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ABSTRACT

This paper presents a new generalized image block cod-
ing algorithm which covers fractal techniques, block trans-
form techniques, and vector quantization as its special cases.
The coding is performed by approximating each image block
with a linear combination of a series of (not necessarily or-
thogonal) blocks selected from a pool of basis blocks. This
pool is made up of (1) a set of fixed basis blocks, (2) a set of
blocks taken from the filtered, subsampled image, and (3)
a set of blocks taken from the image without any change of
scale. The index of the selected basis blocks and their cor-
responding coefficients make the code for each range block.
Methods are proposed for making the pool and selecting
blocks from the pool.

1. INTRODUCTION

Block-based methods are the most commonly used meth-
ods for image compression. The most well-known of these
are block transform, vector quantization, and fractal-based
coding.

In block transform coding methods like JPEG, each
block in an image is encoded by approximating it with a
linear combination of a series of linearly independent (and
usually orthogonal) fixed basis blocks (FBBs). In these
methods, the set of basis blocks is the same for all of the
blocks being encoded and is also usually independent of the
image. These methods are usually not adaptive in the sense
that they cannot take into account image structures like
repetitions or similarities between blocks that are located
at different parts of the image. The basis blocks cannot
change from one image to another or from one block to
another.

On the other hand, vector quantization methods are
designed for a class of images. They have codebooks that
are designed such that they contain blocks that can suitably
approximate any block in the class of images for which it is
designed. In vector quantization, each block of an image is
approximated by a single block from the codebook.

So, in contrast to block transform coding, which uses a
linear combination of blocks to approximate a given block,
VQ uses a single block (and possibly two if we use dc com-
ponent and consider it as a separate block), which is of
course chosen from a larger set of blocks. Although in stan-
dard VQ the codebook is designed for a class of images, it is
typically not adaptive to single images and blocks because
it is not efficient to send a new codebook for every image
or every block in an image.

Fractal-based methods are typically based on the work
by Barnsley [1] who proposed to use fractal properties of
natural images for image compression. Based on Barnsley’s
work, Jacquin [2, 3] developed an algorithm for automatic
compression of images. The work of Barnsley and Jacquin
on lterated Function Systems (IFS) and Recurrent Iterated
Function Systems (RIFS) [1, 2, 4, 5] has made a basis for
development of a series of fractal-based methods by other
researchers, for compression of both still images [6, 7, 8, 9,
10, 11, 12] and image sequences [13, 14, 15].

The essence of most fractal-based coding methods is to
approximate a range block by a linear combination of up
to a few FBBs (for dc and low frequency components) [3,
6, 7, 14], and a single other block made by applying some
contractive transformation on a larger domain block in the
same image (for encoding details of the range block). Fractal-
based methods are similar to VQ! in the sense that they
use a single block from a large pool of blocks to approxi-
mate the details of the block. But fractal-based methods
are adaptive because the codebook can be different from
one image to another, and in some methods even differ-
ent from one range block to another range block, without
the need for sending the codebook each time. This adapt-
ability brings the better potential for image compression.
However, fractal-based methods have the problem that the
codebook, although very adaptive, is not very controllable,
and the codebook is limited to what exists in the image
(and possibly to the neighborhood of the range block) or
simple transformed versions of them. This pool is not al-
ways capable of providing a good approximation to highly
detailed or unique range blocks in the image.

It is notable that as fractal-based methods approximate
each part of an image by another part, they can use global
relationships better than VQ or block transform coding (e.g.
DCT).

At each step of encoding, if the fractal-based methods
selected the domain blocks from the parts of the image that
were already encoded, then they could be classified as a kind
of adaptive block prediction coding where the prediction pa-
rameters are being sent to the receiver, and there was no
contractivity restriction on the transformations that were
applied to the domain blocks. However, the encoding pro-
cess is typically non-causal, i.e., the domain block can be
selected from parts of the image that are not yet encoded.
This makes a more variety of blocks available for encoding
a range block, and also makes the encoding quality of all

1For a comparison between VQ and Jacquin’s method, see [3].



the range blocks uniform. But for the image to be recon-
structable at the decoder side, this non-causality needs to
be accompanied with the followings,

e The transformations that are applied on the domain
blocks need to be contractive.

e The decoding process needs to be iterative.

e Some additional error is introduced during the de-
coding process. (An upper limit to this error is given
by the Collage Theorem.)

