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ABSTRACT

A new general method is proposed for image cod-
ing which exploits similarities, possibly with scaling,
among different parts of the image. The coding is
performed by approximating each image block with
a linear combination of blocks selected from a pool
of basis blocks. This pool is made up of (1) a set of
fixed basis blocks, (2) a set of blocks taken from the
filtered, subsampled image, and (3) a set of blocks
taken from the image without any change of scale.
When the last two sets are selected causally, the de-
coding process is noniterative with no constraints on
the coefficients of the basis blocks. The index of the
selected basis blocks and their corresponding coeffi-
cients make the code for each range block. Meth-
ods are proposed for making the pool and selecting
blocks from the pool.

1. INTRODUCTION

Since the introduction of the concept of fractals by
Mandelbrot in late 70’s and early 80’s [1] it has been
exploited in many areas of science and engineering.
Barnsley [2] proposed to use fractal properties of nat-
ural images for image compression. Barnsley’s work
was used by Jacquin [3] who developed an algorithm
for automatic compression of images. The work of
Barnsley and Jacquin has made a basis for further
development of fractal-based methods by other re-
searchers, for compression of both still images [4, 5,
6, 7, 8, 9] and image sequences [10, 11].

The essence of most fractal-based coding meth-
ods is to approximate each segment of the image
by applying a (contractive) transformation on some
bigger segment in the image. Then one can recon-
struct the image (with some error) by only using
the parameters of the transformations. These meth-
ods are typically based on the work by Barnsley
and Jacquin on Recursive Iterated Function Systems
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(RIFS) [2, 12, 3] and they basically encode most
of the information in the image by coding relations
among different segments (of different sizes) of the
image.

In this paper we introduce a new coding method
for images which uses fractal techniques with mul-
tiple domain blocks and multiple fixed basis blocks.
The result is a generalized image coding method.

2. THE NEW METHOD

2.1. ENCODING PROCESS

In our method, the image is first partitioned into
non-overlapping square range blocks of size Sg X Sg.
Each range block is considered as an N = S%, dimen-
sional vector. For each range block, a pool of SpxSg
basis blocks! is made and a small number of them
are chosen such that their linear combination gives a
good approximation of the range block. The index of
these chosen basis blocks and their corresponding co-
efficients constitute the code for the range block. It
is notable that the pool of basis blocks can be differ-
ent from one range block to another, and the range-
block-dependent part of the pool is neither necessary
nor sent for the decoding process and is not part of
the code.

2.1.1. MAKING THE POOL OF BASIS
BLOCKS

For each range block, the pool of the basis blocks is
made up of the following subsets,

1. Adaptive Basis Blocks (ABB):

This set contains basis blocks that are gener-
ated by applying some transformation 7" on do-
main blocks in a neighborhood of the range
block. This set is range-block dependent, i.e.,

IIn the literature, the expression “basis vectors” usually
refers to linearly independent vectors that span a space. How-
ever, in this paper, basis blocks (vectors) are not necessarily
linearly independent, but we use the expression basis blocks
because of the way we use them to approximate range blocks.



it may be different from one range block to an-
other. The set of ABBs itself consists of two
subsets,

(a) Higher Scale Basis Blocks (HSBB):

These are blocks that are generated by
shrinking domain blocks of size Sp x Sp
of the image (Sp > Sg) to give Sk x Sg
basis blocks. The set may also be com-
plemented by adding rotated or reflected
versions of the above blocks.

(b) Same Scale Basis Blocks (SSBB):

These are blocks that are directly taken
from the image (with no shrinking) and
are restricted to be in parts of the image

that are already encoded (selected causally).

This subset may again be complemented
by adding rotated or reflected versions of
themselves.

