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ABSTRACT

This chapter reviews the theoretical foundations and implementation issues of fractal-
based image coding methods. The concepts of fractals, iterated function systems,
and local iterated function systems are discussed and different implementations of
compression of both still images and image sequences are reviewed.

1 INTRODUCTION

Fractal-based image coding, which is sometimes called fractal image coding or
attractor image coding, is a new method of image compression. In this method,
similarities between different scales of the same image are used for compression.
The method is rooted in the work of Mandelbrot, who introduced the concept
of fractals and the fractal dimension.

This chapter is organized as follows. Section 1 gives a brief review of the concept
of fractals and its applications especially in image compression. In Section 2
the principles of iterated function systems (IFS) will be studied. IFS makes
the basis of most fractal-based image compression methods. In Section 3, we
will see how the this theory has been used for compression of images and video
sequences. Finally in Section 4, conclusions will be drawn.
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1.1 Fractals and Self-Similarity at Different
Scales

In late 70s and early 80s, Mandelbrot showed that many natural and man-made
phenomena have the very fundamental characteristic of invariance under change
of scale [86, 88, 87]. Mandelbrot coined the name fractal for the geometry of
these phenomena.

The mathematical definition of fractals suggested by Mandelbrot is that they
are sets for which the Hausdorff-Besicovitch dimension D is strictly larger
than their topological dimension Dy [87]. However, computing Hausdorff-
Besicovitch dimension is often difficult, and in many cases the fractal dimension
[12] is used instead. Fractal dimension is defined as

In N
D = lim 2N (7.1)
d—0 ln(a)
where N(d) is the minimum number of balls of diameter d which are needed to
cover the set!.

This definition implies that if d is small enough, we can write the approximate

power law
N(d) = K(1/d)” (7.2)

where K is a constant. This means that as d decreases, N(d) grows with the
Dth power of 1/d, no matter how small d is. D can be considered as a measure
of the roughness of a set, where rougher sets have larger Ds [105]. A classical
example of a natural fractal set is the coastline of an island, and an example
of an artificial fractal set is the Koch curve [87]. In practice, a natural set is
considered fractal if its D is stable over a wide range of scales.

Figure 1 shows different steps in the construction of the Koch curve. In this
construction we begin with a line segment of length 1 (Figure 1a). Then divide
the line into three equal parts and replace the middle part with two line seg-
ments of length 1/3, obtaining the graph of Figure 1b. If we apply the operation
that generated Figure 1b from Figure 1a on every line segment in Figure 1b,
we get Figure 1c. Repeating this process once more results in Figure 1d, and
continuing to apply this process infinitely many times, results in the set shown
(approximately) in Figure le, which is known as the Koch curve.

1For more detailed information on the definition of fractals and different dimensions see
[42] or [44].
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Figure 1 Different stages of construction of the Koch Curve.

It is easy to show that the set shown in Figure le has a fractal dimension of

In4™ In4
D= =" x126>1=Dr.
In3® In3 6> T

The power law in Equation 7.2 states that dividing d by any factor a, always
increases N(d) by a factor a®, for any small value of d. In the case of integer
Ds, this result seems trivial, but when D is not an integer this means that, for
example, for a fractal curve, magnifying any part of the curve does not result
in a curve that is smoother than the original curve.

This power law means that a fractal set has the same roughness, independent of
scale. Therefore one can say that a fractal set is self-similar at different scales
in the above general sense. Of course many simple non-fractal geometrical sets,
like lines and planes, are also self similar in this sense, but are not fractals as
they are not ‘rough’ sets and always become smooth when magnified enough.
Fractals always reveal more and more details under magnification and these
details do not diminish by magnification.

Some fractals possess self-similarities in a more restricted sense. The self-
similarity of this class of fractals can be either deterministic or statistical. The
deterministic self-similarity is when the shape of the set is similar to itself in
an deterministic way as the scale changes. A particular kind of fractals of this
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class are fractals with exact self-similarity which do not change at all under
change of scale, e.g. the Koch curve.

The statistical self-similarity is the property of fractals which retain all of their
statistical parameters at different scales while a deterministic relationship does
not necessarily exist between different scales of the set.

1.2 Applications of Fractals

Fractal geometry in nature is more a rule than an exception. Since the intro-
duction of the concept of fractals by Mandelbrot, the concept has been used in
many different branches of science including mathematics, physics, chemistry,
geophysics, botany, biology, computer graphics, computer vision, and image
processing.

Fractals with statistical self-similarity have been of great interest in the area
of computer graphics, where the concept was used to generate complex and
strikingly natural-looking graphics of natural scenes using simple rules [87, 99].

