Fractals, Vol. 2 No. 3 (1994) 335-346
© World Scientific Publishing Company

SOLVING THE INVERSE PROBLEM FOR
FUNCTION/IMAGE APPROXIMATION
USING ITERATED FUNCTION SYSTEMS
II. ALGORITHM AND COMPUTATIONS

BRUNO FORTE
Department of Mathematics
University of Lecce, Italy
e-mail: bforte@ilenic.bitnet

EDWARD R. VRSCAY
Department of Applied Mathematics, Faculty of Mathematics
University of Waterloo
Waterloo, Ontario, Canada N2L 3G'1
e-mail: ervrscay@links.uwaterloo.ca

In this paper, we provide an algorithm for the construction of IFSM approximations
to a target set v € [,3_()(, i), where X C RP and p = mP) (Lebesgue measure).
The algorithm minimizes the squared “collage distance” || v—Tv H% We work with
an infinite set of fized affine IFS maps w; : X — X satisfying a certain density and
nonoverlapping condition. As such, only an optimization over the grey level maps
¢; : Rt — RT isrequired. If affine maps are assumed, i.e. ¢; = a;t+ 3;, then the
algorithm becomes a quadratic programming (QP) problem in the «; and 3;. We
can also define a “local IFSM” (LIFSM) which considers the actions of contractive
maps w; on subsets of X to produce smaller subsets. Again, affine ¢; maps are
used, resulting in a QP problem. Some approximations of functions on [0,1] and
images in [0, 1]? are presented.

1. INTRODUCTION

This paper represents a continuation of Paper I presented at this conference.! As such, the
same notation is employed.
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2. THE INVERSE PROBLEM IN £%(X,u) AS A QUADRATIC PRO-
GRAMMING PROBLEM

We now describe an algorithm for the construction of IFSM approximations of arbitrary
accuracy to a target set v € £L2(X, u). Because of our primary interest in the problem of
image representation, our discussion is restricted to the approximation of nonnegative image
functions, u : X — RT =[0,00), 1.e. v € LI(X,p) ={f € L(X,pu)|f(z) > 0,Vz € X}.
(There is no loss of generality in this assumption since the grey-level map parameters 3; can
be used to shift the range of functions » : X — R without affecting the contractivity of the
T operator.) For an N-map contractive I[FSM (w, ®) on (X, d) with associated operator 7',
the squared £? collage distance is given by

A = Jlo-To3
N
— [ I3 eutolu ) - ol P )
k=1

Following our discussion in Paper I, we consider the IF'S maps w; to be fixed. The problem
reduces to the determination of grey level maps ¢; which minimize the collage distance AZ.
In the special case that

1. Ufc\[:le = Ufc\;l'zbi(X) = X, i.e. the sets X “tile” X, and
2. p(wi(X)Nwji(X))=0 for i # 7,

then the squared collage distance A% becomes
N
At = 3 [ fonolur (@) - vla)
k=1 X

N
= > AL (2)
k=1

i.e. the sum of collage distances over the nonoverlapping subsets X;. The minimization
of each integral is a continuous version of “least squares”, with respect to the measure u: For
each subset Xy, find the ¢ : Rt — R* which provides the best £2(X, u) approximation
to the graph of v(z) vs. (vow,')(z) for z € X.

Most, if not all, applications in the literature assume the nonoverlapping property due to

(D) and that the wy are similitudes.

its simplicity, in addition to the assumptions that y = m
In addition, the grey level maps are assumed to be affine, i.e. ¢;(t) = ot + ;. The standard
approach is to impose stationarity conditions on A? which yield a set of linear equations
in o; and ;. There is no guarantee, however, that the solutions to these equations will
be nonnegative, ensuring that ¢; : RT — RT. This may not be a great problem in actual
applications, since ¢;(v(z)) may, in fact, be nonnegative (or only very slightly negative) for
practical images. Nevertheless, this detail is generally overlooked in the literature.

In this discussion, we shall not assume the nonoverlapping property: i.e. the sets w;(.X)
are allowed to overlap on sets of nonzero measure. In what follows, we make the following

assumptions:
1. w; € Con(X) (but not necessarily in Sim(X)) and UY_, X} = X,

2. ¢ >0for 1 <k <N, and
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3. ¢; : Rt — R*, where ¢;(t) = ait + 3;, t € R* (affine grey level maps). Thus,
a;, B; >0for 1 <1< N.

