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ABSTRACT

Matching pursuit is a general and flexible method for solving an optimization problem that is of interest in
signal analysis, coding, control theory and statistics. In this paper, principles of rate-distortion optimal coding are
used in combination with matching pursuit algorithm to obtain an enhanced fractal image coding method. The
advantages of using such a method over traditional fractal image coders are described and compression results
are presented.
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1 INTRODUCTION

In recent years, fractal image coders have shown promising results in compression of still images and image
sequences. These methods have especially shown good coding performances when combined with other compres-
sion methods.!? The combination of fractal techniques and more traditional coding methods has resulted in
some generalized methods that take advantage of different types of redundancies in images. However, for optimal
performance, these generalized methods require more powerful optimization algorithms than are usually required
in other image coding methods.

On the other hand, matching pursuit is a new, general and flexible method for solving an optimization problem
that is of interest in signal analysis, coding, control theory and statistics. It is a greedy method for obtaining a
near optimal solution to a seemingly untractable optimization problem.

In this paper, we will see how the problem that matching pursuit addresses is the same problem that needs
to be solved in generalized coding methods like those that have fractal coding methods as special cases. We will
then apply an enhanced version of matching pursuit for solving this problem.

In this section, we give a review of the basic concepts of fractal image coding and the matching pursuit
methods. In Section 2, we show why matching pursuit fits well to solving the problem that is proposed by
generalized coding methods and how it may be implemented. Experimental results are brought in Section 3.



Finally, conclusions are drawn in Section 4.

1.1 Fractal image coding

Fractal image coding is a coding method that takes advantage of redundancies in an image at different scales.
The first automatic fractal image compression algorithm was proposed by Jacquin.® In this method, an image
is first partitioned into nonoverlapping blocks called range blocks. Each range block is then approximated by
a linear combination of a fixed constant (dc) block and a transformed version of a single larger block, called a
domain block, taken from the same image. The transformation is a contraction, usually formed by a combination
of lowpass filtering, subsampling, and rotation of blocks. The selection is usually made by making a dictionary
of transformed domain blocks (which we call adaptive blocks), and for each range block selecting the dictionary
block that gives the best match to the non-dc component of the range block.

This method was later extended so that it approximated each range block with a linear combination of a
fixed number of fixed blocks, and one single block from the dictionary.*® In a generalized coding framework,
this method was further generalized® to approximate each range block by a linear combination of any arbitrary
number of fixed and adaptive blocks. This is done by including the fixed blocks in the dictionary and allowing
the coding process to automatically select as many members of the dictionary, and any combination of fixed and
adaptive blocks as needed. In the context of fractal coding, the dictionary is usually redundant and much larger
than the dimension of the vector being coded (the range block). This brings up the problem of optimal selection
of dictionary blocks.

1.2 Matching pursuit

Approximation of members of a vector space by a linear combination of a small number of members of a
possibly large set (dictionary) of redundant vectors in that space has been of interest in different areas of science.
More specifically, one may be interested in finding the smallest number of vectors in the dictionary whose linear
combination approximates the given vector within a given error threshold. In the general case, this is a rather
difficult optimization problem. A similar and equally difficult problem is that, if a positive integer M is given,
find the M vectors in the dictionary whose linear combination can best approximate a given vector in the vector
space.

These problems are difficult combinatorial optimization problems. In fact it has recently been proven that,
in the general case, finding the optimal solution is NP-hard.”® However, an efficient suboptimal greedy solution
to this problem has been discovered by different researchers in different contexts but with basically the same
underlying mathematics.

In statistics, this greedy algorithm was found and named projection pursuit.® It was used for computation of
conditional expectation of random variables. In control theory, such method was developed for non-linear system
identification.!® In the context of time-frequency decomposition, it was named matching pursuit'! and was used
in signal analysis for extraction of patterns from noisy signals. In the context of image coding, it was developed
for a generalized image coding method unifying transform coding, vector quantization, and fractal coding.’ In
this paper, we refer to this method as matching pursuit.

Matching pursuit has recently been adopted for video coding. Vetterli and Kalker used a rate-distortion
optimized version of matching pursuit for motion compensated video coding.!? Neff and Zakhor used matching

pursuit for coding motion residual images of video sequences.!?:14

The essence of matching pursuit is that, for a given vector ¥ to be approximated, first choose the vector from



the dictionary which has the strongest correlation coefficient (highest absolute value) with @. Then, remove any
component of its form from 7, i.e., orthogonalize ¢ with respect to the selected dictionary vector, and obtain the
residual of ¢. The selected dictionary vector is in fact the one that results in the residual of ¢ with the smallest
energy. Repeat this process for the residual of ¥ with the rest of dictionary vectors until the residual becomes
smaller than a threshold or until no other dictionary vector has significant correlation with the residual.