Then it is possible to reconstruct the image at the de-
coder side by an iterative method [3] where the convergence
is guaranteed by the Contraction Mapping Theorem.

In this paper, using fractal-based techniques, we pro-
pose a new generalized method for image compression, in
which,

1. To get more control on how a range block is encoded,
we allow linear combination of the FBBs with more
than one domain block to approximate range blocks.
(The use of multiple domain blocks has only recently
been studied in [8, 9].)

2. We allow domain blocks to be of a size greater than or
equal to that of the range blocks, and also remove the
restriction of contractivity of transformations applied
to domain blocks when all domain blocks are selected
in a causal way.

3. We use a larger variety of FBBs with no restriction
on their orthogonality.

These considerations, combined together, lead to a gen-
eralized method which treats FBBs and the adaptive basis
blocks (ABBs) very similarly, and has the block transform
methods, VQ methods, and most of previously developed
fractal-based methods as its special cases. The following
sections will describe this approach in more detail.

2. THE NEW METHOD

2.2. Encoding Process

In our method, the image is first partitioned into non-
overlapping square range blocks of size Sg x Sr. Each range
block is considered as an N = S% dimensional vector. For
each range block, a pool of M basis blocks® is made where
M is typically larger than or equal to IV, but in general it
can be any positive integer. A small number of these basis
blocks are then chosen such that their linear combination
gives a good approximation of the range block. Then a
least squares method is used to find the the coefficients of
the chosen basis blocks. The index of these chosen basis
blocks and their corresponding coefficients constitute the
code for the range block.

It is notable that the pool of basis blocks can be differ-
ent from one range block to another, and the range-block-
dependent part of the pool is neither necessary nor sent for
the decoding process and is not part of the code.

2In the literature, the expression “basis vectors” usually refers
to linearly independent vectors that span a space. However, in
this paper, basis blocks (vectors) are not necessarily linearly in-
dependent or complete, but we use the expression basis blocks
because of the way we use them to approximate range blocks.

2.2.1 Making the Pool of Basis Blocks

For each range block, the pool of the basis blocks is
made up of the following subsets,

1. Adaptive Basis Blocks (ABB):

This set contains basis blocks that are generated by
applying some transformation 7" on domain blocks
in a neighborhood of the range block. This set is
range-block dependent, i.e., it may be different from
one range block to another. The set of ABBs itself
consists of two subsets,

(a) Higher Scale Basis Blocks (HSBB):

These are blocks that are generated by shrink-
ing domain blocks of size Sp x Sp of the image
(Sp > Sgr) to give Sr x Sg basis blocks. The set
may also be complemented by adding rotated or
reflected versions of the above blocks.

(b) Same Scale Basis Blocks (SSBB):

These are blocks that are directly taken from
the image (with no shrinking) and are restricted
to be in parts of the image that are already en-
coded (i.e. selected causally). This subset may
again be complemented by adding rotated or
reflected versions of themselves.

2. Fized Basis Blocks (FBB):

This set contains a series of blocks which are indepen-
dent of the range block being encoded and is designed
by the encoder designer. The set of FBBs is the same
for all the range blocks in the image being encoded,
and must be sent to the encoder offline. The pres-
ence of these basis blocks in the pool can serve the
following purposes,

e The encoder can use shorter codes for the in-
dices of some of these blocks that are commonly
present in the range blocks in the form of a
strong component.

e Enable the decoder to encode more accurately
range blocks which are very different from other
blocks in the image and therefore cannot be
well-encoded by other subsets of the pool.

e Allow the linear combination of basis blocks to
be a contractive transformation.

