A FRACTAL-BASED IMAGE BLOCK-CODING ALGORITHM

Mohammad Gharavi-Alkhansari and Thomas S. Huang

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
405 N. Mathews Ave., Urbana, IL 61801 U.S.A.

ABSTRACT

This paper presents a new block-coding algorithm for grey-
scale images based on a fractal approximation. Image blocks
are approximated by a linear combination of a set of al-
most orthogonal basis blocks made up of, (i) a set of simple
image-independent blocks, and (ii) a set of image-dependent
blocks generated from transformed blocks of bigger size in
the same image. To find the approximation for each block,
the block is projected onto the space spanned by the set of
basis blocks. For each block, the biggest coefficients plus
the index of the corresponding basis blocks and the number
of basis blocks used make the code. The number of basis
vectors used for coding each block is the number of basis
blocks needed to approximate the block within a given er-
ror limit. We also present the results of a study on the
effect of variations on Jacquin'’s fractal-based image coding
algorithm.

1. INTRODUCTION

The method described in this paper has its roots in the
work by Barnsley on image compression, and later on by
Jacquin [1] [2]. In Jacquin’s algorithm, an image is parti-
tioned into blocks called range blocks, which are classified
by their complexity. Simple range blocks are coded by their
average value and more complex ones are approximated by
a single transformed block of a bigger size called domain
block, which has to be of the same class in the same image.
For complex range blocks, the parameters of transforma-
tions and the address of the domain blocks are used as the
code for the range blocks. Then each range block is split
into four smaller subblocks and the error in encoding each
subblock is computed. If the error is higher than a thresh-
old, the smaller blocks are encoded separately. Later on,
different variations of the Jacquin’s algorithm were used
for image coding in which linear and/or quadratic compo-
nents of the pixel values in a block are treated differently
[3][4]. We studied other variations in Jacquin’s algorithm
and used different range block sizes, different domain block
sizes, and different numbers of domain blocks. Our studies
showed that for this algorithm, when implemented without
any block splitting,

This research was supported by a grant from Mitsubishi
Electric.

1. The error involved in coding each range block has
strong positive correlation with the variance of the
pixel values in the block.

2. The error increases with increasing the shrinking fac-
tor. This means that range blocks tend to find bet-
ter matches in domain blocks that are close to range
blocks in size. In other words, self similarity in a
natural image decreases as the difference in scale in-
creases and domain blocks had usually better be cho-
sen from scales of smallest difference with the range
blocks. But on the other hand decreasing the size of
the domain blocks excessively, reduces the contrac-
tivity of the transformation and causes more error in
the decoding process. In our new process described in
the next section, the size of domain blocks is chosen
to be twice the size of the range blocks.

3. Allowing more rotations and shrinking factors or more
domain blocks does not improve the performance of
the algorithm significantly.

Barnsley and Jacquin also showed how the information
about the relation between smaller and larger parts in an
image can be used to reconstruct the image by an iterative
decoding process [1] [2]. The reconstruction is done by iter-
atively applying a contractive transformation on an initial
image, and the convergence is assured by the contraction
mapping theorem.

2. ENCODING PROCESS

Our new method is, in a sense, a generalization of the meth-
ods proposed by Jacquin and Qien et al. [2] [3]. In the
encoding process of our method, an image is first tiled with
square range blocks of size Sgp x Sr. Each range block
can be considered as a N-dimensional vector, denoted by
75,5 = 1,---,Ngr, where N = Sr x Sg, and Ng is the
total number of range blocks. Then a set of normalized al-
most orthogonal N-dimensional basis vectors, called basis
blocks, are constructed. This set is made up of two subsets,
(i) a set of image-independent basis blocks, called fixed ba-
sis blocks (FBB), and (ii) a set of image-dependent basis
blocks (IDBB). These sets are constructed in such a way
that, on the average, each range block can be closely ap-
proximated by a linear combination of a small number of
basis blocks. Then in the encoder, the index of the basis
blocks and their corresponding coefficients make the code



for each range block. The basis blocks are near orthonor-
mal. The construction of the FBBs is done by the encoder
designer and is done once for the class of all the images
to be encoded. This construction is based on our general
knowledge of the nature of the image blocks. The relation
between these basis blocks and the range blocks in the image
is not based on the fractal properties of the image. On the
other hand, the construction of the IDBBs is done for each
image separately. In this construction, the encoder tries to
find blocks of size Sp x Sp which can strongly contribute
to the construction of range blocks. The assumption is that
the residuals of the range blocks, i.e. range blocks after re-
moval of the FBB components, can be efficiently encoded
by a linear combination of these IDBBs. This assumption
is based on one interpretation of fractal property of natural
images that for sections of an image, strong components ex-
ist at some bigger sections of the same image (self similarity
at different scales).

2.1. Fixed Basis Blocks

For FBBs, a set of N1 < N orthonormal blocks @;,i =
1,---, Ny, are defined. We chose N; = 6, and defined the
FBBs basicly of the following form (before normalization):

z=1,
z=x>—a,

2=, =Y,
z=y’—a, z=uzy.

