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Abstract

This paper is concerned with function approximation and image representation using a new formulation
of Iterated Function Systems (IFS) over the general function spaces LP(X,u): An N-map IFS with
grey level maps (IFSM), to be denoted as (w, ®), is a set w of N contraction maps w; : X — X
over a compact metric space (X, d) (the “base space”) with an associated set ® of maps ¢; : R — R.
Associated with each IFSM is an operator T which, under certain conditions, may be contractive with
unique fixed point w € LP(X, p). A rigorous solution to the following inverse problem is provided:
Given a target v € LP(X, ) and an € > 0, find an IFSM whose attractor satisfies || @ — v ||,< €. An
algorithm for the construction of IFSM approximations of arbitary accuracy to a target set in £L2( X, p),
where X C RP and p = m(P) (Lebesgue measure), is also given. The IFSM formulation can easily
be generalized to include the “local IFSM” (LIFSM) which considers the actions of contraction maps
on subsets of X to produce smaller subsets. Some applications to function approximation on [0,1] and
image representation on [0, 1]2 are presented.
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1. Introduction

This paper deals with the approximation of functions to a specified accuracy using the method of
Iterated Function Systems (IFS). The main theoretical results along with some numerical computa-
tions involving functions » : [0,1] — [0, 1] and images were presented in [13]. Here we provide the
details and proofs of our method as well the results of more recent computations. The use of IFS-
type methods for image compression has received much interest [4, 9, 10, 18, 19]. The objective is
to approximate images which normally require megabytes of storage by the fixed points/attractors of
IFS-type operators. The representation or coding of such images by IFS parameters can require much
less storage space, thus providing a means of data compression. The reconstruction (or decompression)
of the image from the IFS parameters can be performed quickly (in “real time”). Nevertheless, the
compression of images into IFS parameters can still require a significant amount of computer time.
More research is needed to understand how to reduce this time without significantly affecting the

accuracy of the approximation.

In light of the great interest in approximating measures and functions as well as the many efforts to
devise effective IFS-based image encoding schemes, we present a systematic theoretical formulation
and solution to an inverse problem of function/image approximation. We then provide an algorithm
to construct the IFS-based approximations of arbitrarily small accuracy to a target function. In R2,

this represents a method of image data compression.

An N-map contractive IFS on a compact metric space (X,d) is a set of contraction maps, w =
{wy,ws,...wn}, w; : X — X. Associated with the IFS w is a set-valued mapping W which acts
on nonempty compact subsets of X. The theory of IFS with probabilities (IFSP), that is, a set of
IFS maps w with associated probabilities p = {p1,p2,...pN}, Was introduced in [17] and developed
independently in [2]. Associated with an IFSP is a contractive “Markov” operator which works with
probability measures, using the p; as multiplicative weights. The approximation of measures by in-
variant measures of IFSP has received much interest - for a survey with references, see [21]. Recently,
the inverse problem for measure approximation was formulated in terms of moments. A solution to
this problem as well as an algorithm was provided [12]. In fact, Ref. [12] may be considered a stepping

stone to the work reported in this paper.

Here, however, we formulate an IFS-type method over function spaces. A principal motivation arises
from the problem of image representation - it is desirable to have more pointwise control of ap-
proximations to an image than can be achieved with measures. An image will be represented by a
function w : [0,1]2 — R,, where R, C R™, is the grey level range, to be discussed below. The value
u(z) at a point or pixel z € X may then be interpreted as a nonnegative grey level or brightness
value. We then consider an N-map IFS on the base space (X, d) along with a set of associated maps,

® = {¢1,02,..., 0N}, ¢; : R — R. Such a system (w, ®) will be referred to as an Iterated Function



System with Maps (IFSM). As in the usual IFS-type approaches, we seek to approximate a target

function or image by the unique fixed point (attractor) of a contractive operator associated with an

IFSM.

It now remains to identify an appropriate space of functions for an IFS-type approach. In earlier
studies [5], the set-valued mapping W was considered to operate on the level sets of a function . It
thus seemed natural to consider u € F(X), the class of fuzzy sets on X [23]. In order that the level
sets be compact and nonempty, u was an element of the subspace F*(X) C F(X) of normalized upper
semicontinuous fuzzy sets with the dy, metric [7] which involves Hausdorff distances between their
respective level sets. Such a system (w, ®) of IFS maps and associated grey level maps was referred
to as an Iterated Fuzzy Set System (IFZS). In this particular case, the grey level range is Ry = [0, 1].
Associated with each IFZS (w, ®) is a contractive operator T, : 7*(X) — F*(X), with a unique fixed

point u, the attractor of the IFZS. The contraction mapping T, involves the supremum operator.

However, as we shall discuss in Section 2 below, there are some serious difficulties with the IFZS
approach, especially with regard to the inverse problem. First, the Hausdorff metric d, is too restric-
tive, both from the practical aspect of image processing as well as from some theoretical perspectives,
notably continuity [11]. Second, the appearance of the supremum in the IFZS contractive operator 7T,
complicates the inverse problem in the case of “overlapping” IFSM, i.e. when some of the sets w;(X)
overlap. In order to bypass these difficulties, we have introduced two fundamental modifications to

the IFZS method, as summarized below:

(a) We define another distance function between two functions u,v € F*(X), briefly as follows. First,
replace the Hausdorff distance between level sets h([u]*, [v]*) by p([u]* A [v]*), where p denotes a
measure on B(X), the o-algebra of Borel subsets of X, and A denotes the symmetric difference oper-
ator. Then replace the sup in the d, metric by an integration with respect to a measure v on B(Ry).
The result is a pseudometric on (F*(X),ds) that reduces to the £}(X,u) distance when v is the
Lebesgue measure on B(R,). By extending the grey level range, R, to the nonnegative real line R™,
it is then natural to formulate an IFSM over £!(X, u). It appears that only the space £1(X, ) can
be generated from the IFZS with such a procedure. However, there is nothing which prevents us from

formulating IFSM over the general spaces LP(X, p) for p > 1.

(b) We then introduce a new contractive operator T associated with an IFSM (w, ®) on LP(X, u)
which facilitates the solution of the inverse problem even when the subsets w;(X) overlap. This is
particularly important with regard to (c) below. From the structure of the T operator, the fixed point
equation & = T may be regarded as a “mixed” Fourier-type expansion of u(z) in terms of two sets
of functions: (i) the set {xx(z) = L, (x)(2),k = 1,2,..., N} of piecewise constant functions and (ii)
the set {¢x(z) = w(w;'(z)),k = 1,2,..., N}, which are dilatations and translations of the “mother

function” @(z) itself, reminiscent of scaling functions in wavelet theory.



The inverse problem for function approximation using IFSM may now be posed as follows:

Given a target function or image v € LP(X, u) and an € > 0, find an IFSM (w, &) whose attractor
u € LP(X, p) satisfies || @ — v ||,< e

From the “Collage Theorem” the inverse problem may be rephrased as follows:

Given a target function or image v € £LP(X, ) and a § > 0, find an IFSM (w, ®) with operator T such
that || v — Tv ||,< 4.

As in [12], our formal solution to the inverse problem is unique in the following aspects:

(c) We begin with an infinite set W = {wi,ws,...} of fized affine contraction maps w; : X — X
which must satisfy a kind of density condition on X with respect to the measure y. From this set, we
construct sequences of N-map IFSM (wN, @N), N =1,2,..., with corresponding operators TV. Given

a target function v € £?(X, u), we then prove that
lim inf || v — TNo ||,= 0,
N—-ooco

which represents a formal solution to the inverse problem.

(d) Our algorithm to construct IFSM approximations is done in the space £2(X,pu) C L}(X, u). For
each N, the optimal grey level maps in " minimize the squared £? collage distance AV =|| v—T"v |2.
A further simplification results by considering only affine grey level maps ¢;(t) = a;t + f3;, t € RT.
The minimization of AY becomes a quadratic programming (QP) problem in the o; and 3; over an
appropriately defined compact subset II?Y C R2N. Such problems can be solved numerically in a
finite number of steps. In many cases, the minimum collage distance is achieved on a boundary point
of the simplex TI?N. In such cases, if (ax+,Bx+) = (0,0) for some k* € {1,2,...,N}, then ¢p+(t) = 0
for all t € Ry, which implies that the grey level map ¢« is superfluous. The automatic detection and

elimination of such superfluous maps increases the data compression factor.

The layout of this paper is as follows. In Section 2 we review the basic features of the Iterated Fuzzy Set
System and look at some of the disadvantages of the d., metric. The new distance function described
in (a) is then introduced. An IFSM over the space LP(X, p) is then formulated with the introduction
of a new contractive operator T. In Section 3 we present our formal solution to the inverse problem
for IFSM on £L?(X, p). In Section 4, we extend our method to the case of “local IFSM”. Section 5 is

devoted to applications which include the approximation of computer images.

Finally, we conclude this introduction with some words on the image processing aspect of this study.
The use of a fixed set of IFS maps is a rather standard procedure in most fractal encoding methods.
Intuitively (and, in fact, from theory), one expects that the accuracy of the IFS approximation increases
with the number of maps N used in the IFS. However, both (i) the computer time required to determine
the optimal grey level maps &, as well as (ii) the time needed to generate the IFSM fixed point

T by iteration of T, increase very quickly with N. Unlike the mathematical problem of function



approximation, the object of image representation is not to obtain approximations of arbitrarily small
accuracy but rather to obtain an acceptable approximation (of course, the smaller the better) with the
fewest number of parameters and the least amount of computer time. Most current methods employ
only “nonoverlapping” IFS maps w;. As stated in (b) above, our new contractive operator T easily
accounts for cases where the sets w;( X ) overlap. In fact, our algorithm can choose the best IFS maps,

overlapping or not. This may allow a greater accuracy to be achieved for a given number of maps.
2. Iterated Function Systems on Function Spaces

2.1 Glossary of Notation

Throughout this paper, the following notation will be employed:

Rt =[0,00)

(X,d): a compact metric space. In most applications, where X is the “base space” of the IFS, X is

typically a compact subset of R™, e.g. [0,1],[0,1]2

Con(X) ={w: X — X|d(w(z),w(y)) < cd(z,y) for some ¢ € [0,1),Vz,y € X}: the set of contraction
maps on X. We define the contractivity factor of w € Con(X) to be

c= sup  d(w(z),uw(y))/d(y).
zyeX z#y

dcon(x): @ metric on the function space Con(X). For f,g € Con(X),
doon(x)(f> 9) = sup d(f(z),9()).
(Note that the metric space (Con(X ), dgon(x)) may not be complete.)
Coni(X) = {w € Con(X)|w is one-to-one }.
H(X): the set of nonempty compact subsets of X.

h: the Hausdorff metric on H(X). Let the distance between a point z € X and a set A € H(X) be
given by
d(z,A) = inf d .
(z,4) = inf d(z,y)

Then for A, B € H(X), define

h(A, B) = max{sup d(z, B),sup d(y, 4)}.
z€EA yEB

(H(X), h) is a complete metric space [8].

B(X): the o-algebra of Borel subsets of X.



M(X): the set of finite measures on B(X). In the special case that X C RP, let m(P) ¢ M(X)

denote the Lebesgue measure on B(X).
I4(2z): the indicator function of a set A C X. I4(z) =1if 2 € A. I4(2) = 0 otherwise.

L(X,m) = {f : X = R || £ = Uy [f(2)Pduf? < oo}, 1 < p < co. For fyg € L2(X, ), define
dp(f,9) =|| f — g ||[p- Note that since u(X) < oo, it follows that L2 C LP for 1 < p < q.