2. Fized Basis Blocks (FBB): This set contains a
series of blocks which are independent of the
range block being encoded and is designed by
the encoder designer. The set of FBBs is the
same for all the range blocks in the image be-
ing encoded, and must be sent to the encoder
offline. The presence of these basis blocks in
the pool can serve the following purposes,

e The encoder can use shorter codes for the
indices of some of these blocks that are
commonly present in the range blocks in
the form of a strong component.

e Enable the decoder to encode more ac-
curately range blocks which are very dif-
ferent from other blocks in the image and
therefore cannot be well-encoded by other
subsets of the pool.

o Allow the linear combination of basis blocks
to be a contractive transformation.

2.1.2. FINDING THE BEST SET OF
BASIS BLOCKS

For each range block, after the set of basis blocks
is constructed, we look for the smallest number of
basis blocks that, when linearly combined, can ap-
proximate the range block within a given small error
range. We look for the minimum number of basis
blocks, because this results in the shortest code for
the range block. In this selection, we may put a limit
on the maximum number of basis blocks which may
be used from either subsets of the basis blocks.

The above problem is an integer programming
optimization, and as our basis blocks are not orthog-
onal, finding the absolute optimum seems to be a
rather difficult problem. However, we can use a sub-
optimal solution to this problem. We propose two
different solutions:

1. Choose the basis block which has the strongest
correlation coefficient (highest absolute value)
with the range block. Then remove any com-
ponent of its form from the range block and re-
peat this process for the residual of the range
block with the rest of basis blocks until the
residual becomes smaller than a threshold or
until no other basis block has significant corre-
lation with the residual range block.

2. Same as first method, with the difference that
after a basis block is selected, remove any com-
ponent of its form not only from the range
block, but also from all other basis blocks be-
fore repeating the process. The residual of
range block is computed at each step using
standard least squares methods over all the
chosen basis blocks.

It is easy to prove that at each single step, this
method can never perform worse than the first
method in reducing the norm of the residual of
the range block. However, this does not guar-
antee a better performance in the over all op-
timization.

We refer to the above methods as decomposi-
tion without basis orthogonalization and decomposi-
tion with basis orthogonalization accordingly.

It is notable that most other fractal-based im-
age coding methods are special cases of this method
where maximum number of FBBs is set to 1, and
no SSBBs are allowed. If the maximum number of
ABBs is set to 0 and the maximum number of FBBs
is set to N = S%, and the FBBs are selected or-
thogonal, this method reduces to a block transform
coding. On the other hand if the maximum number
of ABBs is again set to 0 and the maximum number
of FBBs is set to 1, then this method reduces to a
vector quantization method.

2.2. DECODING PROCESS

The decoding algorithm, in the most general case,
is similar to the one proposed by Jacquin [3] and is
based on the Contraction Mapping Theorem. We be-
gin with any initial image, and for each range block
bring the blocks from the image that have the same
address as the selected domain blocks, and apply



Table 1: Paremeter settings and results for the second set of experiments

Total number of || Number of | Number of | Number of || rms | Average number of
basis blocks FBBs SSBBs HSBBs error | basis blocks used
64 6 25 33 491 5.59
64 64 0 0 4.96 5.15
256 6 0 250 4.82 4.25
256 6 125 125 4.78 3.46
256 6 250 0 4.86 3.92
256 64 0 192 4.82 3.78
256 64 96 96 4.79 3.43
256 64 192 0 4.86 3.75

the corresponding transformations on these blocks
to make an approximation of the selected ABBs.
Then, these approximated basis blocks and the se-
lected FBBs are multipled by their corresponding co-
efficients and are added together to make an approx-
imation of the range block. This process is repeated
for all range blocks until the resulting image does not
change significantly with iterations.

The convergence of the decoding process is proven
only for the case where the maximum allowed num-
ber of ABBs is 1 and their combination coefficients
are less than 1. However, experimental results sug-
gest that the decoder converges even when the max-
imum number of allowed ABBs is greater than 1 [8].

As mentioned before, the SSBBs are restricted to
be chosen causally from the image, but the HSBBs
are not. An interesting case occurs if we restrict the
HSBBs to be also chosen causally. Then the whole
encoding system becomes causal and the decoding
process needs only a single iteration to converge and
there are no restrictions on the coefficients of the ba-
sis blocks (except due to possible numerical stability
issues).