In the area of computer vision, the fractal dimension has been used for image
modeling, segmentation and shape extraction for natural scenes by Pentland
[105, 106] and others [4, 5, 6, 74, 100, 102, 101, 119, 128]. The fractal dimension
of different natural objects can be different from each other or from those of
man-made objects. On the other hand, under certain conditions, 2-D images
taken from some 3-D fractal geometries are also fractals. Pentland [105] used
the fractal dimension as a parameter for segmenting images. This method can
be used to discriminate between different natural objects in a scene or between
man-made objects and natural objects [102, 101].

1.3 Fractals in Image Compression

Fractal geometry has been used for image compression in a few basically dif-
ferent ways.

Fractal curves, specially the Peano curve, were used for scanning images instead
of the standard raster scanning [120, 137, 54, 126].

A ‘yardstick’ method was used for image compression [133, 138, 122] and for
shape classification [36].
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Fractal dimension has been used as a tool in different aspects of image com-
pression algorithms.

m  Fractal dimension was used in a fractal image coder for adjusting error
thresholding [60]. Also in [72, 73], fractal dimension was used for im-
age segmentation. After segmentation, fractal dimension was also used as
a measure of complexity of the segment to determine how the segments
should be coded.

= In the context of image coding, fractal dimension was also used for selecting
the optimal scale parameter in an edge detector [38].

Wavelet decomposition has also been used to exploit self-similarities of images
at different scales. In this approach, a wavelet decomposition is applied to an
image, and the similarity of same-size blocks in different subbands is used to
reduce the size of the code needed for representing them [104, 108, 109, 41].
Pentland [104] reports typical compression ratios of 38:1 with 33 dB PSNR
for 256 x 256 pixel images and Rinaldo and Calvagno [108] report compression
ratios of about 54:1 (PSNR of 31.4 dB) to 20:1 (PSNR of 35.5 dB) for 512 x 512
test image Lena.

However, the method that has attracted the most attention, and that will be
discussed in more detail in this chapter, is based on the work by Barnsley
[17, 9, 10, 21, 26, 12, 23, 27, 24, 19, 11, 18, 28, 13, 20, 14, 15, 29, 22, 25, 16],
summarized in [25]2. His work was based on that of Hutchinson [64], who set
up a theory for deterministically self-similar sets, and studied transformations
that can generate this kind of sets. These transformations, which Barnsley later
named [terated Function Systems (IFS), were originally used for generating
fractals, but because many non-fractal sets can also be deterministically self-
similar, these sets can also be generated by IFS. Iterated function systems will
be discussed in detail in Section 2.

Barnsley’s early work was based on the following assumptions,

m  The images of many natural objects can be approximated by members of
a class of deterministically self-similar sets.

m  These sets can be generated by IFS transformations which have a relatively
small number of parameters.

2The methods based on Barnsley’s work have strong relationship with some of the wavelet
methods mentioned earlier. For studies on this, see for example [78, 41].
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Figure 2 The essence of fractal coding methods is to try to approximate each
segment of the image by applying some (contractive) transformation on some
bigger segment(s) in the image.

Barnsley observed that even very simple IFSs with very short codes can gener-
ate complex sets with infinite details that resemble natural objects. IFS trans-
formations describe the relationship between the whole image and its parts and
exploit the similarities that exist between an image and its smaller parts.

Given an IFS, generating the image corresponding to it is quite straightforward
and easy. However, the inverse problem of finding the IFS which can generate
(or closely approximate) a given image has yet to be solved. In other words,
the problem was that of how the similarities between the whole image and its
parts could be found automatically. Another problem was: what could be done
for images for which the smaller parts do not resemble the whole image? To
solve the second problem, in 1988, Barnsley generalized the theory of IFS to the
theory of Local Iterated Function Systems which exploited similarities between
parts of the image which were of different sizes. Using this theory, image parts
were not required to resemble the whole image; they only needed to be similar
to some other bigger parts in the image, as shown in Figure 2. But there was
still the first problem: how could these similarities be found automatically?
In the early implementations of this theory, these similarities were found by
human interaction and hence the images were encoded by interactive computer
programs. This resulted in codes for images which were extremely compact in
size, but their decoded images had very low quality [12]. This was until the work
by Arnaud E. Jacquin (a student of Barnsley) who automated this method for
the first time [67, 68, 69, 70]. The code generated by Jacquin’s program for an
image was not as compact as before, but the compression ratio and the quality of
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the decoded images looked promising. The work by Jacquin provided a platform
for others to continue this line of research. Since then several extensions and
generalizations of this method have been found, and many of its properties are
better understood, which has resulted in more efficient algorithms. Some of
these methods will be discussed in Section 3.