< f,9> =[x f(z)g(z)du for f,g € L2(X, p).
LE(X,p) ={f € LP(X,p) | f(z) > 0,Vz € X}.

R, C R: the grey level range for image functions v : X — R, (In practical applications, R, is

nonnegative and bounded.)

LipY) ={¢:Y - Y, Y CR||¢(t1) — ¢(t2)| < K|t1 — t3|,Vt1,t2 € Ry for some K € [0,00)}.

IFS methods are based upon Banach’s Fixed Point Theorem or Contraction Mapping Principle (CMP)

as well as two simple consequences. For convenience, we state these important results below.

Theorem 1 (CMP) Let (Y,dy) be a complete metric space. Suppose there exists a mapping f €
Con(Y) with contractivity factor ¢ € [0,1). Then there exists a unique § € Y such that f(y) = 7.
Moreover, for any y € Y, dy(f*(y),y) — 0 as n — oc.

The following result is often referred to in the IFS literature as the “Collage Theorem”:

Theorem 2 Let (Y,dy) be a complete metric space. Given a y € Y suppose that there exists a map
f € Con(Y) with contractivity factor ¢ € [0,1) such that dy(y, f(y)) < €. If g is the fized point of f,

ie. f(3) = 9, then dy(3,7) < ¢/(1c).
Finally, the following result establishes the continuity of fixed points of contraction maps on (Y, dy).

Theorem 3 Let (Y,dy) be a metric space and f,g € Con(Y) with fized points §; and J, and con-

traction factors cy and cg4, respectively. Then

dY(?f,?g) < ! )dCon(Y)(f’g)' (1)

1 — min(cy, ¢4

This result was used to derive continuity properties of IFS attractors and IFSP invariant measures [6]

as well as IFZS attractors [11].
2.2 Iterated Fuzzy Set Systems (IFZS)

We first briefly describe the basic features of IFZS, referring the reader to [5] for details. An N-map
IFZS, denoted as (w,®) (N < oo) has an IFS component, w, on a compact metric space (X, d) and



a grey-level component, . In this particular case, R, = [0, 1].

The IFS Component: Let w = {w;, ws,...,wny}, w; € Con(X) denote a contractive N-map IFS,
where N < co. The contractivity factor of the IFS is given by

c= sup {¢} <L (2)
1<i<N

For the IFS to be contractive, we must have ¢ < 1, which will be assumed throughout the paper.
(This condition that the IFS be strictly contractive may be relaxed to “eventually contractive”, which
is important in the case where X is discrete, e.g. pixels. At this point, for simplicity of discussion,
we omit this technicality, but will return to it later in the paper.) Associated with the IFS w is
a set-valued mapping w : H(X) — H(X) defined as follows. For an element § € H(X), denote
w;(S) = {wi(z),z € §},i=1,2,..., N and let

w(S) w;(S). (3)

Il
=

o
Il
=

As is well known [1, 2, 17], there exists a unique compact set 4 € H(X), the attractor of the IFS w,
such that

N
A=w(4)= | @i(4) (4)

This follows from the fact that W is a contraction mapping on (H(X), k) with contractivity factor ¢

[17).

We shall be primarily concerned with IFS whose maps on X are affine. For example, on R, these

maps have the general form
wi(z) =s;z+a;, ¢ =18 <1, s,a,€R,1=1,2,...,N. (5)

In higher dimensions, e.gz. X C RP,D = 2,3,..., it will be convenient (although not necessary) to
consider the special class of contractive similitudes, e.g. rotations, inversions, reflections followed by

translations. In all such cases, the contractivity relations become equalities. We denote this set of

maps as Sim(X) C Con(X), i.e.
Sim(X)={w: X - X | d(w(z),w(y)) = cd(z,y) for some c € [0,1),Ve,yc X}.

In our construction of the IFSM, it will also be necessary to ensure that the IFS maps are one-to-one,

so we define

Simq(X) = Sim(X) N Conq (X).

The Grey Level Component: Let F(X) denote the class of functions u : X — [0, 1], often denoted
as the class of fuzzy sets on X. Define the a-level set [u]® of u € F(X) as follows:



[u*={z € X :u(z) > a},for 0 < a <1 and

[u]® = {z € X : u(z) > 0} (the bar denotes closure).
We consider the special subclass 7*(X) C F(X): v € F*(X) if and only if
1. u € F(X),
2. u is upper semicontinuous on (X, d) and
3. u is normalized, i.e. u(zo) = 1 for some zg € X.

From properties 2 and 3, [u]* € H(X),a € [0,1] for all u € F*(X). We now consider the following
metric on F*(X):

doo(u, ) = Oiggl{h([U]“, [v]%)}, Vu, v € FH(X). (6)

The metric space (F*(X), dw) is complete [7].

Let GT([0,1]) denote the set of all functions ¢ : [0,1] — [0, 1] such that
(¢) ¢ is nondecreasing on [0,1],

(it) ¢ is right continuous on [0,1) and

(42) ¢(0) = 0.

Given an N-map IFS w, let & = (¢1, ¢2,...,¢n) denote a set of associated grey level maps which

satisfy the following conditions:

(a) ¢; € G*([0,1]),i€ {1,2,...,N} and

() ¢ix(1) =1 for at least one * € {1,2,...,N}.

The pair of vectors (w, ®) constitutes an N-map IFZS.

Associated with an IFZS (w, ®) is an operator T, : F*(X ) — F*(X), defined as

(Tou)(z) = sup {i(a(w;*(z)))}, =€ X, (7)

1<i<N

where, for B C X,
W(B) = sup,cp{u(y)} if B # 0

() = 0.



Properties (2), (¢2) and (b) guarantee that the operator T,, defined below, maps F*(X) into itself.
The T, operator is a quite natural extension of the IFS set-valued mapping W since it leads to the
following relation involving the union of a-level sets:

[Tsu]® = | ) wi([¢i o u]*), a€[0,1]. (8)

=

Il
-

2

This relation is characteristic of the supremum operator in 7. In the special case where the sets w;(X)

are disjoint, i.e. w;(X)Nw;(X) = 0 when ¢ # j, it follows from Property (i:¢) that
(Tau)(e) = $u(u(wy!(=))s & € wh(X), b= 1,2,..., N. (9)

In [5], Property (4:¢) was also considered to be a natural assumption for grey level functions: If the
grey level of a point or pixel z € X is zero, then it should remain zero after being acted upon by the
¢; maps.

T, is a contraction mapping on the space (F*(X), dw), i.€.
doo(Tu1, Tuz) < cdoo(ur, uz) Yur, uz € F*(X), (10)

where ¢ is the contractivity factor of the IFS w. Thus there exists a unique function w € F*(X), the
attractor of the IFZS (w, ®), such that T,u = %. (Note that the normality of @ € F7*(X) implies that
u is not identically zero on X.) From Eq. (8), the a-level sets of the attractor @ obey the following
generalized self-tiling property:

N
[ﬂ]a = U wi([‘;bi o ﬂ]a)a ac [0, 1]' (11)
=1
The IFZS approach represents a systematic method of constructing functions v € F*(X). There are

some serious drawbacks regarding its applicability to the inverse problem:

1. The practicality of the T, operator, because of the presence of the supremum, is limited to the

case where the sets wg(X) are either disjoint or where they overlap on sets of measure zero, cf.

Eq. (9).

2. The d metric is too restrictive, from both a theoretical perspective as well as the practical
viewpoint of image processing. In order to illustrate the former restriction, consider the following
two-map IFZS on X = [0, 1], where the IFS maps are wi(z) = 3z and wy(z) = 3z + 3. Now
define a family of grey-level map vectors, ®,, = (¢n1, Pn2), where

IA A
~-~ o
A IN
= 3=

t, 0<t<?l b
_ ? = n _ 1
¢n1 (t) - { 1 71_1 <t 1 ¢n2(t) — n

T3k O

Il
—



Let @, denote the attractors of the IFZS (w,®,), n = 1,2,.... Then

0, z=0
To(z) =1 L, 0<e<1 (13)
1, z=1.

Thus, [%,]° = [0,1]. Now define &* = (¢?, ¢3), where

0, 0<t<1
$1(t)=0,0<t <1, ¢§(t)={ L1 (14)
, t=1.

Note that || ¢n; — ¢f |[cc— 0 as n — oo for 2 = 1,2, where || . || denotes the £*°(X, y) norm.
Let 7* denote the attractor of the IFZS (w, ®*). Then

(15)

0, 0<z<«1
1, z=1.

Clearly, [u*]° = {1}. Therefore, do(U,u,) = 1 for all n > 1, from which it follows that
lim,, o0 doo (@, w,) # 0. On the other hand, || @ — U, ||o— 0 as n — oco. In other words,
convergence of the grey level maps in the £ norm does not guarantee convergence of fixed

points in the d, metric.

Consider two identical photographs, “A” and “B”, which contain a region of light shading, e.g.
a white shirt. Now place a small black dot on this shirt in photograph B. The d,, distance
between A and B can now be quite large, even though the photographs are still nearly identical
“visually”. This is a simple example of the more general problem of determining appropriate

distance functions for vision.

. Again due to the use of the d., metric, there are some strong restrictions on the grey level maps
¢; (e.g. to ensure that all level sets [u|®, o € [0, 1] are nonempty and compact) which can severely
limit the degree to which a function can be approximated. The previous “natural assumption”

that ¢;(0) = 0,7 =1,2,..., N is, in fact, such a restriction.

. From a more theoretical perspective, the restrictions on the ¢; limits the continuity properties

of IFZS fixed point attractors w with respect to variations in the ¢; [11].

2.3 From IFZS to IFSM on L?(X, )

2.3.1 Replacing the Hausdorff Metric

We now intend to replace the d, metric involving Hausdorff distances between a-level sets with a

weaker metric for the reasons given above. This will enable us to work with larger classes of functions,

namely, the £P spaces. As a result, our problem of image representation on the fuzzy-set grey level

range [0,1] is generalized to that of function approximation on an arbitrary range R,. From the

assumption that u(X) < oo,

10



1. w € F*(X) implies that v € £?(X, ) for p > 1 and
2. LYX,p) C LP(X,p)for 1 <p<yq.

Thus, for the remainder of this section, we relax the restriction that our functions are fuzzy sets, i.e.
elements of 7*(X ), and assume that we are working in the space £!(X, g). Without loss of generality

we consider nonnegative functions v : X — R,, where R; C R*.

Let p € M(X). For u,v € L1 (X, p), define

Gluyvia) = [ |Tue(@) ~ Te(@)idu(a) (16)
= ([l Ao, (17)

where A denotes the symmetric difference operator: For A,B C X, AAB =(AUB)\(ANB). Now

let v be a measure on B(R,) and define

g(u,v3v) = /I;G(u,v;a)dy(a) )
- /1%,/%|I[“]a(m)_I[v]“(w)u#(w)dv(a). (19)
(20)

By Fubini’s Theorem, this integration over the product measure space (X, B(X), u) X (Rg, B(Ry),v)

(both assumed to be o-finite) can be reversed [16], i.e.
g(uviv) = [ [ |Tye(e) - Tyeldv(e)du(e). (21)
x JR,

The net result is

o) = v({ODu(® A ) + [ o Diu(z) + [ v( (@), u(e))du(z),  (22)

where X, = {2z € X : u(z) < v(z)} and X, = {z € X : v(z) < u(z)}. From the triangular inequality
property involving symmetric differences of sets (hence measures of these sets), it follows that g(u, v; v)
is a pseudometric on El+(X, #). In the particular case that v = m(), the Lebesgue measure on R,,

v{0} = 0 and g(u,v;v) reduces to
9(u,v;v) = fX u(z) — o(2)|du(z) = v — v ||, (23)

the £}(X, i) distance between u and v.