2.2.2 Finding the Best Set of Basis Blocks

For each range block, after the set of basis blocks is
constructed, we look for the smallest number of basis blocks
that, when linearly combined, can approximate the range
block within a given small error range. We look for the
minimum number of basis blocks, because this results in
the shortest code for the range block. In this selection, we
may put a limit on the maximum number of basis blocks
which may be used from either subsets of the basis blocks.

The above problem is an integer programming optimiza-
tion, and as our basis blocks are not orthogonal, finding the
absolute optimum seems to be a rather difficult problem?.

3In fact this problem can be classified as a planar point loca-
tion search in the field of combinatorial geometry.



However, we can use a suboptimal solution to this problem.
‘We propose two different solutions:

1. Choose the basis block which has the strongest cor-
relation coefficient (highest absolute value) with the
range block. Then remove any component of its form
from the range block and repeat this process for the
residual of the range block with the rest of basis
blocks until the residual becomes smaller than a thresh-
old or until no other basis block has significant cor-
relation with the residual range block.

2. Same as first method, with the difference that after a
basis block is selected, remove any component of its
form not only from the range block, but also from all
other basis blocks before repeating the process.

It is easy to prove that at each single step, this method
can never perform worse than the first method in re-
ducing the norm of the residual of the range block.
However, this does not guarantee a better perfor-
mance in the over all optimization.

Also it is interesting to note that in this method, the
computations needed for selecting the basis blocks
from the pool, include most of the computations that
are necessary for finding the coefficients of the se-
lected basis vectors after they are selected. The least
squares can be done by a QR decomposition of the
matrix whose columns are the selected basis vectors.
If we denote the vector of the range block to be en-
coded by b and the vector of the coefficients of the
basis blocks by x, then x can be found from

Rz =Q%b

(see p. 238 in [16]). The upper triangular matrix
R and the vector Q7b are computed directly in the
process of selecting the basis blocks. Therefore x can
be found with a small number of computations after
the basis blocks are selected. This is specially helpful
when the number of selected basis blocks is large.

We refer to the above methods as decomposition without
basis orthogonalization and decomposition with basis orthog-
onalization accordingly.

The following points are notable in our proposed method
for encoding process with selection method of either decom-
position with or without basis orthogonalization.

e Most other fractal-based image coding methods are
close to special cases of this method where maximum
number of FBBs is set to 1 (for dc component), or a
small number, and no SSBBs are allowed.

o If the maximum number of ABBs is set to 0 and the
maximum number of FBBs is set to N = S%, and the
FBBs are selected orthogonal, this method reduces to
a block transform coding.

e On the other hand if the maximum number of ABBs
is again set to 0 and the maximum allowed number
of FBBs is set to 1, then this method reduces to a
vector quantization method.

2.3. Decoding Process

The decoding algorithm, in the most general case, is
similar to the one proposed by Jacquin [2, 3] and is based
on the Contraction Mapping Theorem. We begin with any
initial image, and for each range block bring the blocks from
the image that have the same address as the selected do-
main blocks, and apply the corresponding transformations
on these blocks to make an approximation of the selected
ABBs. Then, these approximated basis blocks and the se-
lected FBBs are multipled by their corresponding coeffi-
cients and are added together to make an approximation of
the range block. This process is repeated for all range blocks
until the resulting image does not change significantly with
iterations.

The convergence of the decoding process is proven only
for the case where the maximum allowed number of ABBs is
1 and their combination coefficients are less than 1. How-
ever, experimental results suggest that the decoder con-
verges even when the maximum number of allowed ABBs
is greater than 1 [8].

As mentioned before, the SSBBs are restricted to be
chosen causally from the image, but the HSBBs are not.
An interesting case occurs if we restrict the HSBBs to be
also chosen causally. Then the whole encoding system be-
comes causal and the decoding process needs only a single
iteration to converge and there are no restrictions on the
coeflicients of the basis blocks (except due to possible nu-
merical stability issues).

