.6 10.6 8.7 8.2 92| 7.7
hy 7.3 7.3 6.3 5.9 6.3 5.3
dy 4.0 4.0 4.5 4.4 44| 3.8
as 529.9 0.0 6.7 73| 11.9 10.6
Vg 29.6 0.0 8.4 82| 124 7.7
ho 19.1 0.0 7.6 72 10.5| 5.0
dy 12.1 0.0 7.3 7.0 95| 5.1
ag | 1055.2 0.0 3.4 6.0 || 14.3 | 16.6
U3 7T 0.0 7.3 7.8 || 10.3| 8.7
hs 48.2 0.0 7.3 7.3 11.3| 6.0
ds 32.9 0.0 7.8 80| 1151 7.8

corresponding to classical and Fisher’s method are shown in Figures 8.6-8.23 at the end
of this chapter.

The results show that the prediction of the high-frequency bands by the
Fsi19c mH e 5100519 is slightly better than Hsio, 1 Hye 5120512 for the case of m = 256,
but worse for m = 128. In the case of DCT domain, F519¢ 1 Cie 5120512 is slightly worse
than Csi19¢.mCmes5120512 for both m = 256, but clearly worse for m = 128.

In the Haar domain, the results suggest that prediction of high frequency bands from
one band lower in frequency is much better than prediction from several bands lower. This
implies that blocks in frequency bands are more similar in closer bands and suggests that
a better fractal resolution enhancer may be obtained if blocks in high-frequency bands
are approximated by blocks in only one band above them. This is in contrast to matching
blocks of different sizes in spatial domain, which corresponds to matching trees of blocks

in the Haar domain.
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Table 8.2 Rms of the Original 512 x 512 image and the rms error of its approximations
obtained by interpolation from the 128 x 128 image Hisg. 5120512 at different frequency

bands (Haar).

H H original H classical H Fisher ‘ Fisher pp H N&G H ISI H

[ a0 | 133.0] 115 121 | 11.8 [ 13.7] 96|
a 265.6 18.6 19.8 19.2 || 23.5 || 15.2
vy 10.6 10.6 10.6 103 11.0] 8.9
hi 7.3 7.3 7.7 7.5 75| 6.3
dy 4.0 4.0 4.8 4.8 46 4.2
as 529.9 0.0 21.5 21.2 | 319] 81
vy 29.6 29.6 25.3 243 || 269 224
ha 19.1 19.1 17.1 16.4 | 174 ] 14.7
dy 12.1 12.1 13.0 12.8 [ 13.1 ] 11.6
as | 1055.2 0.0 19.5 19.6 || 33.9 ] 12.7
v3 7.7 0.0 24.4 239 | 354 5.9
hs 48.2 0.0 21.0 20.4 | 301 5.8
ds 32.9 0.0 21.0 20.7 || 278 5.5

Table 8.3 Rms of the Original 512 x 512 image and the rms error of its approximations
obtained by interpolation from the 256 x 256 image Cosgs, 5120512 at different frequency

bands (DCT).

H H original H classical ‘ Fisher ‘ N&G ‘ ISI H
lao || 133.0| 40] 74| 84| 59]
aq 265.8 0.0 89| 124 | 8.2
vy 3.9 3.9 6.3 6.1 4.3
hy 6.4 6.4 9.0 88| 6.8
dy 3.0 3.0 4.4 4.2 | 34
as 530.8 0.0 80| 14.2 |10.6
Vg 13.2 0.0 86| 109 | 55
ho 22.5 0.0 10.2 | 13.6 | 9.2
doy 11.4 0.0 85| 10.2 | 6.6
as || 1058.6 0.0 54| 16.9 | 17.0
U3 34.8 0.0 81| 124 | 5.1
hs 63.7 0.0 88| 13.0| 83
ds 35.8 0.0 92| 141 | 8.1
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Table 8.4 Rms of the Original 512 x 512 image and the rms error of its approximations
obtained by interpolation from the 128 x 128 image Ciog, 5120512 at different frequency
bands (DCT).