The rather restrictive Hausdorff metric do, over a-level sets has been replaced by a weaker metric

involving integrations over X and R,. In principle, the measure v may be used to define various

11



types of greyscales, e.g (i) quantized grey levels, where v consists of a finite set of Dirac measures, (ii)
nonuniform distributions which model the varying sensitivities of the human eye to different regions
of the grey level spectrum. For the remainder of this paper, we shall assume that ¥ = m(1). While it
appears that only the £! distance can be generated by a measure v, it will be worthwhile to consider

LP distances in general, p > 1.
2.3.2 IFSM on LP(X, u)

It now remains to formulate an Iterated Function System with Grey Level Maps (IFSM) - to be
distinguished from the IFZS - on the function spaces £?(X, p). As before the IFSM will consist of two

components:

1. an IFS component, w = {wy,ws,...,wn}, w; € Coni(X) (note the requirement that the w;

be one-to-one) and

2. a grey level component, ® = {¢1, ds, ..., dn}, é; : R — R, with conditions different from the

IFZS case, as discussed below.

The distinguishing feature of the IFSM will be a new form for the “Markov” operator T : LP(X, u) —
LP(X, p), designed to easily handle cases where the sets w;(X ) overlap. In the special “nonoverlapping”
case where the sets w;(X) are disjoint, i.e. w;(X)N w;(X) = 0 when ¢ # j, there is little problem (cf.
Eq. (9) for the IFZS case). Each point z € X} has only one preimage y = w;, ' (z). We can then define
a “nonoverlapping-case” operator T,,, (which, up to some changes in the ¢-maps, coincides with the
T, operator) as follows: For u € LP(X, p),

(Tron)(z) { ¢k(’u(’w;1(£’3)))’ for © € we(X), k€ {1,2,...,N}

24
0, for z ¢ UN w(X). (24)

Some conditions on the w; and the ¢; which guarantee that T,,,, maps L£P(X, u) into itself will be

established in Proposition 2 below.

The condition of disjointness of the w;(X ) may also be weakened to one of nonoverlapping with respect

to the measure p as defined below.

Definition 1 Let p € M(X). A set of maps w; € Con(X),t=1,2,...,N is said to satisfy a nonover-
lapping condition on X with respect to p if u(X; N X;) = 0 whenever i # j, where X, = wp(X), k=
1,2,...,N.

In this pg-nonoverlapping case, we may redefine the action of the operator T,,, as follows: For u €

LP(X,p)and z € we(X), k=1,2,...,N,

o (u(wy '(2))), 2 € we(X) — U wi(X) Nwi(X),
0, z € UN wi(X) Nwy(X).

(Tron)(2) (25)

The following estimate may then be obtained for this g-nonoverlapping case:
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Proposition 1 Let X C RP, D € {1,2,...} and p = mD). Let (w,®) be an N-map IFSM such that
1. w; € Stmy(X) for 1 <i < N,
2. the w; satisfy a nonoverlapping condition on X with respect to p,
3. ¢; € Lip(R) for1 <i < N.

Let Tpon be the operator associated with this IFSM, as defined in Eq. (25). Then for a p > 1 and

u,v € EP(X’ ,u')y

N
dp(Tnonua Tnonv) S Cnon(Dap)dp(ua ’U), Cnon(Dap) = [Z CPKf]l/p (26)

=1

Proof: The nonoverlapping nature of the wi(X) allows us to write
N
| Tronts = Tnonv [l = ZL |k (u(wy ' (2))) — dr(v(w, (2)))[Pda
k=1 k
N
= X ef [ 18uulo) - hule(w) Py
Zc K7 [ Ju(y) - v(w)Pdy

IN

= Zc Kl[lu-v]|?. O (27)

Remark: If C,,,(D,p) < 1, then the IFSM (w, &) possesses a unique attractor @ € LP(X, m(D)).
A sufficient, but not necessary, condition for contractivity is that all ¢; are contractive on R, i.e.

K;<1,i=1,2,..,N.

The use of nonoverlapping maps w; (a standard procedure in the literature) is rather limited in
scope. For greater flexibility, it would be desirable to use an operator 7" which can handle cases
where the sets w;(X) overlap. However, when a point # € X has more than one preimage, e.g.
{wi_ll(m),wi_zl(m), "Wy ( )}, K > 1, there exists the question of how to “combine” these values to
produce the result (Tu)(z). One of many possibilities is that (Tu)(z) assume a value between the
maximum and minimum of this set (e.g. convex combination). However, the use of the sup (or inf)
as in the IFZS case is not practical. Since we will be working in LP spaces, it is desirable to employ
an operator which commutes with integration. As such, we adopt the following form for the operator

T associated with an N-map IFSM (w, ®):

N

(Tu)(z) = Y "¢r(u(w, " (2))), (28)

k=1
where the prime signifies that for a given z € X, the summation is performed only over those k for

which w; '(z) is defined. If w;'(z) = 0,1 < k < N, then (Tu)(z) = 0. The action of the operator T

13



for an “overlapping” IFSM is illustrated in Figure 1.
We now establish some sufficient conditions on the IFS and grey level maps to ensure that the asso-

ciated operator T' maps LP(X, p1) into itself.

Proposition 2 Let (w, ®) denote an N-map IFSM with associated operator T defined above. Assume
that:

1. For anyu € LP(X,p), uow; ' € LP(X,pu), 1 <k <N,
2. ¢ € Lip(R), 1 <k < N.

Then for 1 <p < oo, T : LP(X, pu) — LP(X, p).

Proof: Let u € LP(X, p). Then for 1 < k < N, we have

(b1 0 wowt)(2)l?

(b1 0 wow?)(z) = (dr 0 u)(2) + (dr 0 u)(z)” (29)
< 227 (growowy M) (2) — (ko u)(2)[P + 277 (¢ 0 u)(2) .

From the Lipschitz condition on the ¢,

(b ouowy)(2)lP < t(z), (30)

where

Yi(2) = 27 K| (u 0wy )(2) — w(2) [P + 2P (g 0 u)(2) P (31)
From Assumption 1 and the fact that £?(X, u) is a linear space, u o w;l —u € LP(X, ). Moreover,
from Assumption 2, ¢ o u € LP(X,u). Therefore ¢, € LP(X,u). From the inequality in (34), it

follows that ¢ o u o wy ' € LP(X, g). This, in turn, implies that SN drouo wy! € LP(X, ). From
our definition of the T operator, it follows that Tu € £P(X,y ). N

Remarks:

1. If the measure p is regular, then weak conditions on the w; (e.g. w; affine) guarantee the property

stated in Assumption 1.

2. The Lipschitz condition on the ¢; is probably subject to weakening but this is the subject of

further work.

Proposition 3 Let (w,®) be an N-map IFSM such that ¢i(t) = &, where & € R,1 < k < N. Then
for any p € [1,0) and p € M(X), the associated operator T is contractive on (LP(X,u),d,), with

contraction factor C = 0. Furthermore, the fized point u of T is given by the step function

N

ﬂ(m) = E ékIwk(X)(a:)7 z € X. (32)
k=1

14



Proof: For u,v € L?(X),

H Tu—Tv ”p = /X | I ( ))) _ ¢k(’v(w,;1(:e)))]|1’d#]1/p
k=
N
= ,; Lk [#s(w (2))) — dr(v(wy (2)))Pdu)*/?
N
= ki_:lfx & - &ulPdu
o (33)

From the definition of T' in Eq. (28), it follows that for any u € L?(X, p), (Tu)(z) = u(z), Vz € X.
Proposition 4 Let X C RP, D € {1,2,...}, and p = mD), Let (w,®) be an N-map IFSM such that
1. wy € Simq(X) and
2. ¢ € Lip(R),1<k<N.

Then for a p € [1,00) and any u,v € LP(X, p),

N
dp(Tu, Tv) < C(D,p)dy(u,v), C(D,p) =Y 2P Ky (34)
k=1

Proof: For u,v € LP(X, p),

ITu-Toly = 1] lE[m 2) - bu(o(wy (2)))Pda]
N
< D[, 18uutw @) - Sulatwr @ )Pae]

X b
= ch/p/ |dr(uly)) — dr(v(y))[Pdy] /P

il D/ 1/

< kEk Kk[/); [u(y) — v(y)|Pdy]
N

= Y GPE Ju-v],. 1 (35)
k=1

Remarks:

1. If C(D,p) < 1, then T is contractive over the space (LP(X, m(D)),dp) and possesses a unique
fixed point @ € LP(X,m(D)).

2. Note that for C(D,p) < 1, which implies that T is contractive, we can relax the restriction that
all IFS maps be contractive, i.e. that ¢y < 1for1 <k < N.
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3. In the special case that the w; satisfy a nonoverlapping condition on X with respect to m(P),

then an improved upper bound can be obtained from Proposition 2, namely,

N
dp(T2, TV) < Cron(D,p)dp(1,v),  Cron(D,p) = Y P K2]M/7. (36)
k=1

Note that Cpon(D,p) < C(D,p). Because of the nonoverlapping condition, we also have

N
YR <1, (37)
k=1
which leads to the weaker inequality
Cron(D,p) < K, K = max K. (38)

1<k<N
Examples:
1. The IFSM used in Figure 1 is contractive for p > 1. Its attractor is sketched in Figure 2.

2. X =1[0,1], p = m(M), N = 3, w;(z) = %(m +1i—1),2=1,2,3, with grey level maps ¢;(t) = %t,
¢a(t) = 3, #3(t) = 3t + 3. The fixed point u(z) is (up to an equivalence class) the “Devil’s
staircase function” which is continuous at almost all z € X and differentiable for all X \ C,

where C' denotes the ternary Cantor set on [0,1].

3. X =1[0,1, N = 3, p = m(M), wi(z) = %(m +1i—1),2=1,2,3, with grey level maps ¢;(t) = %t,
P2(t) = %t, ¢3(t) = 2t. Then w = 0 is a fixed point of T. However, T is contractive only on the

space (L1(X,m(1), d;).

We now establish a rather simple continuity property of IFSM attractors. Since our applications to
the inverse problem will involve only IFSM with fixed IF'S maps wg, we consider only continuity with
respect to the grey level maps ®. It will be convenient to denote two N-map IFSM with the same
IFS maps w as (w, ®), k = 1,2, where ®; = {¢r1,..., prn}. First define the following metric for grey

level map vectors,

N _ . _ .
dg (81, 8,) = 2% Sup |p1i(t) — P2i(t)], (39)

Proposition 5 Let (w,®,) be an N-map contractive IFSM with fized point u; € LP(X,pn). Then
for every € > 0, there exists a § > 0 such that for all contractive N-map IFSM (w,®,) satisfying
dY(®1, ®3) < &, it follows that dy(W,Ts) < €, where Wy is the fized point of the IFSM (w, ®,).

Proof: Let Y = LP(X, p). Alsolet T; € Con(Y'),7 = 1,2, be the operators for the IFSM (w, $;), with

contractivity factors C; < 1, respectively. Then

doon(y)(T1, T2) = sup | Tiw — Tou ||, - (40)
ue
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For 1 < k < N, define

Then

dCon(Y)(TlaTz) = SIEIXR ” Z fk Hp

< supzu Fe Il
ueY k=1
- igkzl [, Vs (@) - danutu ) Pdu 7

< MdF (%1, 8,),
where M = S°N_| u(X})!/P. For a given € > 0, let
§ = €[l — Ci M dY (31, 3,)] 77,
From Theorem 3, it follows that d,(u1, %) <e. N

Remark: In the particular case that
1. X CRP,De{1,2,..}, u = mD),
2. w; € §tmy(X),1 <i <N,

the constant M = [m(P)(X)|V/? 2N | ckD/p

2.3.3 Affine IFSM on £?(X, p)

(42)

(43)

In applications, it is convenient to employ affine IFS maps wy as well as affine grey level maps ¢;. The

latter have the form

dr(t) = art+Pr, teR, k=1,2,...,N.