1.2.1 Orthogonal matching pursuit

In matching pursuit, after a vector in the dictionary is selected, one may remove any component of its form not
only from ¥, but also from all other dictionary vectors before repeating the process. This version of the method
is called orthogonal matching pursuit and is computationally more expensive than the nonorthogonal version, but
typically gives significantly better results in the context of coding. However, for example, if all the dictionary
vectors are orthogonal, the results for both the orthogonal and the non-orthogonal matching pursuit are the same.

1.2.2 Rate-distortion optimized matching pursuit

The standard matching pursuit, or its orthogonal version, tries to find the smallest number of vectors in the
dictionary that can approximate a given vector within a given error threshold. In the context of coding, after the
selection process is done, the coefficients of the these dictionary vectors need to be quantized, and also entropy
coded along with their indices and the number of selections made. Different dictionary vectors have different costs
in terms of bit rate, depending on how frequently they have been used. Hence, a better performance is expected
if instead of selecting the smallest number of blocks from the dictionary, one selects blocks that need the shortest
code collectively.

More specifically, we would like to approximate each range block ¥j,7 = 0,...,J by vectors selected from a
dictionary of vectors. After this selection is made, each of the coefficients of the selected dictionary blocks are
quantized and the indices and the quantized coefficients are entropy coded. The goal is to do this using the
shortest possible code.

Regarding the selection process in the matching pursuit, we note that for each vector ¥},

1. Selection of each dictionary vector is based on how much it reduces the energy (distortion) of ;.

2. The selection process stops when the distortion of the @; goes below a threshold.

Therefore, the selection criterion and the stopping criterion are both based on distortion of the residual of ¥;.

Selection Criterion: Due to the entropy coding stage, the number of bits required to encode ; is not
exactly proportional to the number of vectors used for coding it. In other words, the number of bits required
for representing an index or a quantized coefficient depends on the the frequency of selection of the dictionary
vector or the quantized coefficient. Therefore the best dictionary vector to be selected at each stage is not the
one which gives the greatest reduction in distortion, but the one which gives the greatest —D;/6R; where 6D;
is the change in the energy of the residual (distortion) of @;, and 6R; is the number of bits spent on coding the
index and the coefficient of the selected vector. So, rate-distortion optimized matching pursuit uses this improved
selection criterion.

Stopping Criterion: Using the selection process described above, the encoder tries to encode all the range
blocks in the image with approximately the same distortion energy €2, using minimum number of dictionary



vectors or bits. However, this is not optimal because by doing this, some ¥/;’s select many dictionary vectors, each
of them contributing slightly to reduction of the error energy. Many of the bits used for coding these vectors may
be used to make larger reduction in the error energy of the whole image if they are used for coding other vectors.

Let’s denote the total distortion and rate of the whole image by D and R respectively, i.e.,

J J
D=>"Dj, and R=)_R;.
j=1 j=1

For a given R, we would like to minimize D. Given the above assumptions, the coding problem is that of
minimizing D = ijl D;(R;) subject to the constraint R = ijl R;. This constrained minimization problem
may be solved using Lagrange multipliers, giving the solution

6Dy _ 6Dy _  _ 0Dy
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This result suggests that an optimal solution is obtained when dD;/0R;, rather than Dj, is kept the same for
all ¥;s. This modifies the stopping criterion for the selection process. Therefore, in rate-distortion optimized
matching pursuit, the selection process stops when the algebraic value of —4D;/0R; becomes smaller than a
threshold.

2 THE PROPOSED APPROACH

In the generalized fractal coders,®! the range blocks in an image are approximated by a linear combination
of a set of fixed blocks and one or more adaptive blocks made by applying some simple transformations on larger
blocks taken from the same image. The set of fixed and adaptive blocks construct a dictionary for each range
block. This dictionary is typically overcomplete and the problem of making the near optimum selection among
the dictionary blocks is an important part of these fractal coders.

In this paper, we propose using rate-distortion optimized matching pursuit for solving the optimization problem
of such coders. In this section we describe a generalized image coder using fractal techniques that uses rate-
distortion optimized matching pursuit for its selection process.