The z variable represents the pixel value and the origin
of the z and y coordinates is the center of the block. =z
axis is vertical and downward, and y axis is horizontal and
towards right. a is a constant and its value depends on
the size of the block. A linear combination of these six
blocks can generate any quadratic block of the form z =
a1 + axx + a3y + asx? + a5y2 + asy.

Other kinds and numbers of FBBs may be used depend-
ing on the nature of the images to be encoded. The general
guideline is that range blocks in the set of images to be en-
coded must have strong components of FBBs. Our choice of
FBBs seems reasonable for most natural images which have
a lot of shades and strong correlation between neighboring
pixel values.

2.2. Image-Dependent Basis Blocks

A set of N, IDBBs #;,7 = 1,---, Ny, are constructed
such that

|17 =1 for 1<i< Ny,
(T, )| <te for 1<i,j<Na, i#j,
(Ui, ;)| <t. for 1<i< N, 1<j< DN,

where t. is the maximum allowed deviation from zero for
the cosine of the angle between two IDBBs or an IDBB and
a FBB. t. is a parameter of the encoding process and is
chosen small enough to give near-orthogonal properties to
our basis blocks but big enough to allow enough number of
IDBBs to be selected in the process of finding the IDBBs
as described below. IDBBs are generated by the following
procedure,

1. A pool of domain blocks of size Sp x Sp taken from
the image is made. One may choose to use all possible
blocks of size Sp x Sp in the image. We denote these

domain blocks by Jn,n = 1,---,Np, where Np is
the number of domain blocks used. For the results of
this paper, Sp is chosen equal to 2Sgr, although the
ratio Sp/Sr can have any other value as long as it is
greater than one (see previous section).

2. The pool is expanded by also including simply trans-
formed versions of the domain blocks which are made
by reflecting them against their horizontal and verti-
cal axis and rotating them by multiples of 90 degrees
[2]. This gives us a total of Ny = 8 different ver-
sions for each domain block. The members of this
expanded pool are denoted by fr,k=1,---, NpNr.

3. Each ﬁ is shrunk by a factor of Sp/Sg in each di-
rection.

4. Component of the same form as any of the N; FBBs

are removed from ﬁ’s. The resulting blocks are de-
noted by gx,k=1,---, NpNr.

5. Each gy is given a priority number p; defined as

Npg I 2
=3 [ (10500 g )| =1, o,
j=1

pr represents the overall contribution of §r to the
construction of all range blocks. For each g the con-
tribution to each range block is limited to the norm
of gr to avoid giving high priority numbers to §i’s
of small norms. This is to keep the IDBB-generating
transformations, applied on domain blocks, contrac-
tive.

6. gr’s are sorted in descending order of their priority
numbers.

7. The value of t. is selected.

8. The gi with the highest priority number is selected
as the first IDBB.

9. The following IDBBs are chosen to be the gi’s with
highest priority numbers whose angles with all the
previously chosen IDBBs are close to 90 degrees within
the allowable threshold, determined by ..

10. If the number of IDBBs becomes greater than
(N — N1) only the first (N — N1) ones are selected.

11. All the basis blocks are normalized, giving ¥;,i =
1,---, No.

For the IDBB #;, we denote the index of the originating
domain block by n; and the transformation that converts
cfn,. to ¥; (a combination of shrinking, rotation, reflection,
removal of FBB components, and normalization) by 7, i.e.,
¥ = Ti(dn,). The addresses of dy,,i = 1,---, N> and the
parameters of 7;,7 = 1,---, Ny are sent as an overhead for
each image. The overhead also includes the maximum and
the minimum pixel values of the encoded image. It must be
noted that the pixel values of the IDBBs are neither sent
nor needed for the decoding process.

2.3. Code for Range Blocks

The process of making basis blocks, gives us a total of

Np def N1 + N basis blocks where Ng < N. For simplicity



of notation, we rename the or@ered b_:%sis blocks

(11‘1, s ,ﬁNl,Ul, s ,17N2) by (bl, s ,bNB). After the basis
blocks are found, each range block 7; is projected onto the
space spanned by the Np basis blocks gi,i =1,---,NB, by
standard least squares methods, giving coefficients a;,;,% =
1,---, Np. For each range block, these coefficients are sorted
in descending order of their absolute value. We denote
the second index (subscript) of these sorted coefficients by
Ijym,m =1,---, Np. Beginning with the coefficient «;,i, ,
which has the largest absolute value, we multiply these co-
efficients by their corresponding basis blocks and add them
together. After the L-th accumulation, we have 7, =

Zi:1 4,15, 01 iC
tinued, giving a non-increasing error e;(L) = ||7;,L — 7.
This accumulation is stopped if any of the following condi-
tions are satisfied:

1. e;(L) < E where E is an error threshold set by the
designer of the encoder.

2. ej(L—1) —e;(L) < F where F is a threshold for the
rate of decrease of the error, set by the designer of
the encoder. This condition is usually satisfied when
NB < N and the range block can not be efficiently
approximated by the selected basis blocks.