(44)

We refer to such a system (w, ®) as an affine IFSM. The action of the operator T associated with an

affine IFSM may be written as follows: For u € £P(X, i),

N

(Tu)(z) = Y _lenu(w; () + Biluw,x)(2)]-

k=1

For affine IFSM on X C RP, it follows from Proposition 2 that for all u,v € LP(X, m(D)),

N
dp(Tu, Tv) < C(D,p)dy(u,v), C(D,p) =3 c’/?|ai.

(45)

(46)

If C(D, p) < 1then T is contractive on (LP(X, i), dp) and possesses a unique fixed point @, i.e. T4 = .

Remarks:
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1. If B =0 for 1 < k < N, then w(z) = 0 is a fixed point of 7.

2. Let X = [0,1], with w;(2) = s;z + a;,1 <4 < N. If T is contractive with fixed point @, then
from Eq. (45),

N

a(z) = kzzzl'akﬂ (:v ;jk) + ﬁkIwk(X)(z) (47)
N

= D [owvn(e) + Brxr(2)]. (48)
k=1

In other words, w may be written as a linear combination of both piecewise constant functions
Xk(z) as well as functions () which are obtained by dilatations and translations of @w(z) and

Ix(z) =1, respectively. This is reminiscent of the réle of scaling functions in wavelet theory.

3. From Proposition 3, if ap = 0 for 1 < & < N, then T is a contraction mapping with factor
C(D,p)=0.

Proposition 6 Let X C RP, D € {1,2,...}, and p = m(DP), Let (w,®) be an N-map IFSM such that
1. wi € Simq(X) and
2. ¢r € Lip(R),1 <k <N.

Assume that for a p > 1, C(D,p) < 1, i.e. the operator T is contractive on LP(X, ) with fized point

u. Then N
_ B(D,p) D/p
Ullp, < ————=——, B(D,p)= E c . 49
” Hp = ]_—C(D,p) ( p) i~ k |ﬁk| ( )

Proof: Taking the £P norms of both sides of the fixed point relation @ = T yields

N
lalle = D2 I ewu(wy™(2)) + Belu,x)(@) llp
k=1

IN

N
Y [l aru(wy () + Brluy(x)y(@) [l
k=1

IN

N N
Yo lawu(wi () llp + D | Brluwyx)() llp
k=1 k=1

N N
D _ D
= S PPl [Ty + 3 P P18l (50)
k=1 k=1

A rearrangement yields the desired result. N

Affine IFSM are used primarily because of their simplicity in practical calculations. The following

result ensures that their use is sufficient from a theoretical perspective.
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Theorem 4 Let X = RP and p € M(X). For ap > 1, define L5 (X, ) C LP(X, ) to be the set of
fized points @ of all contractive N-map affine IFSM (w,®) for 1 < N < oo, on X. Then L% (X, p) is
dense in (LP(X, 1), dp).

Proof: We prove the theorem for the case D = 1. The same argument can be extended to higher
dimensions.

Let S(X) denote the set of all step functions in X. Then for each o € S(X), there exists an N,,
1 < N, < o, a set of numbers { € R and a set of intervals J, = [ag, bx] C [0,1], with ap < bg, k =
1,2,...,N,, such that

No
o(z) = Z &l (2), =€ X. (51)
k=1
However, the function o(z) is the attractor for the N,-map affine IFSM (w, ®) given by
wk(m) = (bk - ak)a3 + ag, ¢k(t) =&, k=1,2,..,N,. (52)
(From Proposition 4, the contractivity factor of this IFSM is C(D,p) = 0.) Thus S(X) C L5 (X, p).

Since S(X) is dense in (LP(X, u), d,) [16], the theorem is proved for D =1. N

In Appendix A are given some elementary relations for integrals involving IFSM. In particular, we

consider affine IFSM and relations involving moments of functions.
2.4 “Place-Dependent” IFSM

Before closing this section we mention that a more generalized “place-dependent” IFSM, or PDIFSM
(in analogy with IFS with place-dependent probabilities [3]) on function spaces can be formulated

with the following two components:
1. an IFS component, w = {wy, ws, ..., wn}, w; € Coni(X), as before, and
2. a grey level component, ® = {41, ¢2,..., o}, ¢; : R x X — R, with suitable conditions.

The operator T associated with an N-map PDIFSM (w, &) have the form

N

(Tu)(z) = )" du(w(wy " (2)), w; (2)), (53)

k=1

In other words, the ¢; are dependent both on the grey-level value at a preimage as well as the location
of the preimage itself. Much of the theory developed above for IFSM extends to place-dependent IFSM
and we outline the important points in Appendix C. The additional flexibility in this formulation and
its effectiveness in coding images have been discussed in the literature [20, 22]. We present some

results of computations in Section 5.

3. The Inverse Problem for IFSM on L?(X,p)
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We now present a formal solution to the inverse problem followed by an algorithm to compute IFSM

approximations of a target function v to arbitrary accuracy.
3.1 The Collage Theorem and a Formal Solution to the Inverse Problem

From the Collage Theorem (Theorem 2), the inverse problem for the approximation of functions in

LP(X, p) by IFSM may now be posed as follows:

Given a target function v € £?(X, ) and a § > 0, find an IFSM (w, &) with associated operator T
such that d,(v,Tv) < é.

In our formal solution to the inverse problem, we shall be constructing sequences of N-map IFSM,
denoted as (w?,®"), with N = 1,2,3,..., where the IFS maps in w¥ are chosen from a fixed and
infinite set W of contraction maps. It will be necessary to impose some conditions on this set, according

to the following definitions.

Definition 2 Let (X, d) be a compact metric space and p € M(X). A family A of subsets A = {A;}
of X is “u-dense” in a family B of subsets B of X if for every € > 0 and any B € B there exists a
collection A € A such that A C B and p(B \ A) < e.

Definition 3 Let W = {wi,wa,...}, w; € Con(X) be an infinite set of contraction maps on X. We
say that W generates a “u-dense and nonoverlapping” - to be abbreviated as “p-d-n” - family A of
subsets of X if for every € > 0 and every B C X there exists a finite set of integersip, > 1,1 < k < N,
such that

1) A= Uszlwik(X) C B,
2) u(B\ A) < € and
3) p(wi, (X) N wy (X)) =0 4f k # L.
If W satifies the above condition on (X, d), then inf;<;<{c;} = 0, independent of y. The set W
provides N-map IFS with arbitrarily small degrees of refinement on (X, d).
A useful set of affine maps satisfying such a condition on X = [0, 1] with respect to Lebesgue measure
is given by the following “wavelet-type” functions:

wi(z) =27 (e +7-1),5i=1,2,., 5 = 1,2,..., 2% (54)
For each i* > 1, the set of maps {w;+;,j = 1,2,...,2" } provides a set of 27¢" contractions of [0,1]
which tiles [0,1].

Now let W = {wy,ws,...},w; € Coni(X) be an infinite set of one-to-one contraction maps on X

satisfying the p-d-n property. Also let

w = {wy, w, ..., wy}, N=1,2,..., (55)
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denote N-map truncations of W. For each N > 1, let

N = {¢17¢27"'7¢N}7 (56)

denote an associated N-vector of grey level maps with the restriction that the ¢; € Lip(R). Now
let TV : LP(X, ) — LP(X, i) be the operator associated with the N-map IFSM (w?, V). Given a
target function v € LP(X, p), the following result ensures that the collage distance || v — TN v ||, can

be made arbitrarily small.

Theorem 5 Let v € LP(X,u), where p € [1,00). Assume that the infinite set of IFS maps W =
{w1,ws,...},w; € Conq(X), generates a p-d-n family A of subsets of X. Then

Jim inf || v - Vv ||,= 0. (57)
Proof: For n > 0, define

nz—{mEX

o <) < 2%}, 1<i<2, Buypmy={ecX:v(@)>2"}.  (58)

Each set B,; C X is measurable in (X, ). Now define the function,

2271.

va(2) = 3 o T5,u(2) + 2T, (2). (59)

=1
From the definition of the Lebesgue integral, | v — v, ||,— 0 as » — co. Now let an € > 0 be given.

We choose n to be sufficiently large so that

€

lo -l < & (60)
Define §,; = 0 if u(B,;) = 0 and §,,; = 1 otherwise, for 1 < i < 22" 4 1. Then
2271
Z 5m ‘|' o, 22”-I-12 IB2211.+1( ) (61)
Define
€ . on €
i = gy L SES2T, Mgy = oo (62)

From our p-d-n assumption on the IFS maps w we can find, for each B,;, 1 < i < 22" 4 1, a finite set

of IFS maps w; = {w;,, Wi, ..., w;,. } such that p(w;, (X) N w; (X)) =0for k # [ and

where W;(X) = U;" , w;, (X). Now define the function

2271

i
= ;57” 2_nI\/h\I,(X)( ) ‘I‘ 677. 22n+12 IW22n+1(X)( ) (64:)
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Clearly, u,(z) € LP(X, ) and

2271

i n
| on = un [lp= [/X | ; Oni 2_nIBni\‘/’\Vi(X)(m) t Op,22n112 IBn,22n+1\‘/’\szn+1(x)($)|pd#]l/p' (65)

By Minkowski’s inequality, i.e.

latbls<llalp+[ble abeLl?(X,p), (66)
it follows that
22n R
i . n .
H Up — Un ”p < Z 6ni 2_n#(B7” \ W’L(X)) + 6n,22"+12 :u(Bn,22"+1 \w22"+1(X))
i=1
2271 .
? n
< E 2_nnnz +2 Tn, 22741
=1
o L€
4 4
€
= —. 67
‘ (67)
For each i € {1,2,...,22"} such that &, # 0, i.e. B, = v l[52, %) # 0 and p(B,) > 0, we
can find an z; € W;(X) such that & = v(z;) € [, 52). As well, if 6, 22,1 # 0, We can find an

Tyrnyg € Warnyq(X) such that &, y2n i1 = v(292n41) € [27,00). Now define

2211.

ﬂn(m) = E 6n1£nlI\/h\r,(X)(m) ‘I‘ 6n’22n+1£n’22n+1_[";,22n+1(X)(m). (68)
=1

The function %, is the fixed point for the IFSM composed of the IFS maps w;,,1 < k < n; contained
in w;, 1 <7 < 22" 4+ 1. Associated with each IFS map w;, is the (constant) grey level map ¢;, (¢) =
€nist € R, which obviously belongs to Lip(R). Let T,, denote the operator associated with this IFSM.

From Proposition 4, its contraction factor is C,, = 0.