Barnsley and Sloan founded the company ‘Iterated Systems, Inc.” in 1987
for the development of products based on the fractal theory, and patented
some of the basic algorithms in fractal coding [15, 29]. This company has
made different hardware and software products for image and video compres-
sion/decompression especially on personal computers. Although many articles
have been published on the basics of Barnsley’s theory, many of the details of
the algorithms used in these products have not been revealed.

1.4 Fractal Techniques in Second Generation
Image Coding

Second generation image coding methods take special advantage of the proper-
ties of the human visual system and many of them are segmentation-based. In
this section we will briefly see how fractals are related into these two features
of second generation coding methods.

m  Fractals and the Human Visual System
Many researchers have studied the relation between fractals and the human
visual system [105, 106, 77].

— To human eye, many fractal curves and surfaces look very similar
to natural curves and surfaces and for this reason they have been
extensively used in computer graphics. In model-based coding, this
similarity has the potential of being used for coding of natural images
by modeling the underlying processes that generates parts of these
images.

— Experiments have shown that the fractal dimension of a curve or set is
closely related to human’s perception of its roughness [105]. Although
fractal dimension alone is not enough for generating a visually good
approximation of a set [4, 7], it may be used as one of the parameters
for its representation.

— It is known that human visual system’s sensitivity to details in any
part of an image is dependent on the amount of activity in the back-
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ground of that part of the image. Fractal dimension of image regions
has been used as an objective measure of this activity [60].

m  Segmentation Using Fractal Dimension
Many researchers have used fractal dimension for image segmentation [105,
72, 113, 6, 121, 79, 82]. Fractal dimension is usually computed locally
[123, 91] and is used as the texture feature for segmentation.

m  Fdge Detection Using Fractal Dimension
In the context of image coding, fractal dimension was also used for selecting
the optimal scale parameter in a multiscale edge detector [38]. In this
method, edge points were detected by wavelet transform and the dilation
parameter is controlled by the fractal dimension.

m  Fractal Coding of Contours
One of the first applications of the theory of iterated function systems
proposed by Barnsley and Jacquin was in contour coding [23, 67]. A similar
method was later used for this purpose by Jacobs et al. [65].

m  Jacquin’s Method as a Second Generation Method

Fractal coding methods based on Jacquin’s method basically use redun-
dancies in an image at different scales, i.e., they use the fact that different
parts of the image at different scales are similar. Due to computational
complexity limitations, most fractal coding methods find similarities be-
tween image ‘blocks’, after applying limited transformations, even though
the most natural choice is finding similarities between ‘objects’ or ‘seg-
ments’ with more free deformations. The use of blocks instead of segments
is more a matter of speed than anything else, especially because fractal
coders are usually computationally intensive. In the basic theory, the
shape of the domain segments is not restricted in any sense. Simple block
splitting methods have been used by many researchers (including Jacquin)
for adjusting the size of the blocks to the feature sizes of the image.

Thomas and Deravi [124, 125] devised a method for merging of blocks using
a region growing procedure based on fractal coding. This method results
in range ‘regions’ with rather free shapes that are adapted to the content
of the image. Using this method, a region in the image is approximated
with another larger region (but with a similar shape) in the same image.

Franich et al. [52] proposed a method for merging quadtree block splitting
method for shape description with the quadtree block splitting method
used for fractal coding and used it in an object-based video coding system.

From this view point, the fractal coding techniques originated by the work
of Jacquin, can be well adapted to both first and second generation image
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coding techniques, although during the recent years most of the advance-
ments of these techniques have been in the direction of combining them
with waveform-based coding methods.

2 BASIC THEORY

The essence of most fractal-based image coding methods is to approximate
each segment of the image by applying a (contractive) transformation on some
bigger segment(s) in the image. One can then reconstruct the image (with
some error) by using only the parameters of the transformations [12, 25]. In
these methods, most of the information in the image is basically encoded by
coding relations among different segments (of different sizes) of the image. The
mathematical framework of this theory is presented in the following sections.

2.1 Iterated Function Systems

We begin with a complete metric space (X, d), where d(.,.) denotes the metric®.
Now, consider a transformation w: X — X, for which there is a constant s such
that for all z,ye X,

d(w(z),w(y)) < s d(z,y)-

If 0 <s< 1, then w is said to be contractive (or a contraction) with contrac-
tivity factor s. If w is contractive, then according to the Contraction Mapping
Theorem,

1. w possess a unique fixed point z* € X, i.e., w(z*)=x*.