3. EXPERIMENTAL RESULTS

The encoding algorithm proposed in this paper was
applied to Lena image. The settings of the parame-
ters of encoder are as follows,

e Sg =8 and Sp = 16.

e Two different sets of FBBs were used in the
experiments, only one of which is used in each
experiment. The first set is made up of six mu-
tually orthogonal blocks basically of the form
z=lz=x,2=y,2=22—a, 2 = y? —a,
and z = zy, where the z variable represents
the pixel value and the origin of the x and y
coordinates is the center of the block. a is a

constant and its value depends on the size of
the block. In the second set, the 64 orthogonal
basis blocks of DCT were used. In both cases,
no restriction is put on the maximum number
of FBBs used.

e SSBBs are taken from a square with the range
block located at its center, while avoiding parts
of this square that are not encoded yet. The
size of this square depends on the number of
SSBBs. If parts of this square fall out of the
image, those parts are not used.

e HSBBs are again taken from a square (with
possibly a different size) with the range block
located at its center. The size of the square
depends on the number of HSBBs. If parts of
this square fall out of the image, those parts
are not used.

e No pixel shufflings are applied on the ABBs.

e Step size for bringing basis blocks from the im-
age is 1.

¢ Minimum rms of the residual of the range block
for stopping selection of basis blocks is set to 6.

In one set of experiments, the encoding process
was applied to the 256 x 256 Lena image with both
methods of decomposition without basis orthogonal-
ization, and decomposition with basis orthogonaliza-
tion for choosing basis blocks. In these experiments,
the set of 6 FBBs were used, with 81 HSBBs and no
SSBBs. For the case of decomposition without basis
orthogonalization, an average of 10.14 basis blocks
were needed for encoding range blocks, resulting in
an encoding rms error of 5.16 (PSNR 34 dB). For
the case of decomposition with basis orthogonaliza-
tion, an average of 8.88 basis blocks were needed
for encoding range blocks resulting in an encoding



rms error of 5.10 (PSNR 34 dB). These results show
that the method of decomposition with basis orthog-
onalization gives a shorter code for almost the same
PSNR for the 256 x 256 Lena image.

In another set of experiments, the encoding pro-
cess was applied to the 512 x 512 Lena image us-
ing only decomposition with orthogonalization. The
settings for these experiments and their results are
shown in Table 1. As it can be seen from the table,
in the experiments the differences in rms error result-
ing from the encoding process is small (due to a fixed
rms thresholding of 6). But considering the average
number of basis blocks used for encoding each range
block, the results suggest that using a combination of
HSBBs and SSBBs gives a better performance com-
pared to using HSBBs alone or SSBBs alone. The
results also show that for a given total number of
basis blocks, using DCT basis blocks for FBBs gives
a better performance compared to using 6 FBBs.
Also, complementing the 64 DCT FBBs with the HS-
BBs and SSBBs reduces the average number of basis
blocks that are needed for encoding range blocks,
when compared with using DCT FBBs alone. But
when the total number of basis blocks is fixed at 64,
using the 64 orthogonal DCT FBBs gives a better
performance compared to combining 6 FBBs with
HSBBs and SSBBs.

4. CONCLUSIONS

In this paper we presented a new generalized im-
age compression method. The block transform cod-
ing, standard VQ, and most of the earlier fractal
compression methods can be considered as special
cases of this method. In this method, the fixed basis
blocks are complemented with a set of adaptive basis
blocks. These additional basis blocks are constructed
from the image itself; some from larger scales and
some from the same scale as of the range block. The
proposed method exploits self-similarities of image
both at different scales and at the same scale. Two
methods were tested for solving the discrete opti-
mization problem of choosing the smallest number of
basis blocks that can closely approximate each range
block. It was found that the method of decomposi-
tion with basis orthogonalization gives a better per-
formance compared to the method of decomposition
without basis orthogonalization. Also, results of us-
ing two different sets of fixed basis blocks, and also
using a combination of same-scale basis blocks and
higher-scale basis blocks were given.
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