Let N be the smallest integer such that the truncation w" of w contains all the IFS maps w; =
{wil,wiz,...,wini} for 1 < ¢ < 22" + 1. Now, for each IFS map w;, € w;, 1 < i < n;, associate the
(constant) grey level map ¢;, = & For all other w; € w¥, I € {1,2,..., N} such that w; ¢ w;
for 1 <4 < 2™ 41, let ¢y = 0. Let TV be the operator for the resulting IFSM (w?,&"). Then
TN%, = %,. Furthermore, the contraction factor of this operator is CV = 0. We then have the

inequality

N — — N
[o =T 0 < lv=onllp+[lvn=Tnllp+ | =T 0. (69)

Note that

|8 =Tl = [| TV~ TN |, (70)
=0
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The net result is

lv=T v, <

N |
N

(71)

l
m

Hence, given an ¢ = 27% &k € {1,2,3,...}, we can find an Ny and a finite IFSM (w™, &%), with ¢;,
constant (hence belonging to Lip(R)) such that that || v — TV*v ||,< 27*. Thus we can conclude that

limy_,o inf || v — TNv [,=0. 1§
3.2 The Inverse Problem in £%(X,u) as a Quadratic Programming Problem

We now describe an algorithm for the construction of IFSM approximations of arbitrary accuracy
to a target set v € L%(X,pu) C L1(X, ). Because of our primary interest in the problem of image
representation, our discussion is restricted to the approximation of nonnegative (and bounded) ¢mage
functions, u : X — RT. Therefore, for the remainder of this section, we assume that R, = R,
hence v € Ei(X, ). (There is no loss of generality in this assumption since the contractivity of the
T operator is unaffected by (i) reversals in sign of the a; grey-level map parameters or (ii) shifts in
the f; grey-level map parameters.) For an N-map contractive IFSM (w, ®) on (X, d) with associated

operator T, the squared £? collage distance is given by
A? | v—"Tov|l3

N
I3 dulotwy @) - o) dp. (12)
k=1

Following our discussion in the previous section (and our strategy in [12]), we consider the IFS maps
w; to be fixed. The problem reduces to the determination of grey level maps ¢; which minimize the

collage distance AZ%. In the special “u-nonoverlapping case, i.e.,
1. UM Xp = UY  wi(X) = X, i.e. the sets X = wi(X) “tile” X, and
2. p(w;(X)Nw;(X))=0for i # j, then

the squared collage distance A2 becomes

At = 30 [ (aulo(w; (@) - vie)dn

= ZAlzc’ (73)

i.e. the sum of collage distances over the nonoverlapping subsets X3. The minimization of each integral

is a continuous version of “least squares” with respect to the measure u: For each subset X, find the
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ér : Ry — Ry which provides the best £2(X, 1) approximation to the graph of v(z) vs. v(w;l(m)) for
z € Xg.

Because of its simplicity, most, if not all, applications in the literature assume the y-nonoverlapping
property, with g = m(P) and w;, € Sim;(X). Because of its widespread use, we examine this special
case in more detail in Appendix B. In the following discussion, however, we consider the more general

case where the sets w;(X) can overlap on sets of nonzero y-measure. We also assume the following:

1. UN wp(X) = X, i.e. the w; € Cony(X) “tile” X. Note that w; € Cony(X) implies that ¢; > 0
for 1 <7< N.

2. the grey level maps are affine, i.e. ¢; : Rt — RT, where ¢;(t) = a;t + 8;, t € R*. Thus,
a;,PB; > 0for1 <7< N.

The squared £? collage distance then becomes

A? = <v—Tv,o—Tv>
N N
= Y D I< > arar + 2 <, xi > arBi+ < xkoxa > BrBil

k=11=1

N
—22[< v, Y > apt < v, Xk > Br|t < v,v >, (74)

k=1

where

¥r(z) = w(wi'(2), xu(z) = Ly, (x)(z), z€X. (75)

Note that A? is a quadratic form in the ¢-map parameters o; and 3, i.e.
A? =xTAx+bTx + ¢, (76)

where xT = (a1y.ey N,y P1y ey BN) € R2?Y. The elements of the symmetric matrix A are given by

a; ; =< i, >, aN+iN+; =< XirXj >» WGnN+; =< i, Xx; >, 1<i<N,1<j<N. (77)

As well,
b= -2<wv,¢; >, byyi=-2<wv,x:>, 1<i<N. (78)
and ¢ =< v,v >=|| v ||2.

The minimization of A? is a quadratic programming (QP) problem in the parameters o; and f;,
1 =1,2,..., N. In order to guarantee that a minimum of this quadratic form exists on a compact set

of feasible parameters «;, 3;, we impose the additional condition

[ Tol < llvfl- (79)
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In terms of the grey level map parameters, this is a linear inequality constraint, i.e.

N
D (ar |vow ln +8m(Xe)) < [lvlls- (80)
k=1

For the case X C RP, p = m®P) and w; € Sim;1(X), 1 <4 < N, which will be used in all applications,

the above linear inequality constraint becomes
N
Yock(ar ol +VxBe) < v, (81)
k=1
where Vx = m(P)(X).
For a given target v € LP(X,p), assuming || v [[;# 0, we denote the feasible set of N-map IFSM
grey-level parameters as

Y = {(o; ey o, B, s ) € RPY | || T [l1 < || 0 [J1, 04 > 0,8; > 0} (82)

Note that TI?V | which is compact in the natural topology on R?¥, depends on the target function v.

The minimization of A2 may now be written as the following QP problem:
minimize x?Ax+ blx + c, xT ¢ Hf,N. (83)
The advantages of QP problems have been discussed in [12]. Briefly,

1. QP algorithms locate an absolute minimum of the objective function A? in the feasible region

12V in a finite number of steps and

2

min

region. In such cases, if (ag,Bx) = (0,0) then ¢r(t) = 0 which implies that the associated IFS

2. in many problems, the minimum value A is achieved on a boundary point of the feasible
map wy, is superfluous. QP (as opposed to gradient-type schemes) will locate such boundary
points, essentially discarding such superfluous maps. The elimination of such maps represents
an increase in the data compression factor. (This feature was observed with minimization of the

collage distance involving IFS with probabilities [12].)

The following result guarantees that, with the exception of a degenerate case, the IFSM operator T

corresponding to a a feasible N-map IFSM grey-level parameter x* € II?¥ is contractive in £! (X, p).

Proposition 7 Let X C RP, p = mP) and v € LY(X, ), || v |1# 0. Assume that w; € Simy(X)
for1 < i< N and xT = (a1y .y N,y P1y.ey BN) € 2N, Then the operator T corresponding to the
N-map IFSM (w, ®) is contractive in (L}(X, u),d1) except possibly when 1 = B2 = ... = fx = 0. In

this special case w = 0 s a fized point of T.
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Proof: From the proof of Proposition 5, if u,v € £L1(X, i), then

N
| Tu —Tv |2 < C(D,1)||u—v]|:, C(D,1)= chDak. (84)
k=1
Then from Eq. (81),
N
Dok (o + Vi [l v [I77) < 1. (85)
k=1

Thus C(D,1) < 1, i.e. T is contractive in (£(X, u), d;), except possibly if czBx = 0 for 1 < k < N.
Since w; € §tmy(X), it follows that ¢ # 0,1 < k < N and so the latter condition holds only if 5 = 0
for all 1 < k < N. It is easy to see that w = 0 is a fixed point of T in this special case. N

Remark: Note that xT € TI2V does not guarantee that the operator 7 is contractive in (£2(X, ), d3).
Hence, the Collage Theorem does not apply in £L2(X, p). Nevertheless, as we show below, our algorithm
to approximate functions in £2(X, i) exploits the contractivity of T in (L}(X, u), d;).

We now describe our algorithm. As before, let YW be an infinite set of fixed affine contraction maps

on X C RP which generates a p-dense and nonoverlapping family of subsets of X. Let
w = {wy, w, ..., wy}, N=1,2,..., (86)

denote N-map truncations of W. Given a target function v € £P(X, m(D)), the region II2Y, as defined
in Eq. (82), contains all feasible points xV = (a1, ..., an, fB1, .., Bn) € R?Y, each of which defines a

unique N-vector of affine grey level maps &%,
3V = {ant + Pyt + B, (87)

For an xV ¢ M2V, let TV : LP(X,u) — LP(X, ) be the operator associated with the N-map IFSM
(W, ®N). Let
A} =l o -T v |} (88)

denote the corresponding squared £? collage distance. Since A% : II?¥ — R is continuous in the

natural topology on R?V, it attains an absolute minimum value, A% . on 2N, For each N, we

2

N min ay be made

may determine this minimum value using QP. The following result ensures that A

arbitrarily small.
Theorem 6 A} . — 0as N — co.

Proof: Since II?Y ¢ M2N+2 for N = 1, 2,..., it follows that A§N+2 in < A2y . Thus {A% . 1%,
is a nonincreasing sequence of nonnegative numbers. Hence there exists a limit, L > 0, of this se-

quence. We now show that L = 0.

The proof involves a minor modification of the proof of Theorem 5. As such, we employ all construc-

tions made between Eqs. (58) and (67), inclusive. Then, for each i € {1,2,...,2?" + 1} such that
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B =v71(i—1)27",i27") # 0 and p(B,;) > 0 (i.e. ,; # 0), define (,; = (i — 1)27™. Now define
2211.

ﬂn(m) = Z 6nlclI\/h\r,(X)(m) ‘I’ 5n’22n+1CiI"h‘,22n+1(X)(§B). (89)
=1

The function %, is the fixed point for the IFSM composed of the IFS maps in w;, 1 <4 < 22" 4 1.
Associated with each IFS map w;, is the (constant) grey level map ¢;,(t) = (;, t € RT Note that by
construction

[n < [[o]- (90)

Now let T,, denote the operator associated with this IFSM. Then T,,u,, = %, and the contraction factor
of T, is C,, = 0.

As in the proof of Theorem 6, let N be the smallest integer such that the truncation w™ of W
contains all the IFS maps in w; for 1 < i < 22", Let TV be the operator for the IFSM (WN, {)N),
where ¢;» = (x, k = 1,2,...,n, and all other ¢;(t) = 0. Then TV%, = @,. From Eq. (90), the IFSM

grey-level parameters defining 7% lie in the region 12V,

Thus, proceeding in the same way as in Egs. (65)-(67), we have the inequalities
[A%V,min]l/z < H ’U—TN’U H2 < €& (91)

Since lim,,_, o inf || v — TNv ||2= 0, it follows that L = 0 and the theorem is proved. N

Our formal solution to the inverse problem is not yet complete, however, since an operator T cor-
responding to a grey-level vector xT € II2V is not necessarily contractive in (£2,ds). As a result,
the Collage Theorem in (£2,d;), along with the result of Theorem 6, cannot be used to establish the
approximation of a target v to an arbitary accuracy in (L2, dy). However, let us return to the proof of
Theorem 6. For each N = N(n) value, let x1, < II?V denote the point at which A% attains its mini-
mum value Alzv,min' Let T2, denote the IFSM operator defined by the grey-level parameters in xZ,, .
Since TY is contractive in £L1(X, ), it possesses a unique and attractive fixed point @, € L} (X, p).
From Proposition 2, T maps £L2(X, i) into itself so @, € £L%(X, ). From the relation [16]

lull < p(X)2 [l Yue £X(X,p), (92)
we have the following result.

Corollary 1 [[v— TN, v |;— 0 as N — 0.

Our algorithm is thus guaranteed to construct £? approximations, @, , of the target v to arbitrary

accuracy in £! distance. Some numerical computations will be presented in Section 5.
4. The Inverse Problem With “Local IFSM” on L?(X,m(D))

Our method can easily be generalized to incorporate the strategy of Jacquin [18], namely, that we
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consider the actions of contractive maps w; on subsets of X (the “parent blocks”) to produce smaller
subsets of X (the “child blocks”). (This is also referred to as a “local IFS” (LIFS) in [4].) Rather
than trying to approximate a target as a union of contracted copies of itself as in the IFS method,
the local IFS method tries to express the target as a union of copies of subsets of itself. In this paper,
only some simple constructions of Local IFSM are considered. A more general formulation will be

presented elsewhere [14].
4.1 A Simple Nonoverlapping Local IFSM
Tt is convenient to first formulate a simple “local IFSM” (LIFSM) on L?(X, ), where p = m(P) as
follows. Let J, C X, £k =1,2,..., N, with N > 1, such that
1. UN_J, = X (tiling condition) and
2. u(J; 0 Ji) = 0 for j # k (p-nonoverlapping condition).