H original H classical ‘ Fisher ‘ N&G ‘ ISI H

[a || 133.0] 82] 13.0] 143]10.1 |
a 265.8 142 223] 25.7]17.6
vy 3.9 3.9 72 66| 4.9
hy 6.4 64 10.2] 100 7.2
dy 3.0 3.0 471 42| 4.6
as 530.8 00| 26.3] 36.6]10.4
Vo 13.2 132 176 | 17.3]16.3
hs 22.5 225 | 27.8| 2841267
dy 11.4 114 145] 140123
as || 1058.6 00| 235] 40.3[13.3
s 34.8 00 23.7] 312 6.7
hs 63.7 00 31.7] 4121 9.5
ds 35.8 00| 255]| 328109

8.6 Conclusions

The resolution enhancement feature of fractal coders is analyzed and evaluated against
the classical interpolation method using three different fractal coding methods. In the
Haar wavelet domain, the fractal enhancement shows slightly better results when change
of scale is by a factor of 2. However, in other cases, the classical results perform better.

Our study suggests a new type of fractal coder operating directly in the frequency domain.
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Figure 8.5 Os19: Original 512 x 512 Lena image.

Figure 8.6 Has6¢ 5120512
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Figure 8.7 Hj19 956 Ho565120512-

Figure 8.8 F512<_256H256(_5120512 (Fisher).
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Figure 8.9 Fji2 956 Hos6 5120512 (ISI)-

Figure 8.10 Fi1o. 256 Hos6¢ 5120512 (IST with subband replacement).
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Figure 8.11 ngg(_512 0512 .

Figure 8.12 Hy19 128 H128¢ 5120512
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Figure 8.13 F512<_128H128(_5120512 (Fisher).

Figure 8.14 Fio 128 Hi28 5120512 (ISI).
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Figure 8.15 Fi1o 128 H198¢ 5120512 (IST with subband replacement).

Figure 8.16 025(5(_512 0512 .
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Figure 8.17 Cjsi2¢256C2565120512-

Figure 8.18 F512(—2560256<—5120512 (Fisher).
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Figure 8.19 F5io256Ca565120512 (ISI).

Figure 8.20 0128<—512 0512 .
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Figure 8.21 Cji2¢125C128¢ 5120512

Figure 8.22 F512(—1280128<—5120512 (Fisher).
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Figure 8.23 Fr120128C128¢5120512 (ISI)-
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CHAPTER 9

CONCLUSIONS

In this dissertation, the theory and implementation of fractal and attractor image and
video coding methods have been investigated. Fractal and attractor coders propose new
paradigms in image coding. Fractal coding proposes exploiting repetition of patterns at
different scales, and this work has extended this to exploiting the repetition of patterns
at the same and at different scales. Natural images are not random, and it is intuitively
clear that most parts of these images are repetition of similar patterns, which may vary
greatly from one image to another, and parts of an image may be encoded by giving
reference to another part of the image with some deformation parameters.

On the other hand, attractor coders propose the paradigm of encoding an image by
specifying the state transition operator of a dynamical system whose steady-state is close
to a desired image. This is based on the notion that visually complex and sometimes
natural looking images can be generated by rather simple dynamical systems. These new
paradigms present new and difficult questions to the researchers in this field, and even
some of the very fundamental questions in them are not yet answered.

The class of coders proposed by generalized fractal coders and attractor coders is quite
large, and current coders based on these methods are only concentrated around the base
provided by Jacquin’s method, whose practicality is established, and its mathematics
are somewhat better understood. However, research by investigations in this field, and
specifically this dissertation, work on expanding the radius of work around this basic
approach and expanding its horizons.

Although the field of fractal-based image coding is relatively young and its methods

are different from other image coding methods, the performance of these methods has
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been comparable to those of the state-of-the-art image compression methods in terms
of combination of image quality and compression ratio. However, the complexity of the
encoder for fractal-based image coders is typically high.

The nature of fractal coding is that of basic research. Currently, fractal coders cannot
typically perform better than the state-of-the-art image coders in terms of compression
ratio and PSNR, and in terms of complexity of encoder, they typically require much more
compression time. However, the performance of these coders has been greatly improved
since the work of Jacquin [4], and in terms of compression ratio, they perform 4 to 5
times better than Jacquin’s original method.

In this dissertation, we began with the basic fractal coding method of Jacquin. His
work introduced new concepts into the field of coding. However, despite its novelty, this
method, in its basic form, had several shortcomings. Part of the work of this dissertation
was to pinpoint its strength and weaknesses. The coder works well in coding edges,
however, it falls short in coding textures. It relies heavily on the fact that natural images
have strong dc components and performs poorly for nonphotographic 2-D signals without
strong dc components. It relies on exploiting only one type of redundancy present in an
image, namely, similarity of blocks at different scales, and does not take advantage of
other types of redundancies present in images, and has no integration with the state-of-
the-art compression techniques. Unique blocks in the image cannot be coded well, and
for those image blocks for whom several similar blocks are present in the image, at most,
only one can be used. The coder also cannot encode images with arbitrarily high quality.
It also does not use powerful entropy coders for the coding of its parameters and does
not have any statistical model for these parameters. There is also an exponential relation
between PSNR of the decoded image and compression time.