2.4. Application to Image Sequences

The above method can be easily extended to encoding
of image sequences. The extension can be done in either of
the following two ways,

1. By considering a sequence of images as a three dimen-
sional set and use 3D blocks instead of 2D blocks. In
this case, 3D transform coding becomes a special case
of the proposed method where only FBBs are allowed
for encoding image 3D blocks.

2. By considering a sequence of images as a series of two
dimensional images and for the range blocks of any
image, allow the domain blocks to be chosen from the
neighborhood of the range block which includes parts
(or possibly all) of neighboring frames.

In fact, in this case, block prediction methods like
DPCM, and adaptive block prediction methods like
block motion compensation [17], become special cases
of our algorithm, where only one SSBB (with its co-
efficient restricted to 1) and no HSBBs are allowed.
Also hybrid coding methods [17] like motion com-
pensation combined with transform coding of resid-
ual errors (which is equivalent to DPCM of transform
coefficients of blocks shifted according to motion vec-
tors), is equivalent to using the basis blocks of the
transform coding as FBBs and allowing one SSBB.

3. EXPERIMENTAL RESULTS

The encoding algorithm proposed in this paper was applied
to natural images. The settings of the parameters of en-
coder are as follows,



Table 1: Parameter settings and results for the second set of experiments (CPU times are in seconds)

Total # || Number | Number | Number Lena Peppers Sailboat on Lake

of basis of of of rms | Av. # | CPU || rms | Av. # | CPU || rms | Av. # | CPU

blocks FBBs SSBBs HSBBs error | blocks | time || error | blocks | time || error | blocks | time
64 6 25 33 4.91 5.59 17 5.46 5.61 16 6.45 17.79 44
64 64 0 0 4.96 5.15 15 5.11 5.94 17 5.46 13.09 36
128 6 0 122 4.87 5.49 34 5.05 5.09 31 5.69 15.94 86
128 6 61 61 4.83 4.19 28 5.08 4.43 27 5.77 12.67 75
128 6 122 0 4.90 4.62 31 5.27 5.57 34 5.88 12.33 71
128 64 0 32 4.90 4.42 20 5.27 5.57 35 5.40 11.99 51
128 64 16 16 4.90 4.22 20 5.05 4.69 21 5.39 11.73 52
128 64 32 0 4.93 4.47 21 5.10 5.23 25 5.41 11.77 51
256 6 0 250 4.82 4.25 59 4.96 4.24 55 5.39 12.16 147
256 6 125 125 4.78 3.46 52 4.95 3.90 53 5.28 10.42 131
256 6 250 0 4.86 3.92 57 5.17 4.77 64 5.76 10.20 131
256 64 0 192 4.82 3.78 54 4.95 3.85 53 5.36 10.12 131
256 64 96 96 4.79 3.43 51 4.94 3.68 52 5.32 9.59 126
256 64 192 0 4.86 3.75 56 5.03 4.51 62 5.31 9.77 128
512 6 0 506 4.77 3.66 222 4.92 3.79 214 5.35 10.03 373
512 6 253 253 4.74 3.22 220 4.91 3.49 211 5.26 8.95 354
512 6 506 0 4.81 3.53 229 5.09 4.36 234 5.61 8.95 355
512 64 0 448 4.78 3.49 220 4.92 3.61 215 5.34 9.23 417
512 64 224 224 4.75 3.13 213 4.90 3.37 145 5.61 8.95 399
512 64 448 0 4.80 3.39 222 4.98 4.13 231 5.26 8.73 352

e Sg =8 and Sp = 16.

e Two different sets of FBBs were used in the experi-
ments, only one of which is used in each experiment.

The first set is made up of six mutually orthogonal
blocks basically of the form z =1, z = z, z = vy,
z=z%—a, z=y?—a, and z = zy, where the z
variable represents the pixel value and the origin of
the z and y coordinates is the center of the block. a
is a constant and its value depends on the size of the
block.