In addition, suppose that for each J,1 < k < N, there exists an I;) C X and a map w;p)x €
Con(X), with contractivity factor ¢;) r, such that wip) p(ZLix)) = Jk- In other words, for each “child

block” J, there is a corresponding “parent block” I;z.

For each map wj) : Lix) — Jk, let there be a grey level map ¢, : R — R. The vectors wj,. =
{wi@),15 - Wiy, v} and @ comprise an N-map LIFSM (Wioc, ®). Now define an associated operator
Tioc : LP(X, ) — LP(X, p) as follows: For u € LP(X,p) and z € Ji, k € {1,2,...,N},

Bre(u(wigy 4(2))), 2 € Je(X) — UL Ji(X) N Ji(X),

. (93)
0, z € UN_ J(X) N Jiy(X).

(Tiocu)(2) = {

Proposition 8 Let X ¢ RP and p = mP). Let (Wioe, @) be a local IFSM defined as above, with
¢r € Lip(R) for 1 <k < N. Then for u,v € LP(X,m),

N
dp(Tlocua Tlocv) S Cloc(Dap)dp(u7 ’U), Cloc(Dap) = [Z cz?k),kK]z;]l/p' (94)
k=1
Proof: For u,v € LP(X,m),

N
Tt~ Tiew 15 =2 [ Voututuihy 2)) ~ duloluih o))
k=1 k

N
= S By [ 18u(ulw)) - dulo(w))Pdy
k=1 k

N
< Y Ruuk? [ fulw) - v@)lPdy
k=1 I
N
< [ Rkl u—vz. (95)
k=1

Remarks:
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1. If Cjoe(D, p) < 1, then Ti,, is contractive over the space (£P(X, m(D)), d,) and possesses a unique

fixed point .

2. The factor Cioe(D,p) is similar in form to the “optimal” factor Cpon(D,p) of Eq. (26), due to
the nonoverlapping property of the Ji. It is not necessary to impose the restriction that all ¢y
maps be contractive. As before, it follows that

Cioe(D,p) < K, K= n}cagka (96)

The weaker upper bound, K, which is independent of D or p, is identical to the result for the
“Fractal Grey-Scale Transform” [4].

4.2 £? Collage Distance

As above, let X = [0,1]P, p = m(P) and v € LP(X, m(D)) be a target set. Given an N-map LIFSM

as defined above, we now compute the squared £2 collage distance,
A? = [ Tiev v |3

= Z/ [pi(v z(k)k z)) — v(z)]*dz

= Z Al (97)
k=1

Again, because the child blocks are conveniently nonoverlapping, the problem reduces to the mini-
mization of each squared collage distance A2 over the block Ji, a “least squares” determination of ¢y.
In the special case that the ¢ maps are affine, the minimization of each A? is, as before, a quadratic

programming problem in the two parameters a and Sy.
4.3 Formal Solution and Algorithm for the Inverse Problem

Given a target set v, a formal solution of the inverse problem for the nonoverlapping LIFSM case is
straightforward, following the ideas of Theorems 5 and 6. As such, we merely outline the constructions
involved. Let Jo = X and J; C X,7 = 1,2,... be an infinite sequence of closed subsets so that for
each z € X and any € > 0, there exists an ¢* € {1,2,...} such that J;» C N (z). We now choose both
child and parent blocks from this sequence of sets: Assume that for each k > 1 there exists a ¢(k) > 1
and a map wig)r € Con(X) such that Ji = wi) p(Jir))- Let W = {w;i(1)1, wi(2),2,---}- Also let
Wloc, N =1,2,...,be the N-map truncations of W. For an xV € II?", define an associated contractive
operator Tloc for the N-map local IFSM (WZJXC, @N). Then, minimize the squared £2? collage distances
A% over 12V to produce a sequence A?V’min,N =1,2,.... A theorem analogous to Theorem 6 is the

result.

4.4 Local IFSM With “More Degrees of Freedom?”
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The Local IFSM discussed above represents only one of many possible ways in which parent blocks
may be mapped to child blocks. Some additional possibilities, to each of which would correspond a

particular Tj,. operator, are listed below:
1. For a given child cell J;,, we may wish to consider more than one parent cell I; at the same time.

2. It may be possible, and desirable, to consider more than one affine mapping from a given parent
I; to a given child Ji. For example, on [0,1], we can consider both the orientation-preserving
and orientation non-preserving maps (e.g. w;r = Sk + @ik, with s; = 1 and -1, respectively).
In [0, 1]%, there are eight possible contraction maps from a larger parent square to a smaller child

square and we may wish to employ some or all of them in our 7},. operator.
3. Combining 1 and 2 above.
4. Overlapping child cells.

Clearly, there are many possibilities. From a practical viewpoint, however, there are limitations. In
this section, we formulate the inverse problem associated with (2) above. (The extension of this
method to (3) above is rather straightforward.) Some numerical calculations using this strategy have

been performed and will be reported in the next Section.

For simplicity, we assume equipartitions of X ¢ R? which produce regular parent and child blocks, i.e.
squares, cubes. As well, we assume that the tiling and pg-nonoverlapping conditions of Section 4.1 are
also satisfied by the child blocks Ji. Let wgéi)’k, l=1,2,..., Mp denote the set of all possible similitudes
mapping a parent block ;) to a child block Ji, all having a common contraction factor c;)
(M; = 2, M, = 8,...). Associated with each IFS map wgéi)’k will be a grey level map ¢§ck) € Lip(Ry).
Then the operator Tj,. : LP(X, u) — LP(X, ) associated with such an LIFSM is given by

Mp
(Tiocu)(2) = D o0 (w([wl()y 1] (=), for z €y, k=1,2,..,N. (98)
=1

Since the child blocks Jj are nonoverlapping, the squared £? collage distance separates into a sum of

collage distances over each child cell Jg, i.e.
A% = < T — v, Tioev — v > (99)
N
- YAl
k=1
In the case of affine grey level maps, i.e.

oV = a4 g0, 1 <1< Mp, (100)
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each collage distance is given by

Mp Mp
AL = 3 <t tm > aPal™ 4 2 <y xm > VB < xauxm > BUBIM] (101)

=1 m=1

—2Z<'v ¢l>a)—|-<v,x1>ﬁ )]-|-<'vk,'vk>,

where
Yi(z )_u([wz(k)k] Y2)), xi(z) = Iz (2), w(z) = v(z)ls(2). (102)

At first sight, it would appear that each A? is a quadratic form in the 2Mp parameters ag) and ﬁ,(el),
1 <1 < Mp. However, the functions x;(z) are identical. Therefore, A2 reduces to the following
quadratic form in the Mp + 1 parameters agc), 1<I< Mp,and g = E (l)

A = xTAx 4+ bTx + ¢, (103)
where xT (ag), ,ak Mp) ,B) € € RMp+1, The elements of the symmetric matrix A are given by
a;,; =< ¢ia¢j >, 1<14,5 < Mp, (104)
and
@i, Mp+1 = @Mp+1,4 =< ¥ >, 1 <4< Mp. (105)
As well,
bi=-2<uv,¢;> 1<i<N, (106)

and b, 41 =< vp >, ¢k =< Vg, Vg >=|| v ”%

The feasible set of parameters is chosen to be
M l
Mo+ — (o), ..., a(™), B) € RM2H| || Thpovp [|1<[| vi |1, 85 > 0 ) > 0,1 < 1< Mp}. (107)
5. Applications and Numerical Computations
In this section we present some results of our algorithm to construct IFSM and Local IFSM approx-
imations to functions (X = [0,1]) and images (X = [0,1]?). In all applications g = m(P) is the

Lebesgue measure. All computations were done in double-precision FORTRAN using an IBM Model
355 POWERStation equipped with a RISC processor.

5.1 Function Approximation on [0,1]
5.1.1 Normal IFSM

We present some results for the “normal” IFSM method of Section 3.2 where the “wavelet”-type basis
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N

of affine IFS maps w in Eq. (54) has been employed. The N-map truncations w*' were constructed

by arranging the w; ; as follows:
W11, W1,29 W21y« W24y W3 1y 00y W38y W4 Tyeen s (108)

The vector w¥("), where N(#*) = EZ*:I 2!, contains affine maps with contraction factors 2%, =
1,2,...,¢*% (For ¢* = 1,2,3,4, N(s*) = 2,6,14, 30, respectively.) In all cases, the contractivity factor
of w¥ is ¢ = 1/2. For each N, the minimum squared collage distance Alzv,min in the feasible region
2" was computed using the NAG quadratic programming (QP) algorithm E04NAF. The calculations

were performed using a discretization of 5000 points on [0,1].

Example 1: The target function v(z) = sin(wz). Figures 3(a)-(c) show the approximations yielded by
the truncations N = 2,6 and 14, respectively. The target v(z) has also been plotted for comparision.
Some details of the numerical results are presented below. The geometric symmetry of the plot is

manifested in the grey-level map coefficients.

N = 2: This is a simple nonoverlapping case where the two IFS maps wy,1(z) = $z and w;»(z) =

%:E + % are used. The solution can be obtained in closed form. The optimal grey-level maps are
87 — 24 67 — 16

377 —24 T 377 _ 24
>~ 0.20243¢ + 0.50775. (109)

#1,1(t) = ¢1,2(2)

12

The fixed point attractor

67 — 16
a(z) = 37’77( ~ 0.63662, a.e.z € [0,1]. (110)

1
2
w;(X) at that point: @(%) = 1.27324. Spikes occur at all dyadic points z = 277 in (0,1). The L2

2
error in approximation is || v — % [|;= 3 — % = 0.30775. Our numerical calculations agree with the

This value is the fixed point of the ¢; maps. The “spike” at # = £ is due to the overlap of the sets

above results.
N = 6 : There are only four non-zero grey-level maps:

$1,1(t) = ¢1,2(t) = 0.19975¢ + 0.24593,

d2,2(t) = ¢23(t) = 0.03052¢ + 0.50763. (111)
The £? error in approximation is || v — % || 0.14943.

N = 14 : There are eight non-zero grey-level maps:

$11(t) = ¢12(t) = 0.20340¢ + 0.11870,
$22(t) = ¢23(t) = 0.02924¢ + 0.50568.
$32(t) = ¢s7(t) = 0.00054¢ + 0.24968,
¢3.4(t) = ¢35(t) = 0.13236¢ + 0.24668. (112)
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The £? error in approximation is || v — % ||22 0.07526.

Example 2: The target function v(z) = \/z. Figures 4(a)-(c) show the approximations yielded by
the truncations N = 2,6 and 14, respectively. The target v(z) has also been plotted for comparision.

The accuracy of the 2-map IFSM is rather striking.
5.1.2 Nonoverlapping Local IFSM

We now apply the simple nonoverlapping local IFSM method of Section 4.1 to Example 1. In the
calculations below the child blocks J;, as well as the parent blocks I; are the dyadic subintervals
obtained by the action of the w; ; IFS maps on [0,1]. Following the strategy of Jacquin [18], for each
child Ji we test all possible parent blocks. In principle, for each parent, we consider both possible
similitude contraction maps (i.e. orientation preserving and nonpreserving) and choose the parent
and map giving the minimum collage distance AZ. (The symmetry of the target sin(wz) makes many
of these minima equal in magnitude.) Fig. 5 shows some approximations to v(z) = sin(wz) yielded
by this simple LIFSM method. In Fig. 5(a), we have used two parents I; = w; j(X) and four child
blocks J = wy (X). Fig. 5(b) is the result of using four parent blocks I; = w, j(X) and eight child
blocks J = ws k(X ). Not surprisingly, for a given number of IFSM maps, N, the local IFSM method
is seen to yield better results than the normal IFSM, since the former seeks to tile the target function

v(z) with copies of parts of itself. (In all of the above cases, the contraction factor of T}, is ¢ = 1.)