The squared £? collage distance then becomes

A = <v—Tv,o—Tv>
N N
= D> D<ot > arar + 2 < Pt > arfi + < Xy xt > O]
k=11=1
N
—QZ[< v, > ap+ < v, xk > Bel+ < v,v >, (3)
k=1
where
bx(e) = w(wp' (@), k(@) = Ly ) (o), @ € X, (4)
Note that A? is a quadratic form in the ¢-map parameters o; and 3;, i.e.
A? = xTAx+bTx+ c, (5)
where xT' = (aq,...,an, 1, ..., B5) € R?V. The elements of the symmetric matrix A are
given by

a;; =< i >, anyiN+; =< Xis Xj >, @iN4j; =< P, X; >, 1<i,7< N, (6)

As well,
bi=-2<v,9; >, bypi=-2<v,x;> 1<i<N, (7)

and ¢ =< v,v >=|| v |3
The minimization of A% is a quadratic programming (QP) problem in the parameters «;
and f;,1=1,2,...,N,i.e.

minimize xTAx+bTx+e¢, x> 0. (8)

In order to guarantee that a minimum of this quadratic form exists on a compact set of
feasible parameters «;, 3;, we impose the additional condition

[Tollh < [fofl- (9)
In terms of the grey level map parameters, this is a linear inequality constraint, i.e.
N
> (ar lvowy [l +8en( X)) < v - (10)
k=1

(D)

For the special case X C R” and p = mP), which will be used in all applications, the

above linear inequality constraint becomes

N

Yok lan vl +VxBe) < vl (11)
k=1
where Vy = m{P)(X).
For a given target v € LP(X, 1), assuming || v ||;# 0, we denote the feasible set of N-map
IFSM grey-level parameters as

Y = {(a1, ..., an, f1, ., fn) € R*Y o || Tw [l < || v [l1, 01, 6; > 0} (12)

Note that 112V, which is compact in the natural topology on R?V, depends on the target
function wv.
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Proposition 1 Let X C RP, y = mP) and xT = (a1, ..oy N, By oy Bn) € TIZN. Then the
corresponding operator T is contractive in (LY(X,p),dq), except possibly when (1 = B =
...=0n=0.
We now describe our algorithm. As before, let w be an infinite set of fixed affine contraction
maps on X C RP which generates a p-dense and nonoverlapping family of subsets of X.
Let

wV = {wy,wy,...,wn}, N=1,2,... (13)

denote N-map truncations of w. Given a target function v € LP(X, m(D)), the region 112N
defined in Eq. (12) contains all feasible points xV = (ay, ..., an, B1, ..., Bn) € R?N each of
which defines a unique N-vector of affine grey level maps &%,

OV = {ant + fr, . ant + fn ). (14)

For an xV € T2V, let
TN LP(X, p) — LP(X, p) (15)

be the operator associated with the N-map IFSM (w'V, ®") and let
A} =llv-T v |3 (16)

denote the corresponding squared £* collage distance. Since A% : 12N — R is a quadratic
form, it is continuous in the natural topology on R*V and thus attains a minimum value
AJQ\,’mm on 112N, The following result ensures that A?\ﬂmm may be made arbitrarily small
by this minimization procedure, thus providing a solution to the inverse problem.

Theorem 1 A?me — 0 as N — .

The proof of this theorem is based on the proof of Theorem 6 in Paper I.

The advantages of QP have been discussed in our paper on solving the inverse problem
for measures.? Briefly, (i) QP locates a minimum of A% on the simplex 112N in a finite
number of steps and (ii) in many problems, the minimum is achieved on a boundary point
of the simplex. In such cases, if (ax, Sr) = (0,0) then ¢r(t) = 0, which implies that the
associated IF'S map wy, is superfluous. QP (as opposed to gradient-type schemes) will locate
such boundary points in a finite number of steps, essentially discarding such superfluous
maps. The elimination of such maps represents an increase in the data compression factor.
Some numerical calculations involving the QP method will be presented in the next section.