2. For any z€ X, lim,,_,o w'™ (z) = 2*.
The transformation w defined on X also induces a transformation on subsets
of X. This can be done by defining
w(B) = {w(z),Yz € B} VB C X.

Let (H(X),h) denote the metric space whose points are non-empty compact
subsets of X, and h is the Hausdorff Distance [25]. An Iterated Function System

3For more details on the basic theory brought in this section see [12], [25], or [22].
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(IF'S) consists of a complete metric space (X, d) and a number of contractive
mappings w; defined on X, i.e. {X;w;,i=1,...,N}. The fractal transforma-
tion associated with an IFS is the transformation W : H(X) — H(X) defined
by

N
W(B) = U w;(B) (7.3)

for all Be H(X). If the mappings w; are contractive with contractivity factors
si, 1=1,2,--- N, then W is also contractive with contractivity factor s =
max s;, and W has a unique fixed point A€ H(X) for which

2

and for all B € H(X) we have lim,_,o, W (B)=A. A is called the attractor
of IFS. w;’s are usually chosen to be affine transformations. For the two-
dimensional case, this becomes

(D12 3IG1 )

defined on points in R2. For the three-dimensional case (gray-scale images)
this becomes

z G115 01,2 01,3, z b1,;
wi y = | a21,; Q22 0623; Y + | b2 |, (7.5)
I(z,y) a3 G32i 033, I(z,y) bs.;

where I(z,y) denotes the gray-scale value at location (z,y). For an image,
the fractal code is made up of the parameters of the fractal transformation W,
which consists of the number N and the parameters of w;’s. The mappings
w; defined by 7.4 and 7.5 are contractions under suitable constraints on the
parameters and therefore the resulting W's are also contractions.

As an example of an IFS and its attractor in R?, let us consider an IFS of the
form
{Rz;wlaw23w3}7

where
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w3([ﬂ) - [065 0%“5]*[0(_)5]- (7.8)

The attractor of this IFS can be found by iteratively applying the induced W
on any non-empty compact subset of X. Figure 3 shows how a sequence of sets
generated by iterative application of W on an arbitrary initial set B converges
to the attractor of W and how the attractor is dependent only on W and not
the initial set.

In general, A is completely described by W and is independent of B. Therefore,
W gives a complete representation of A and the set of parameters that represent
W can be considered as a code for A. In the above example, it can be seen
that A has a visually complex shape, but W has a very simple mathematical
form which can be specified by three affine transformations. Considering the
plot of A as a black and white image, the parameters of W make the code for
this image.

2.2 The Collage Theorem

Although the theory of generating the attractor of an IFS is well developed, the
inverse problem of finding the IFS code for approximating an arbitrary given
set, like many other inverse problems in mathematics, has proven to be a rather
difficult problem.

Several studies have been made on finding the exact mathematical solution
to this inverse problem using tools such as Fourier transform [43], wavelet
transform [53, 8], moment method [3, 1, 2, 32, 34, 49, 61, 89, 127, 131, 130,
132, 50, 51], chaotic optimization [90, 89], genetic algorithms [118], combination
of the wavelet transform and the moments method [110, 111, 112], fuzzy sets
[35] and other methods [95, 37]. However, this problem, in the general case, is
not yet solved.

As discussed before, given a W, the decoding process is based on the Con-
traction Mapping Theorem. The transformation W is applied iteratively on
an (arbitrary) initial image until the transformed image does not change sig-
nificantly. As W is contractive, the convergence of this sequence of images is
guaranteed by the Contraction Mapping Theorem.

However, for a given set C, the encoding problem of finding a contractive
transformation W such that its attractor A is close to C, is a rather difficult
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Figure 3 Sequences of sets generated by iterative application of the IFS
transformation W defined by 7.3, 7.6, 7.7, and 7.8 on two different arbitrary
initial sets (B), converging to the attractor of IFS.
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problem. The Collage Theorem [21, 12] provides a guideline for solving this
problem. It says that for a set C' and a contraction W with attractor A,

h(C.W(C))

<
h(C, 4) < T

(7.9)

This means that in order for C' and A to be close, it is sufficient that C' and
W(C) be close, i.e., W may be found in such a way that W(C) be as close to
C as possible. W(C) is sometimes called the collage of C.