2
Some caution must be employed, however, as seen in Fig. 5(c), where two parents I; = w; j(X) and
eight children J, = w3 (X)) are used. The approximation is rather poor. The “halves” of the function
sin(mz) provide poor collages of the rather straight portions Ji, £ = 1,2,3,6,7,8. As a result, it is

necessary to employ more refined partitions for the parent cells.
5.2 Image Approximation And Coding Using Local IFSM

We now consider Local IFSM approximations to images, that is, discrete arrays of pixels which can
be represented by bounded, nonnegative valued functions f : [0,1] — R, C RT. Unlike the case of
function approximation, cf. Section 5.1, the primary goal of “fractal-based” image representation is
not to approximate images to arbitrary accuracy but rather to approximate them to some acceptable
accuracy with the fewest possible (IFSM) parameters, thus achieving a high compression ratio. In the
rather simple LIFSM treatment which follows, no attempt is made to construct optimal partitions of
parent and/or child blocks. The use of adaptive partitioning, e.g. quadtrees, in IFS-type methods has
been discussed by others [9] and is beyond the scope of this paper.

As in [13], we consider the target image “Lena”, a 512 x 512 pixel greyscale image shown in Figure
6. Each pixel in the image assumes one of 256 values between 0 and 255, representing one byte of
storage. In computations, these values were rescaled to values in [0,1]. Thus, our target image v is

represented by a step function on [0,1]%. For each IFSM approximation % to the target v we give the
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L' error || v — @ ||; as well as the relative £! error, || v — % |1 /|| v ||1. We denote the execution time

required to determine the IFSM parameters as the “coding time”.
5.2.1 Nonoverlapping Local IFSM Method

It is convenient to construct “nonoverlapping” child and parent blocks of given resolutions by dividing
the 512 x 512 pixel array into disjoint subsets of 2™ x 2™ pixels, with mcniid, Mparent € {1,2,...,8}.
(Typically, we use mcpiig = 2Mpgrent so that each parent block contains four child blocks. In this case,

the contractivity factor for the affine maps between parents and children is then ¢ = %)

Let Ny and Ny denote the number of child and parent blocks, J, and I;, respectively. (Njy =
218=mchita Ny = 218=mparent ) There are eight possible IFS similitudes wglz, 1 <1 < 8 which map a
given parent Jj, onto a given child I;. Suppose that for each child Ji, we select a particular parent
Jj(x), an IFS map w;.((lz))’k, and an associated affine grey level map ¢r(t) = axt + Br. Following the
discussion in Section 4.1, the operator 7},. associated with this Ny-map LIFSM will be defined as

follows: For a u € LP(X,p) and z € Ji, k € {1,2,...,Ns},

(Teu)(2) = { ouu(uy, @), = € A - UL TN I,
0, z € UN_ Ju(X)N Jn(X).
If
N;
Cloc = Y Xy ilonl < 1, (114)
k=1

then Tj,. is contractive on (L!,d;) and possesses a unique fixed point w € L!. If the grey level
parameters ag, fr were obtained by the QP method outlined in Section 3.2, then 7},. is contractive
except possibly when all 3; parameters are zero. Since the latter condition has not been encountered
in any of the applications we have studied, we assume that the resulting operator T}, is contractive in
general. For a given partitioning, hence Ny, we naturally wish to find the best LIFSM, i.e. the LIFSM
which minimizes the £2 collage distance || v — Tj,cv ||2. As Ny increases, this minimal collage distance
decreases. However, from the practical viewpoint of data compression, this increase in accuracy is
countered by a decrease in the compression ratio as well as an increase in the amount of computer

time required to determine the optimal IFS and grey level maps, as we outline below.

The 4N; parameters,
{i(k)al(k)aak’ﬁka 1 < k < NJ}, (115)

comprise the code for the above LIFSM representation of the image. They define uniquely the Tj,.
operator whose fixed point w may then be computed numerically. It may be possible that the storage
requirements for the indices i(k) and [(k) and the ¢-map parameters o and S are different (i.e.
low length vs higher length integers). In our very simplistic discussion, we ignore such differences

and consider only the number of parameters used in representing an image (and then make the crude
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substitution: one parameter = one byte of storage). Now suppose, as stated earlier, that the child
blocks are formed by 2™<hild x 2™<hild arrays of pixels. Since each block will be represented by 4 LIFSM
parameters, the compression ratio is given by

no. of pizels in image

compression ratio - -
no. of parameters representing image

—  92mepig—4
= 2Ny (116)

Figures 7(a) and 7(b) show the approximations to “Lena” using the strategy originally devised by
Jacquin [18]. Given a child block Ji, k € {1,2,..., N5}, we considered each parent I;, 1 < j < Ny,

testing in turn all 8 possible contraction maps wg-l,)c. The parent I) and map wgl((kk));c which yielded the

2

% min Were chosen to form the Tj,. operator. The error in approximation

minimum collage distance A
is observed to decrease as Ny increases, as expected. However, the coding time increases very rapidly
with Nj. (The (N7, Nj) = (32%,64?) case required over 4 hours of computer time for coding. The
resulting £! error of 0.02 represents a very small improvement for such a great increase in computer

time.)

One possibility of reducing the computer time is to lessen the search for optimal parent blocks or even
eliminate the search entirely. In order to investigate the latter idea, we considered only “nearest”
parent blocks, i.e. given a child block J;, we used the block the block I; which contains Jj, but
continued to test all eight possible contraction maps. The result, shown in Fig. 8, approximates the
target with about the same error as that of Fig. 7(b). However, it was achieved in roughly 1/100th

the computer time.

It is conceivable that an approximation of better accuracy could be achieved, but with a slightly in-
creased coding time, if a search is performed over a relatively small set of parent blocks. Jacquin [18]
already considered such an approach by classifying the parent and child blocks as one of four types
according to a standard method of image block classification. Given a child J; with a given property,
the search for an optimal parent would only have to be performed over the subset of parent blocks

sharing that property. We are currently investigating other methods of classification.

Some authors [20, 22] have shown that the use of more general place-dependent grey-level maps (which
involve a greater number of parameters in the £? fit between parent and child cell) can eliminate the
need for a search of optimal parent blocks. Our own computations using PD-LIFSM support these

claims and we report them in Section 5.2.3.
5.2.2 Overlapping Local IFSM Method

We now apply the more generalized LIFSM method of Section 4.2 to the target image “Lena”. Fol-
lowing [13], for each child block J; and each possible parent block I;, we consider all eight IFS maps

wg’?, 1 <1< 8, simultaneously. The minimization of the collage distance A is a quadratic program-
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ming problem in 9 unknowns. Fig. 9(a) was produced by using Ny = 322 parents and N; = 642
children. The compression ratio associated with this LIFSM is reduced since more maps are used per
child block. However, in most cases, the QP algorithm located a minimum of A on the boundary of
the feasible region Hgiv and no more than two grey level maps differed significantly from zero. The
approximation in Fig. 9(b) was produced by eliminating the search for optimal parent blocks. As for
the Jacquin case, given a child Ji, we chose the parent I; which contained Jj, reducing the computer
time. However, the accuracy of the approximation is no better than that of the nonoverlapping LIFSM

method in Fig. 8. As well, the coding time is larger.
5.2.3 Nonoverlapping Place-Dependent LIFSM

In this section, we present the results of some computations using a local nonoverlapping IFSM method
with place-dependent grey-level maps. We use the parent and child blocks of the previous section.

The grey-level maps used were affine in the grey-level value as well as in the spatial coordinates, i.e.

dr(t,z,y) = (a1xz + a2ky + ask)t + (b1 + bo2ry + bar). (117)

The squared £? collage distance over each child cell J;, associated with the IFS map w; = wgéi)  and

the grey level map ¢ is a quadratic form in the six ¢-map parameters:

A2 = xTAx +bTx+ < 0? >, (118)
where xT = (alk, A2k, A3ks b1ty D2k, b3k) and
[ < 2202 > < a:y'v2 > < zv? > < z2v > < 2Yv > < TV >p |
<zyv? >, <yl >, <y >, <zyv >, <yPv >, < yv >
<zv?>, <yvi>p, <vi>, <zv>Er <yv>p < v >p
A=¢c , , , (119)
< ZzV > < TYv > < 2V > < z° >k < Ty >k < T >
<zyv >, <yu>r <yv>p <zY>K <y >r <Y >k
< 2V >p < Yv >p < v > <z >p <Y >k <1>p |
b = ¢l[< zv(v o wg) >, < yv(vowg) >k, < v(vowg) >p,
< z(vowg) >k, <y(vowg) >k, < (vowg) >kl (120)
We have used the notation
< fop= /J f(z,y)dedy. (121)
k

(An advantage of this formulation of AZ - see Appendix C - as compared to the general derivaion in
Section 3.2 which uses the inverse IFS maps, is that the Hessian matrix A is dependent only upon the
parent block I;. Thus, these matrices do not have to be recomputed as we scan the child cells of the

image.)
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Our numerical calculations confirm the statements of some authors [20, 22] that there is little need
for searching when place-dependent LIFSM are used. We have found experimentally that for most
parent-child pairs, (I}, Ji), the minimum collage distances yielded by each of the eight possible affine
maps 'wg-f,)e, 1 < I < 8, are equal to at least three figures of accuracy. As well, we have found that
the collage distances yielded by the various parent blocks do not differ by much. Fig. 10 shows the

PD-LIFSM approximation obtained when, for a given child block, we chose the parent block which

1

5 and zero rotation or inversion. The use of six

contained it and the IFS map with contraction factor
¢-map parameters per child block Jy is offset somewhat by the elimination of two parameters, namely
the parent index i(k) and the map index /(k) in (115). Thus the compression ratio for PD-LIFSM is
a factor of 3/2 higher than that for LIFSM in Eq. (116). However, there is a tremendous saving in
computer time, with very little sacrifice in accuracy. As expected, this PD-LIFSM method yielded a
slightly better approximation than the non-optimal-parent LIFSM method of Fig. 8. If a search over
all possible parent blocks is performed for each child block in this PD-LIFSM method (the coding

time is 5709 sec.), there is no improvement in the approximation.
6. Concluding Remarks

We have presented the theoretical basis of approximating functions and images to arbitrary accuracy
using a formulation of Iterated Function Systems over the general function spaces £P(X,u). An
algorithm for constructing IFSM approximations to target functions/images in £2([0,1]P, m(P)) has
also been given. Our theory and algorithm can easily be extended to cover the cases of Local IFSM

and Place-Dependent IFSM /LIFSM.

There remain many interesting and open theoretical questions for further research. For example, it
would be desirable to establish weaker conditions on the grey level maps ¢; which guarantee that the
“Markov” operator T associated with an IFSM (w, ®) maps £LP(X, ) into itself. There also arises
the question of other possible forms of the operator T associated with an IFSM or LIFSM. We have
examined this question in some detail and the results will appear elsewhere [14]. Our investigation
on developing better image coding and compression schemes also continues. As in [12], no special

attention was paid to the choice of IFS maps satisfying the y dense and nonoverlapping property.