3. THE INVERSE PROBLEM WITH “LOCAL IFSM”

3 namely, that

Our method can easily be generalized to incorporate the strategy of Jacquin,
we consider the actions of contractive maps w; on subsets of X (the “parent blocks”) to
produce smaller subsets of X (the “child blocks”). This is also referred to as a “Local IF'S”.4
Rather than trying to approximate a target as a union of contracted copies of itself as in the
IFS method, the local IFS method approximates the target as a union of copies of subsets
of itself. A good discussion of this method can be found in the review by Fisher,> who has
also been involved in more detailed investigations.®

We should mention that formal solutions of the inverse problem using various Local
IFSM can be formulated, in analogy to Theorem 6 of Paper 1. As a result, one has theorems
analogous to Theorem 1 of this paper, guaranteeing that the optimization method can

provide solutions of arbitary accuracy. We omit a discussion of these results in this report.
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3.1 A Simple Nonoverlapping Local IFSM

It is convenient to first formulate a simple “local IFSM” (LIFSM) on LP(X,p), where
0= mP) as follows. Let J, C X, k=1,2,...,N,with N > 1, such that

1. U Jx = X (tiling condition) and
2. u(J; N Jy) =0 for j # k (p-nonoverlapping condition).

In addition, suppose that for each Ji,1 < k < N, there exists an I;;) € X and a map
Wiy x € Con(X), with contractivity factor ¢;pyx > 0, such that wi) n(Liny) = Jr- In
other words, for each “child block” J, there is a corresponding “parent block™ ;.

For each map wyyy : lixy — Jk, let there be a grey level map ¢y : RT — R*T. The
vectors Wi, = {wi(1),1, - WiN),N} and @ comprise an N-map LIFSM (wi,., ®). Now
define an associated operator Tj,. : LP( X, u) — LP(X, u) as follows: For u € LP( X, p),

(Thocu)(z) = qbk(u(wz_(im(x))), for x € Ji, k=1,2,...,N. (17)

Proposition 2 Let X C RP and = mP). Let (Wioe, ®) be a local IFSM defined as above,
with w; € Sim(X), ¢ € Lip(RT) for 1 <k < N. Then for u,v € LF(X,m),

d‘p(Tlocua Tlocv) S C(D7 p)dp(ua U)7 (18)
where
N
C(D,p)=1[> Cgk),szf]l/p- (19)
k=1

Proof: For u,v € LP(X, m(D))7

N
I Tioeu=Tiow [ = 3 [ Jon(u(zh 1(2))) = on(ulwigh (o)) Pda

k=1
N
= Y B [ 18uuly)) - onoi)Pdy
k=1 I
N
< Y Rkt [ luty) - o(wldy
k=1 I
N
SVSEAW IR (20)
k=1

If C(D,p) < 1, then T}, is contractive over the space (LP(X, m(D)),dp) and possesses a
unique fixed point @. Moreover, for any u € LP(X, u), d,(T] u,u) — 0 as n — oo.

Now let X ¢ RP, = m(P) and v € LP(X, m(D)) be a target set. Given an N-map
LIFSM as defined above, the squared £? collage distance is given by

N
N
= 3 [ ietuigh o)~ via) e
k=1 k
N
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Again, because the child blocks are conveniently nonoverlapping, the problem reduces to
the minimization of each squared collage distance A% over the block Ji, a “least squares”
determination of ¢;. In the special case that the ¢ maps are affine, the minimization of
each A? is, as before, a quadratic programming problem in the two parameters oy, and SB.

3.2 Local IFSM With “More Degrees of Freedom”

The Local IFSM discussed above represents only one of many possible ways in which parent
blocks may be mapped to child blocks. Some additional possibilities, to each of which would
correspond a particular 7j,. operator, are listed below:

1. For a given child cell J;, we may wish to consider more than one parent cell /; at the
same time.

2. It may be possible, and indeed desirable, to consider more than one affine mapping
from a given parent I; to a given child J. For example, on [0,1], we can consider both
the orientation-preserving and orientation non-preserving maps (e.g. wir = S;x% + @k,
with s;z = 1 and -1, respectively). In [0, 1]?, there are eight possible contraction maps
from a larger parent square to a smaller child square and we may wish to employ some
or all of them in our T},. operator.

3. Combining (1) and (2) above.
4. Overlapping child cells.

Clearly, there are many possibilities. From a practical viewpoint, however, there are limi-
tations. In this section, we formulate the inverse problem associated with (2) above. (The
extension of this method to (3) above is rather straightforward.) Some numerical calcula-
tions using this strategy have been performed and will be reported in the next section.