The image is first partitioned into range blocks ¥, j = 1,2,...,J. Each range blocks is treated as an N-
dimensional vector, where N is the number of pixels in the range block. For each range block, a dictionary of blocks
U; is made. This dictionary is made up of two disjoint subsets F' and A;. F' contains fixed dictionary blocks f;,

i=1,2,...,Np, and is independent of range block. A; contains adaptive dictionary blocks @;;, 7 =1,2,..., Na;,

and is made by applying some transformations on some blocks taken from the same image, which are typically

located near the range block. For simplicity, we may denote the members of U; by i, i = 1,2,..., Ny;, i.e.,
Uj = {ﬁj,laﬂj,% v Jﬂj,NUj } = {fj,h fj,27 CEEE fj,NFJEij,17 aj,27 v 76j,NAj }7

NU]' :NF+NAJ-

Ny, may be less than, equal to, or greater than N, although it is typically larger. Members of A; may be
generated from different sources and are all adaptive, i.e., in contrast to members of F’ which are independent of
J, they may be different from one @; to another. Two sources of A; that are used for the experimental results of
this paper are higher-scale and same-scale adaptive dictionary blocks.

Higher-scale dictionary blocks are taken from the neighborhood of the range block in the filtered, subsampled
image. These blocks are introduced to let the encoder take advantage of the inter-scale redundancies in the image



and make the fractal element of the coding. Same-scale dictionary blocks are taken from the causal neighborhood
of the range block of the original image. These blocks are introduced to let the coder take advantage of the
intra-scale redundancies in the image.®

A threshold r (independent of j) is set for —6D;/0R; for the whole image. The rate-distortion optimized
matching pursuit as described in Section 1.2.2 is used for selecting a series of blocks from the dictionary. For
each 7;, the selection process of this algorithm stops when —§D;/dR; becomes less than r. The matching pursuit
algorithm in fact detects the structure of the range block in terms of the members of the dictionary.

The coefficients of the orthogonalized selected dictionary blocks are quantized linearly and are entropy coded
using a semi-adaptive entropy coder. The count of selections made for each index of the dictionary is individually
monitored. The count and the index of the selected dictionary blocks are also entropy coded. The entropy coding
of indices is based on the conditional probability of its selection as the k-th selected block.

The image is coded this way a few times iteratively, and each time, the statistics of the selected blocks of the
previous time are used as the initial statistics for the entropy coding, until the statistics converge.

The resulting fractal coding method has the following advantages over most fractal coding methods:

o It typically gives better compression performance due to a better and less constrained method of selection
of blocks from the dictionary.

e Because the dictionary provides an (over)complete set of vectors for approximation of each range block, this
method provides a method for arbitrarily high PSNR, and even lossless image coding.

e The method performs relatively well even when the image blocks do not have a strong dc component, e.g.,
in residual images or some non-photographic 2D signals.

e The compression time is only moderately increased with the increase of PSNR of the decoded image.

3 EXPERIMENTAL RESULTS

In this section we present the coding results of the method discussed in the previous section. The rate-
distortion optimized orthogonal matching pursuit was used for the selection of dictionary vectors. The 512 x 512,
8-bit per pixel, gray-scale Lena image was encoded using 8 x 8 range blocks. For each range block in the image, a
different dictionary of blocks was made. The 64 DCT basis blocks were used as the fixed dictionary blocks. 128
causal same-scale, and 64 higher-scale blocks were used for the adaptive part of the dictionary. The higher-scale
dictionary blocks were obtained from lowpass filtering followed by subsampling of 16 x 16 domain blocks'. No
rotation, or reflection of domain blocks were used. It was found that the dc block of the DCT fixed basis blocks
are automatically selected in nearly all codings of natural images. For better performance, the coefficient of the dc
block was first predicted from the dc coefficients of the previous neighboring range blocks and then the difference
between the predicted coefficient and the actual one was coded.

Figure 1(a) shows the original 512 Lena image. Figures 1(b), 1(c), and 1(d) show the decoded images at
different bit rates.

1 For more information on the details of constructing the dictionary, see.%



Figure 1: (a) Original 512 x 512, 8 bits per pixel image, (b) Decoded image at 0.43 bpp 34.5 dB PSNR, (c)
Decoded image at 0.22 bpp 31.2 dB PSNR, (d) Decoded image at 0.15 bpp 29.2 dB PSNR.



4 CONCLUSIONS

In this paper, principles of rate-distortion optimal coding were used in combination with matching pursuit

algorithm to obtain an enhanced fractal image coding method. The coding performance of this method is among

the

best performances of published fractal image coding methods and is close to some of the state-of-the-art non-

fractal image coding methods like wavelet-based zerotree method.'® In contrast to most published fractal image
coders, the proposed method can approximate an image with arbitrarily small distortion and the compression
time is only moderately increased with the increase of PSNR of the decoded image.
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