In terms of w;, we have
C)=C

N
GM@ ¢me~c

k3

Q

w
w

(@)
This can be done by partitioning C' into parts C;,

N
c=J¢c
i=1

such that each part C; can be closely approximated by applying a contractive
affine transformation w; on the whole C, i.e.,

If we denote h(C, W (C)) by eg and call it the encoding error (or collage error),
and denote h(C, A) by ep and call it the decoding error, then according to 7.9,

1
€p < €E
1—s

which gives an upper bound for £p in terms of eg.

2.3 Local Iterated Function Systems

For most natural images, it is not possible to closely approximate all parts of
the image by a small number of transformations applied on the whole image.
To solve this problem, the theory of Iterated Function Systems was extended
to Local Iterated Function Systems [22], and its associated fractal transform. In
contrast to an Iterated Function System which approximates each part of the
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Figure 4 Approximation of a range block by a transformed domain block in
a local IFS

image by a transformed version of the whole set, in the Local Iterated Function
System each part of the image is approximated by applying a contractive affine
transformation on another part of the image. In this case, the image C is par-
titioned into range segments C;, where C' = |JI; C;. Then each range segment
C; is approximated by a transformed version of a bigger domain segment D;,
ie., C; = wi(D;) = C = W(C) = Uf;l w;(D;) as shown in Figure 4. The
decoding process for Local IFS is very similar to that of IFS.

2.4 Resolution Independence

When the above theory is used for image compression, it is implemented in
a discrete setting. However, the fractal code generated by encoding a digital
image describes relationships (in the form of affine functions) between various
segments of the image and is independent of the resolution of the original image.
In other words, the fractal code is a resolution independent representation of
the image and theoretically represents a continuous image approximating the
original image. A decoder may decode this code to generate a digital image at
any resolution. The resolution of the decoded image may as well be higher than
the resolution of the original image. This increase of resolution is sometimes
referred to as fractal zoom.

The higher resolution obtained is not created by a simplistic technique such
as repeating the pixels of the image, but more detail is actually generated in
the decoded images. In fact the additional higher resolution information are
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generated using information from the image at a lower resolution. When an
image is reconstructed at the same resolution as the original encoded image, in
the decoding process domain blocks of the image are shrunk (lowpass filtering
followed by subsampling), which eliminates some of the details of the domain
blocks. However, if the image is reconstructed at a higher resolution, in the
shrinking of the domain block, the details of the domain block are only shrunk
to generate the extra resolution in the range block. In fact, details of the domain
blocks are used for missing details of the range block. The details in the domain
block are also generated to some extent from details of other domain blocks,
used for encoding each part of it. In other words, it is implicitly assumed that
if the range block is similar to its corresponding domain block, then the details
of the range block (which are beyond the resolution of the originally encoded
image) are also similar to the details of the domain block (which are within
the resolution of the encoded image). This assumption is a typical property of
self-similarity of fractal sets at different scales, and the resolution independence
is a property of the code generated by fractal-based methods.

3 IMPLEMENTATIONS

In view of the theory discussed in the previous section, some of the basic ques-
tions to be answered are:

m  how to segment the image,
m  what transformations to use,
m  how to find the parameters of the transformations,

m  where to find the matching segments.

These issues will be discussed in this section along with compression results
reported for both still images and video sequences.

3.1 Still Images

In 1989 and 1990, Jacquin [67, 68, 69, 70] developed an automatic implemen-
tation of the Local IFS method by restricting B;s to squares of two fixed sizes,
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Partition image into range blocks, ... find amatching block of a bigger
and for each range block ... size somewhere in the same image.

Figure 5 A demonstration of Jacquin’s algorithm

and restricting the affine transformation to the following special case,

x a1, ai2; 0 z b
w; Y = | a21,; a22; O Y + | <
I(z,y) 0 0  pio I(z,y) Di1

where
ai1,; a1,2,4 _ +a 0 0 +a
|: az1,; a2,2; ] - [ 0 +a :| or [ +a 0 ]

and the origin of the z and y axes is the center of the domain block, a = 0.5 and
pi,0 < 1. For each i, the p; g, b;, ¢; are found by search, and p;; is computed.
The essence of Jacquin’s method can be summarized as partitioning the image
into square range blocks and searching the image for matching domain blocks of
twice the size of the range block, as shown in Figure 5. In finding a matching
block, we are allowed to apply simple transformations on the domain block,
which include shrinking, adding a single value to the gray-scale of the pixels in
the block, and scaling by a number less than one. Some shuffling of the pixel
locations (isometric transformations) are also allowed, which include rotation
by multiples of 90 degrees, and/or reflection against vertical or horizontal axes.
The encoding process is also enhanced by a two-level hierarchical block splitting
method and a range and domain block classification scheme for a faster search.
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For the 512 x 512 standard Lena image, PSNRs of 30.1 dB and 31.4 dB were
reported at bit rates of 0.57 and 0.6 bits per pixel (bpp) [68, 71].