Finally, we have very recently provided a unifying link between IFS-type methods on function spaces,
namely, IFZS and IFSM, and the method of IFS with probabilities (IFSP) on probability measure
spaces [15]. This has been achieved by formulating a method of fractal transforms over D(X), the
space of distributions on the base space (X, d). Special cases of this distributional fractal transform

include IFSP and IFSM. Acknowledgments
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Appendix A: Relations for Integrals Involving IFSM

In this section we derive some elementary relations for integrals involving IFSM. Given an N-map
IFSM (w, ®) on LP(X, u) with associated operator T : LP(X,u) — LP(X,pu), let v € LP(X, i) and
v = T'u. Then from the definition of T in Eq. (28) in the main text, for any function f € £P(X, ),

| f@n@due) = [ f@)Tu)@)due)

N

Z/ )(; 0 wo w; (z))du(z). (122)

For the remainder of this Appendix, we assume that X C R (closed and bounded) and px = m). As
well, we consider only affine IFSM with IFS and grey level maps having the form

wi(z) = siz+ta;, ¢ =|s| <1,

$i(t) = ait+p;, 1<i<N.

Then

Mz

Af(z)v(a:)da: = al/ f(z da:—}—Zﬁz/ (z)dz

X

al/X flz Tl(z))dw—l—;ﬁi/ f(z)de

i i

.
Il
_

I
Mz

=1

N
aiCiA(fowi)(y)u(y)dy+ ;ﬁicié(fowi)(y)dy- (123)

[l
|'Mz

=1

In light of the use of moments of measures of Iterated Function Systems with Probabilities (IFSP),

we let f(z) = 2™ for n > 0 and consider the following power moments of u and v,

gn:/ z"u(z)de, hn:/ e"v(e)de, n=0,1,2,... (124)
X X

From Eq. (123), we have

N N
/%:c v(z)de = ;aici/x(siy + a;)"u(y)dy + ;ﬁlclj;((sly + a;)"dy. (125)

Expansion of the binomial terms yields the relation
n n N n n N
= Z [Z alclskaz kl gk + Z [Z ﬁlclskaz kl my, (126)
k=0 k =1 k=0 k =1
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where my, = [ z*dz, k > 0, are the moments with respect to Lebesgue measure on X.

Now suppose that T is contractive and ©u = v = @ = T4, i.e. u is the fixed point or attractor of the
IFSM (w, ®). Then h,, = g,, n > 0, are the moments of the fixed point %. A rearrangement of Eq.
(126) gives

N N
ll — E aici] Jdo = [E ﬁlcll ™o, (127)

and

N n—1 n N n n N

1= ocisPlgn = M aicisfap g+ 3 Biciskar*| me, n>1 (128)
=1 k=0 k 2=1 k=0 k =1

Starting with Eq. (127), go can be computed (without knowing @ explicitly). The moments g, of the

fixed point u may then be computed recursively in terms of the IFSM parameters s;, a;, a;, 5;. This

is analogous to the case involving moments of invariant measures for IFSP.

Example: N = 2, X = [0,1], p = m(1), wi(z) = %az, wy(z) = %J) + %, with grey level maps ¢;(t) = %t
and ¢5(t) = 3t + 3. Then %(z) = z a.e.. The moments of @ are g, = Jo antlde = nlﬁ’ n > 0. From

Eq. (127),

1 1 1
1— 2= - 2lgy = = 12
-7 l90=7 (129)
which gives the correct result gg = % From Eq. (128), with n = 1,
qol Lo 111 (130)
s 89716 8" 16

which gives g; = %

If we set B, = 0,1 < k < N and define pr, = agcg in Eq. (128), then the resulting equation is identical
in form to the moment relations for IFSP. In order that the pr = axck be considered as probabilities,

then the constraint .
Y e =1 (131)
k=1

would have to be imposed. The computation of moments g would then begin with go = [y u(z)dz.
It is convenient to set go = 1 by normalizing u: Since 8 = 0 for 1 < k < N, we may replace ©u = v in

Eq. (125) with Ku, K € R constant.
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Appendix B: The Inverse Problem With Nonoverlapping Affine Maps

Here we consider in more detail the minimization of the squared L2 collage distances A? of Eq. (69)

with the following assumptions:
1. X C RP and p = m(®D),

2. w; € Simy(X). As well, X = UY X;, where X; = w;(X); in other words, the X; “tile” the
space X.

3. u(X;N X;) =0 for i # j (p-nonoverlapping condition).

4. Affine grey-level maps ¢; : Rt — R™T, where ¢;(t) = o;t + 8;, t € RT. Thus, ¢;,3; > 0 for
1<i< N.

Each squared collage distance A? over X; becomes
A} = [ (@) + i - vf@)dm®)
X;
= P [ fasn(@) + B — o(wi(z))Pdm(. (132)
X

As in the main text, we assume the IFS maps w; to be fixed and consider each A?,1 < i < N, to be

a function of the two grey level map parameters a;, 8;. A is a quadratic form in o;, §;:

c;PA? = [|v|}ef+ 2B || v 1 +8]

2 <v,vows>a;—2 | vow [y fit | vowf. (133)

The minimization of A; is a quadratic programming (QP) problem subject to the constraints defining
IM2Y. From Proposition 7, if not all the 3;, 1 < i < N are zero, then the operator T is contractive in
(LY(X, p), du).

Least Squares Approach: In most applications to image representation in the literature the con-

dition that the ¢; (hence 7') map R™ into itself is relaxed. The following stationarity conditions are

imposed,
OAZ  OA? )
o a5; =0, ¢=1,2,...,N, (134)
to yield the following set of linear equations in «; and 3;:
fvl3etflolifi = <vowsv>, (135)
[v|]|ie+B8: = [Jvow;|:1, 2=1,2,..,N. (136)

Provided that D, :=|| v ||? — || v ||3# 0, the solutions are given by

a; = DyM<vow,v> |l vow v, (137)

Bi

D;l[H v H%H vow; |1 — ||v]i<vow,v>], i=1,2,..,N. (138)

42



(The case D, = 0, or || v [[1=|| v ||]2 corresponds to the special situation that v = 1 almost every-
where.) There is no guarantee, however, that the solutions a; and f; in Eqgs. (137) and (138) will be
nonnegative. This may not be a great problem in actual applications, since ¢;(v(z)) may still assume
nonnegative values for z € X (or negative values which can be rounded off to zero). As well, the
actual fixed point @ of the operator 7 may turn out to be nonnegative. Nevertheless, this detail is

generally overlooked in the literature.

Note, however, that for 1 <7 < N (since ¢; # 0),
| vow; 1= ¢ P A v(y)dy, (139)

Multiplying Eq. (136) by ¢” and summing over 1 < i < N yields

N
lol = del(aillvll+6)

=1
N

< D cP(lail v [l +1Bil)
=1

= [Tv L (140)

The equality || v ||1=|| Tv ||; holds if ;, 8; > 0,1 <7 < N.
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Appendix C: Some Aspects of Place-Dependent IFSM

Here we outline some basic theory for N-map IFSM (w, ®) with place-dependent grey level maps,
¢r : R x X — R. The operator T associated with this IFSM will act as follows: For u € LP(X, p),

N
=D " bulu(wy (2)), wi ' (2)), (141)
k=1

As done in the main text for IFSM, we establish some sufficient conditions on the IFS and grey level
maps to ensure that T maps £P(X, u) into itself. Define the following set of uniformly Lipschitz

functions,

Lip(Y,X) = {¢:Y xX Y CR:|¢(t1,8) — P(t2,8)| < K|t1 — ta],
Vi1,t2 €Y, Vs € X for some K € [0,00)}. (142)

Proposition 9 Now let (w,®) denote an N-map IFSM with associated operator T defined above.

Assume that:
1. For anyu € LP(X,p), uow, ' € LP(X,pu), 1 <k <N,
2. ¢ € Lip(R,X), 1 <k < N.

Then for 1 <p < oo, T : LP(X, pu) — LP(X, p).

The proof of this Proposition is virtually identical to that of Proposition 2 in the main text.

Proposition 10 Let X ¢ RP, D € {1,2,...}, and p = mP). Let (w,®) be an N-map IFSM such
that

1. wy € Simq(X) and
2. ¢ € Lip(R,X),1 <k < N.

Then for a p € [1,00) and any u,v € LP(X, p),
N
dp(Tu, Tv) < C(D,p)dy(u,0), C(D,p) =Y 2P Ky (143)

Proof: This proof involves a minor modification of the proof for Proposition 4 in the main text. For

u,v € ['p(Xa ,u')a

N
[Tu—-Toll, = XIZ' H(2), wi ' (2)) — dr(v(wy, (2)), wy (2)]|Pda] P

L%
>

I

k=
/ |6 (u(wy (2)), wi ' (2)) = d(v(wy ' (2)), wy (=) Pde] /P

k=1
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N
= D, loutut)9) - dutotw), )P

N D/ 1/

< ka Kk[/;( [u(y) — v(y)Pdy]
N

= YK Ju—v],. B (144)
k=1

Some possible forms that the place-dependent grey level maps ¢ can assume are as follows:
1. ¢(t,s) = 3% 5 a;(s)t!, where the a; : X — R, bounded on X,

2. ¢(t,s) = f(t) + g(s) (“separable”) with suitable conditions on f : R — R in Lip(R) and
g: X — R, bounded on X.

It is convenient to work with ¢ maps which are only first degree in the grey-level variable ¢, i.e.

©-
~~
\.H
»
N—
l

at+ B+ g(s), g: X — R, bounded on X, (145)

©-
~—~
\.H
V)
—
[l

a(s)t + B(s), a,B:X — R, bounded on X. (146)

The action of the first set of maps can be considered as a “place-dependent” shift in grey-level value.

The second set of maps produce a more direct interaction between position and grey-level value.
The Inverse Problem in £2(X, ) With Place-Dependent IFSM

The theory of Section 3.1 regarding a formal solution to the inverse problem can be applied to place-
dependent IFSM. The structure of the expression for the squared £2 collage distance will depend
upon the functional form assumed for the ¢, maps. As in Appendix B, we consider the following

“nonoverlapping IFS” case:

1. X C RP and g = m(P). For simplicity, we consider only the case D = 1 here, since the

expressions involving the variable s € X become quite complicated.

2. w; € Simy(X). As well, X = UN, X;, where X; = w;(X); in other words, the X; “tile” the
space X.

3. u(X;N X;) =0 for i # j (p-nonoverlapping condition).

We assume that the grey-level maps ¢; assume the functional form in Eq. (145), both (for simplicity)

with degree n polynomial place-dependent coefficients, i.e.

@i(t,s) = ai(s)t + Bi(s), teR, s€ X, as)= z": akjsj, Bi(s) = zn:bkj.sj. (147)
7=0 =0
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(Note that in the special case n = 0, the ¢; become the affine maps of “normal IFSM”.) Each squared

collage distance A? over X; becomes
A} = /X'[ai(wi_l(m))’v((wi_l(m))) + Bi(w; ' (z)) — o(2)]’de
= P [ [as(@)o(@) + Bi(e) - olwi(e))da
- /X[v(m);aijzj + kgbikmk ~ o(wi(e)))*de. (148)

A? is a quadratic form in the coefficients a;;,b;;,1 < j < n. The coefficients of this quadratic form
involve power moments of the functions v, v? and vvow; as well as moments over X. The minimization

of A? is a quadratic programming (QP) problem subject to suitable constraints.

The method of “least squares” could also be applied to this problem. By imposing the stationarity

conditions,
ON? B ON? B
Baij N 3bij N

to yield the following set of linear equations in «; and f3;: one obtains a set of 2n linear equations in

0, j=1,2,..n, (149)

the place-dependent polynomial coefficients.

Such place-dependent grey level maps could also be considered, with much work, in the overlapping
IFS case, cf. Eq. (74) in the main text. The coefficients of the quadratic form in the a;;,b; ;,1 < 7 <

N,1 < 7 < n would involve power moments.
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