To overcome these problems, a novel coding approach was designed. We developed
theory and a new and general implementation that addresses and removes these short-
comings. Fractal image compression takes advantage of similarities present in images at
different scales. These types of similarities do not seem to be enough to be the sole basis

of image compression algorithms superior to other state-of-the-art image compression
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methods and are one of several types of redundancies present in images, e.g, intra-scale.
However, we showed that they may be used in combination with other compression meth-
ods to significantly enhance their performance in terms of image quality and bitrate. In
fact, during this process, we devised a very general compression method that takes ad-
vantage of inter-scale similarities, intra-scale similarities, and compaction properties of
transform coding methods. In the context of still image coding, the resulting method
has the block transform coding, standard V(Q, and most of the earlier fractal compres-
sion methods as special cases. For video coding, block prediction methods like DPCM,
adaptive block prediction methods like block motion compensation, and hybrid coding
methods like motion compensation combined with transform coding of residual errors
become special and restricted cases of this algorithm. In fact, this algorithm describes a
wide spectrum of image coding methods in which the above methods are near extreme
cases. It automatically falls back into special cases depending on the situation.

Fractal image coders are typically computationally expensive. The added image qual-
ity and reduced bitrate obtained from integrating them with other methods comes with
this cost. This makes it more suitable for applications in telecommunications and stor-
age, where the compression need not be done live or in real time. In fact, this is the
reason why these methods have found their greatest success in the market of software
and CD ROM developers.

In this dissertation, we also found general improvements that are applicable to all
types of fractal coders. We introduced the concept of substitution of the range block
with its approximation in the encoder for reducing the decoding error (Section 5.2.3)
and discovered (simultaneously with several other researchers) the concept of decoding
with immediate substitution for faster decoder convergence (Section 5.5.1). We also
established the relation between the causality of encoder and the iterativeness of the
decoder, and showed that a causal encoder with substitution of the range block with its
approximation in the encoder, and decoding with immediate substitution, results in a

fractal coding system whose decoder is noniterative and whose fractal transform need not
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be contractive. This reduces the complexity of the decoder by one order of magnitude.

By these observations, this work does the following:

e For the first time, establishes the usefulness of using intra-scale similarities in nat-
ural images, in addition to intra-scale similarities used by fractal coders. This was
previously believed to be useless because it caused very large decoder errors. This

was solved by the observation made in the causality of the encoder.

e (larifies the fact that the iterativeness of the decoder of the fractal coders is not

inherent of fractal coders and is due to the noncausality of the fractal coders in use.

The coding method that was designed in this research needed an algorithm to find the
solution to a combinatorial optimization problem. To solve this problem, we indepen-
dently discovered a method that is currently known as matching pursuit, its orthogonal
version and its rate-distortion optimized version. We were the first to use these methods
for image compression and among the first to use it for video compression. This method
has applications in statistics, control theory, and signal analysis.

The new image coding algorithm proposed in this dissertation gives a compression
ratio 4 to 5 times greater than the original Jacquin method and is among the top three
fractal coding methods ever reported.

In this dissertation, we also proposed one of the most efficient fractal video coders,
which seamlessly combines the motion compensation techniques with fractal techniques.
This dissertation also seems to be the first work to investigate the resolution enhancement
feature of fractal coders and compare it with other interpolation methods.

The analysis of fractal image coding systems is a rather difficult problem. In Chapter
3, we provided a new analysis of fractal coders using control systems theory and graph
theory. The system theoretical approach does not seem to have ever been addressed by
other researchers, and this work is the most comprehensive graph-theoretical analysis
of fractal coders. The analysis of attractor/fractal coders of Chapter 3 provides links
between the young field of attractor coding and the well-established fields of systems

theory and graph theory. Common attractor decoders are modeled as linear systems
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whose stability is both necessary and sufficient for convergence of the decoder. This
stability is dictated by the location of the eigenvalues of the sparse state transition
matrix of the system. The relation between these eigenvalues, spatial causality of the
system, and the patterns of interdependency between signal elements (or image pixels)

is investigated for several cases using concepts from graph and matrix theory.
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