In 1991, Qien et al. [96] extended this method to

z G1,1,4  G1,2,4 0 z b;
w; Yy = | a21; az2; O y + | <
I(z,y) d; €  DPio I(z,y) Di1

In this case, for each ¢, values of d;, e;, pio, p;,1 are found by least squares
methods, and b;, ¢; are again found by search. Using this method, the 512 x 512
Lena image was encoded at a bit rate of 0.5 bpp with a 30.8 dB PSNR.

Monro and Dudbridge [92, 93], in 1992, suggested partitioning an image into
small square images, and for each small image, an IFS (and not a Local IFS)
was to be found. This is equivalent to a Local IFS with the domain block for
each range block being a predetermined block which contains the range block.

Fisher, Jacobs and Boss, studied the effect of using blocks of different shapes,
including squares, rectangles, and/or triangles combined with a multi-level hi-
erarchical block splitting method [45, 46, 66]. They also compared the trade offs
between compression ratio and signal to noise ratio (SNR) for their method [66].
In two of their experiments, the 512 x 512 Lena image was coded at 0.22 bpp
with PSNR of 30.71 dB and at 0.45 bpp with PSNR of 33.40.

In 1993, Gharavi-Alkhansari and Huang [55, 56] extended Jacquin’s method
and showed that one can use a linear combination of a series of transformed
domain blocks instead of only a single domain block.

Thomas and Deravi [124] used blocks of relatively free shapes in Jacquin’s
algorithm and showed that this could improve the performance of Jacquin’s
method for simple images. For the 512 x 512 image Lena, they obtained a
PSNR of 27.7 dB at 0.30 bpp.

Lepsgy et al. [81] introduced a non-iterative decoding algorithm for fractal-
based image compression.

Also Vines and Hayes [129] suggested limiting the search on b; and ¢; by looking
for matching domain blocks only in the neighborhood of the corresponding
range blocks. Using this method and a multi-level block-splitting scheme, the
512 x 512 Lena image could be compressed at a bit rate of 0.47 bpp with PSNR
of 31.5 dB.
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Figure 6 PSNR vs. bit rate for compression of 512 x 512 Lena image with
some fractal-based and some non-fractal-based methods. See Table 1 for refer-
ences.

Up to 1993 most of the attention of the papers published on fractal coding was
concentrated on the fractal transform. Since then, more attention has been
paid to the entropy coding stages following the fractal transform and on the
problem of how the fractal transform parameters could be best modeled for
entropy coding. This has resulted in more efficient algorithms.

Barthel et al., in 1994, published results on a fractal-based coding method
with a performance of 35 dB PSNR at 0.35 bpp for the 512 x 512 Lena image
[30]. In their method, after approximating a range block with a a domain
block, any spectrum coefficient of the range block (in DCT domain) that is not
well approximated by the domain block, is individually coded using transform
coding. These spectral coefficients are then excluded from being approximated
by the domain block. Rate-distortion optimality is also used as the criteria
for selecting the best possible choice in places where there are several possible
alternatives in the encoding process.
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Table 1 References for Figure 6

[ | Year | Researchers | Reference | Method |
a | 1994 | Xiong et al. 136 (Non-fractal) Wavelets
b | 1994 | Rinaldo and Calvagno 108 Fractal-Wavelet
c | 1994 | Barthel et al. [30] Fractal-DCT
d | 1993 | Shapiro [117] (Non-fractal) Wavelets
e | 1995 | Fisher and Menlove 47 Fractal
f | 1995 | Culik and Kari 40 Fractal
g | 1991 | JPEG [134, 103] | (Non-fractal) JPEG
h | 1992 | Fisher et al. [45, 46, 66] | Fractal
i | 1994 | Kim and Park 75 Fractal
j | 1993 | Lepsdy et al. 81 Fractal
k | 1993 | Vines and Hayes [129] Fractal
1 | 1994 | Lu and Yew [85] Fractal
m | 1993 | Thomas and Deravi [124, 125] | Fractal
n | 1990 | Jacquin [68] Fractal

Also in 1994, Gharavi-Alkhansari and Huang proposed a generalized image
block coding method for unifying the three methods of block transform coding,
vector quantization and fractal-based coding methods [57, 58]. In this method
every block in the image is approximated by a linear combination of one or
more blocks selected from a possibly large dictionary of (not necessarily or-
thogonal) library blocks. In the case of video coding, block prediction methods
like DPCM and adaptive block prediction methods like block motion compen-
sation methods are also special cases of this algorithm. They also proposed that
the iterative nature of the fractal image decoders is related to the noncausality
of the encoder and using a causal encoder results in a non-iterative decoder
that converges in one iteration.