3. L= Np.

For each 7; this accumulation is con-

For the range block 7, we denote the value of L at which
the above accumulation stops, by M;. The number Mj, the
coefficients «;,1;,.,m = 1,---, M;, and the indices of the
basis blocks corresponding to these coefficients: Ij,,m =
1,---, M;, make the code for each range block 7;:

 cod

7 5% Mj, (@15 s Ljmym = 1, -, Mj)
‘We have not applied any quantization to the coefficients in
the code. The results presented in the last section of this
paper are based on these non-quantized values.

3. DECODING PROCESS

Our decoding process is an iterative process similar to the
one suggested by Jacquin [2]. We can begin the decod-
ing with any initial image, e.g. an image with all its pixel
values equal to zero. However, the decoding process be-
comes faster when the initial image is constructed from the
coefficients of each range block corresponding to the N;
E‘BBs. At K-th iteration, we make a sgt of basis blocks
IA)i,K,i =1,---,Np. Fori=1,---, Ny, Bi,K = gi, but for
i = Ni+1,---,NBg, we have to_‘make an ap;lroximation
for the IDBBs, namely b; x = Ti(dn,; x ) where dy, x is the
block of size Sp x Sp with the same address as Jni, in
the image resulting from iteration K — 1. Now having the
FBBs and an approximation of IDBBs, we can reconstruct
an approximation 11:]-, k of the range block #; by applying,

MJ- .

- =

Tj,K = E Q15 01 -
m=1

The pixel values in the range block 7; are then limited to
values between the minimum and the maximum intensities

Table 1: Paremeters of the encoder.

size of image | 256 x 256
Sr 8

Sp 16
Np 58081
Nr 8

N 6

te 0.16
E/Sr 6.
F/Sz 1.

of the encoded image (known to the decoder from the over-
head in the code). This procedure is repeated until the
change in the images are small. Although the convergence
of this decoding process is not mathematically proven, in
practice the decoding process converges after a few itera-
tions for all of our natural test images.

4. COMPARISON

Regarding the encoder, the main differences between this
algorithm and the one proposed by Jacquin are as follows:

1. For each range block a linear combination of a set of
basis blocks is used instead of only one domain block.

2. In addition to using IDBBs, N; FBBs are also used.
In Jacquin’s method only the information of the av-
erage of the range blocks is transmitted.

3. No classification of range blocks and no block split-
ting is done in this method. More complex blocks
usually need a higher number of basis blocks for cod-
ing.

For the decoder, in addition to the encoder-related dif-
ferences, our method is different from Jacquin’s method in
the sense that instead of beginning with an arbitrary initial
image, we begin with an image which is close to the desired
image by using the coefficients of the FBBs. This makes
the decoding process one step shorter.

5. TEST RESULTS

Our algorithm was applied to the 8-bit/pixel test image
“Lena”. The parameters of the encoding process are given
in Table 1. The encoder found N, = 26 IDBBs. The av-
erage number of basis blocks used for encoding each range
block is 3.71. The estimated rms error at the encoding pro-
cess is 9.79 (PSNR=28.3 dB). Figure 1 shows the number
of times each basis block gi,i =1,---,Np, was used for en-
coding range blocks. It can be seen that the FBBs are more

extensively used than the IDBBS. Figure 1 also shows mod-

ified priority numbers py def (pk/NR)%,k =1,---,NpNr,

and the modified norms (||gk||/Sr) of the gi’s correspond-
ing to IDBBs. It seems that the priority numbers are a
good measure of how extensively each IDBB is used. Fig-
ure 2 shows the original test image “Lena”. The initial
image and the images resulting from the iterative decod-
ing process after the first and second iterations are shown



Figure 1: (a) Number of times each basis block by,;,i =
1,---, NB, was used for encoding range blocks, (b) modified
priority number of the gi’s corresponding to IDBBs, (c) the
modified norms of the gi’s corresponding to IDBBs.

in Figure 3. The error of the decoded images remains al-
most constant after two iterations and the final rms error
of 9.86 (PSNR=28.3 dB) is very close to the rms error of
9.79 estimated in the encoding process.

6. REFERENCES

[1] M. F. Barnsley, Fractals Everywhere, Academic Press,
New York, 1988.

[2] A. E. Jacquin, “A novel fractal block-coding technique
for digital images,” Proc. IEEE ICASSP, pp. 2225—
2228, 1990.

[3] G. E. Qien, S. Lepsgy, and T. A. Ramstad, “An inner
product space approach to image coding by contrac-
tive transformations,” Proc. IEEE ICASSP, pp. 2773—
2776, 1991.

[4] D. M. Mounro, and F. Dudbridge, “Fractal approxima-
tion of image blocks,” Proc. IEEE ICASSP, Vol. 3, pp.
485—488, 1992.

Figure 2: Original test image “Lena”

Figure 3: (a) Initial image made by using fixed basis blocks
(PSNR=25.6 dB), (b) decoded image after one iteration
(PSNR=28.0 dB), (c) decoded image after two iterations
(PSNR=28.3 dB).