In the second set, the 64 orthogonal basis blocks of
DCT were used.

In both cases, no restriction is put on the maximum
number of FBBs used.

e SSBBs are taken from a square with the range block
located at its center, while avoiding parts of this square
that are not encoded yet. The size of this square de-
pends on the number of SSBBs. If parts of this square
fall out of the image, those parts are not used.

e HSBBs are again taken from a square (with possibly
a different size) with the range block located at its
center. The size of the square depends on the number
of HSBBs. If parts of this square fall out of the image,
those parts are not used.

e No pixel shufflings are applied on the ABBs.
e Step size for bringing basis blocks from the image is 1.

e Minimum rms of the residual of the range block for
stopping selection of basis blocks is set to 6.

In one set of experiments, the encoding process was ap-
plied to the 256 x 256 standard “Lena” image with both
methods of decomposition without basis orthogonalization,
and decomposition with basis orthogonalization for choos-
ing basis blocks. In these experiments, the set of 6 FBBs
were used, with 81 HSBBs and no SSBBs. For the case
of decomposition without basis orthogonalization, an aver-
age of 10.14 basis blocks were needed for encoding range
blocks, resulting in an encoding rms error of 5.16 (PSNR
34 dB). For the case of decomposition with basis orthogo-
nalization, an average of 8.88 basis blocks were needed for
encoding range blocks resulting in an encoding rms error of
5.10 (PSNR 34 dB). These results show that the method of
decomposition with basis orthogonalization gives a shorter
code for almost the same PSNR for the 256 x 256 Lena
image.

In another set of experiments, the encoding process was
applied to 512 x 512 “Lena”, “Peppers”, and the “Sailboat
on the Lake” standard images using only decomposition
with orthogonalization. The settings for these experiments
and their results are shown in Table 1. In this table, the
“Total # of basis blocks” represents the size of the pool
(M) from which the basis blocks were selected, the “Av. #
blocks” represents the average number of basis blocks that
were selected from the pool of basis blocks and were used
for approximating range blocks. The CPU time is the pro-
cessing time (in seconds) used for performing the encoding
on a Hewlett-Packard Apollo Series 735 workstation. As it
can be seen from the table, in the experiments, for cases
with same total number of basis blocks, the differences in
rms error resulting from the encoding process is small (due



to a fixed rms thresholding of 6). But considering the av-
erage number of basis blocks used for encoding each range
block, the results suggest that,

e In most of the cases, using a combination of HSBBs
and SSBBs gives a better performance compared to
using HSBBs alone or SSBBs alone.

e Complementing the 64 DCT FBBs with the HSBBs
and SSBBs reduces the average number of basis blocks
that are needed for encoding range blocks, when com-
pared with using DCT FBBs alone. But when the
total number of basis blocks is fixed at 64, using the
64 orthogonal DCT FBBs gives a better performance
compared to combining 6 FBBs with HSBBs and SS-
BBs.

e Except when the total number of basis blocks is small
(64), there is no clear advantage in using either of the
two sets of 6 FBBs or 64 DCT FBBs over the other.

4. CONCLUSIONS

In this paper we presented a new generalized image com-
pression method. The block transform coding, standard
VQ, and most of the earlier fractal compression methods
can be considered as special cases of this method. In this
method, the fixed basis blocks are complemented with a set
of adaptive basis blocks. These additional basis blocks are
constructed from the image itself; some from larger scales
and some from the same scale as of the range block. The
proposed method exploits self-similarities of image both
at different scales and at the same scale. Two methods
were tested for solving the discrete optimization problem
of choosing the smallest number of basis blocks that can
closely approximate each range block. It was found that
the method of decomposition with basis orthogonalization
gives a better performance compared to the method of de-
composition without basis orthogonalization. Also, results
of using two different sets of fixed basis blocks, and also
using a combination of same-scale basis blocks and higher-
scale basis blocks were given.
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