Lin [84] also studied fractal image coding as a generalized predictive coding
method and showed how noncausal prediction in fractal coders necessitates an
iterative decoding.

In 1994 and 1995, Rinaldo and Calvagno [108, 109] used similarities between
blocks in different subbands of image for image coding and reported a perfor-
mance of 32.78 PSNR at 0.26 bpp [108].

Figure 6 shows the reported performance of some fractal compression methods
along with some non-fractal compression methods in terms of PSNR and bit
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rate for the 512 x 512 Lena image®. Different curves in this plot are assigned
letters which are described in Table 1. Curves “g”, “d”, and “a” are for JPEG,
wavelet-based zerotree, and improved wavelet-based zerotree methods which
are non-fractal methods and are introduced here only for comparison. The
JPEG results brought here are based on the “Independent JPEG Group’s free
JPEG software” implementation of JPEG. For an implementation based on
JPEG standard with a significantly better performance the reader may see
[39].

Figure 7 shows the iterative decoding of the 512 x 512 test image Lena. This
image was compressed to 0.43 bits/pixel using a noncausal version of [57, 58, 59].
Beginning with an initial 512 x 512 black (all zero) image, the decoder generates
a sequence of images that converge to the decoded Lena image. Figure 7 shows
images resulting from the first five iterations, having PSNRs of (b) 24.22 dB,
(c) 27.74 dB, (d) 30.42 dB, (e) 32.21 dB and (f) 33.24 dB. After about 10
iterations, at a PSNR of 34.50 dB the change in the image becomes negligible.
The original Lena image is shown in Figure 8 and the final decoded image is
shown in Figure 9. Figures 10, and 11 show Lena image compressed at 0.22
bpp (31.2 dB PSNR), and 0.15 bpp (29.2 dB PSNR) using the same method.

3.2 Image Sequences
Fractal-based techniques have also been explored for coding image sequences.

In 1991, Beamount [31] used fractal-based techniques for video compression.
He tried two different approaches for this purpose. In one method, he extended
Jacquin’s method and used three dimensional blocks (or rectangular cubes)
of video sequences instead of the 2-D blocks in still images. He reported that
although the high compression could be achieved using this method, the quality
of the decoded images were not good. Using another method, Beamount applied
the 2-D Jacquin’s method on individual frames but for each frame (except for
the first frame) took the domain blocks from previous frame instead of the
same frame. It was reported that 10 frame-per-second 352 x 288 gray scale
video sequences could be coded at a data rate of 80 Kbits/s with “reasonable
quality”.

4The data shown in this plot are brought here only for a rough comparison. PSNR is not
always a good measure of image quality. Also in regards to the 512 x 512, 8 bits per pixel
grayscale test image Lena, authors are aware of at least two versions of this image that may
have been used by researchers for obtaining these results. Some of the mentioned methods
also did not use optimal entropy coders for coding of the fractal transform parameters.
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Figure 7 Five iterations of the decoding process
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Figure 8 Original 512 X 512, 8 bits/pixel Lena image

Figure 9 Decoded Lena image: 0.43 bits/pixel at 34.5 dB PSNR
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Figure 10 Decoded Lena image: 0.22 bits/pixel at 31.2 dB PSNR

Figure 11 Decoded Lena image: 0.15 bits/pixel at 29.2 dB PSNR

287
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In 1992, Hurd et al. [62], from Iterated Systems, published results on fractal-
based video compression claiming compression ratios from 21:1 (average PSNR,
of 39.2 dB) to 79:1 (average PSNR of 30.8 dB) for a 160 x 120, 8-bit grayscale
video sequence. In their method, they encode the first frame using regular
fractal coder. For the following frames, they always use the previous frame as
the source of domain blocks. To approximate each range block in one frame they
either (1) apply motion compensation and find a matching same-size domain
block from previous decoded frame (no contraction) or (2) a single matching
larger size domain block (with a contractive transformation applied on it) from
the previous decoded frame is found. No residual error is sent for the frames.
As the coding of this method is causal, the decoding process is non-iterative.
In fact due to the low complexity of the decoding algorithm, this method has
a very fast decompression.

In 1993, Hiirtgen and Biittgen [63] applied fractal techniques for low bit rate
video coding. They applied prediction by frame differencing with no motion
compensation. Then for each frame, they applied the fractal transform only to
those regions of the frame where prediction failed. For these regions they used
a still fractal coding scheme. For range blocks located in these regions, do-
main blocks from the whole same frame were searched. In contrast to previous
methods, for these regions they did not use previous frames. They also used a
3-level block splitting method in their algorithm. The 352 x 288, 8 1/3 Hz (25
Hz subsampled by 3) Miss America video sequence was reported to be coded
at 128 Kbits/sec with an average PSNR of 36-37 dB, and at 64 Kbits/sec with
an average PSNR of 34-35 dB, and at 32 Kbits/sec with an average PSNR of
30-32 dB. As the domain blocks for each range block were selected from the
same frame, the decoder is iterative in this method.

Also in 1993, Li et al. [83] tried an extension of the still image compression
method developed by Monro and Dudbridge [93] to video compression, and
showed how compression ratios from 25:1 (average PSNR of 36.2 dB) to 51:1
(average PSNR of 27.2 dB) can be achieved for the 256 x 256, 15Hz ‘Miss
America’ sequence. In this method the video sequence is partitioned into 3-
D blocks. Each block is then partioned into 8 3-D sub-blocks each of which
is approximated by a contractive transformation applied on the block that
contains it.

In 1994, Lazar and Bruton [80] also extended Jacquin’s 2-D algorithm to 3-
D, and used 3-D range and domain blocks for image compression. They also
used a 3-D block splitting method and the search for selecting domain blocks
is done only in the neighborhood of the range block. They reported an average
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compression ratio of 74.39 at an average PSNR of 32-33 dB , for the 360 x 280,
8 bit/pixel 30 Hz ‘Miss America’ video sequence.

Some other researchers have also contribute to the implementations of fractal
video coding [107, 76, 135, 94, 48, 52, 33, 97, 98].

As an example of results for fractal video coding, Figure 12 shows three original
(a), (c), (e) and decoded (b), (d), (f) frames of the 352 x 288, 8bpp, 12.5 Hz (25
Hz subsampled by 2) Miss America video sequence. The sequence was coded
using a method based on the generalized block coding algorithm described in
[57, 58]. In this method, each range block in each frame is approximated by
a linear combination of same-size blocks and larger-size blocks taken from the
previous frame, and fixed blocks which in this example are DCT basis blocks.
The number and type of selected blocks may vary from one block to another
and are determined for each range block by an algorithm described in [57, 58].
The test sequence was coded at 80 Kbits/sec with an average PSNR of 36-37
dB.

3.3 Complexity

In terms of complexity, fractal-based image coding is asymmetric, i.e, the com-
plexity of the encoder is typically much higher than that of the decoder. Com-
plexities of these encoders are typically much higher than that of transform
coders and vector quantizers. The most time consuming part of the encoding
procedure is usually the search for finding the best matching domain blocks.
Different techniques have been studied for limiting, structuring or approximat-
ing the search procedure [114, 116, 115].

In many implementations of fractal image coders the search is limited to the
neighborhood of the range block where finding a good match is more likely. In
the extreme case, the search may be totally avoided by using a predetermined
domain block at the location of the range block. The search in Jacquin’s original
method included searching domain blocks that were generated by applying some
isometric transformations on the image blocks (e.g. rotation by multiples of
90 degrees or reflection against horizontal or vertical axis). It has been found
that it is more likely that best match being the domain block taken from the
image rather than among the isometrically transformed versions and therefore
in many fractal image and video coders these transformations are not used.
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Figure 12 Three original (a,c,e) and decoded (b,d,f) frames of the Miss
America sequence.
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In some other implementations, the domain and range blocks are classified
based on some criteria of structure of the blocks. Then for each range block
the block matching search is done only among the domain blocks that are in
the same class as of the range block.

Another approach to reduce the search is by doing a coarse to fine search. The
search is done first using a coarse measure of similarity of blocks, and then
another search with a finer measure of similarity is done among the blocks that
have had high similarity using the coarser measure.

On the other hand, complexity of the fractal image decoders is usually much
lower than their corresponding encoders and in some cases even less than some
transform coding methods. This makes this method more suitable for publish-
ing or broadcasting where the image must be compressed once by a central
processor and decompressed many times by smaller receiving processors.

4 CONCLUSIONS

Although the field of fractal-based image coding is relatively young and its
methods are different from other image coding methods, the performance of
these methods has been comparable to those of the state of the art image
compression methods in terms of combination of image quality and compression
ratio. However, the complexity of the encoder for fractal-based image coders
is typically high. These methods are typically based on the approximation of
segments of the image with larger segments in the same image.
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