For simplicity, we assume equipartitions of X = [0, 1]” which produce regular parent and
child blocks, i.e. squares, cubes. As well, we assume that the tiling and g-nonoverlapping
conditions of Sec. 3.1 are also satisfied by the child blocks Ji. Let wz(é;c),kvl =1,2,...,.Mp
denote the set of all possible similitudes mapping a parent block ;) to a child block J, all
having a common contraction factor ¢;) x (M =2,M; =8, ...). Associated with each II'S
map wz(é;c%k will be a grey level map qbgf) € Lip(R™). Then the operator Tj,. : LP(X, p) —
LP(X, p) associated with such an LIFSM is given by

Mp
(Tioew)(z) = 3 o (u((w()y 7' (@), for v € Jp, k=1,2,..,N. (22)
=1

Since the child blocks .J; are nonoverlapping, the squared £2 collage distance separates
into a sum of collage distances over each child cell J, i.e.

A2 = < T — VU, Tioe? — ¥ >
N
= > AL (23)
k=1

In the case of affine grey level maps, i.e.

oW =aVey 8V 1<1< Mp, (24)
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each collage distance is given by

Mp Mp
A7 = S S <t > aal™ 42 < x> a8 £ < xi x> U B0
=1 m=1
Mp
- QZ[< v, Y > oag)—}— < v, x> ﬂ,(cl)]-l- < Uk, Vg >, (25)
=1
where
, ! _
i) = (ol J7@), xile) = I,(2), ve(e) = o)l (2). (26)

At first sight, it would appear that each A% is a quadratic form in the 2Mp parameters
ozg) and ﬁ,(cl), 1 <1 < Mp. However, the functions x;(z) are identical. Therefore, A?
reduces to the following quadratic form in the Mp + 1 parameters ozgcl), 1 <1< Mp and

By =M ﬁ;(cl)l

A? = xTAx+bTx + c, x>0, (27)
where x! = (agcl), e achD),ﬁk) € RMp+1 The elements of the symmetric matrix A are
given by

aij =<y, p; >, 1<i,j< Mp (28)
and

i Mp+1 = AMp+1, =< ¥ >, 1 <4< Mp. (29)
As well,

and by, 41 =< vp >, ¢ =< v, vp >=|| vi [|3.
The feasible set of parameters is chosen so that the following conditions are satisfied:

M+ = (ol a8y € RMPH || Theop 11 < [ ve 1,0l Be > 03 (31)

4. APPLICATIONS AND NUMERICAL COMPUTATIONS

In this section we present some results of our algorithm to construct IFSM and LIFSM

approximations to functions (X = [0,1]) and images (X = [0,1]%). In all applications,

1 = mP) is the Lebesgue measure.

4.1 Function Approximation on [0,1]

4.1.1 Normal IFSM method

Normal IFSM method, where the following “wavelet”-type basis of affine II'S maps has been
employed,
wii(z) =27z +j—1), i=1,2,.., j=1,2,..,2% (32)

In the calculations, we consider N-map truncations (w'¥, ") and compute the minimum

2

%, . in the feasible region 112V using a quadratic programming

squared collage distance A

(QP) algorithm.
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In Fig. 1 are shown some approximations to the target function v(z) = sin(wz). The
target set as well as the attractors of the optimal truncated IFSM (w?, ®"V) are plotted.
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Fig. 1  Approximations to the target set v(z) = sin(nz) on X = [0,1] yielded by the IFSM method of
Sec. 2, using the wavelet-type basis of Eq. (32). In (a), N = 6 maps were used (¢ = 2 in Eq. (32)). In (b),
N = 14 maps were used (¢ = 3).

In Fig. 1(a), N = 6 maps were used, i.e. 1 <7 < 2in Eq. (32). In Fig. 1(b), N = 14
maps were used, i.e. 1 <7< 3.

4.1.2 Nonoverlapping Local IFSM method

The child blocks J; (as well as the parent blocks I;) are simply the dyadic subintervals
obtained by the action of the w;; maps of Eq. (32) on [0,1]. As originally done by Jacquin,?
for each child J, we test a number of parents I;. For each parent, in turn, we consider
both possible affine contraction maps (i.e. orientation preserving and nonpreserving). We
choose the parent and map which gives the minimum collage distance AZ. In Fig. 2 are
shown some approximations to v(z) = sin(7z). In Fig. 2(a), we have used one parent block,
Iy = [0,1] and four child blocks Ji = wq (X ). (This is identical to the “normal” IFSM
method with four nonoverlapping IFS maps.) In Fig. 2(b), we have used two parent blocks,
I; = wq ;(X) and four child blocks J; = wyr(X). In Fig. 2(c), we use four parent blocks,
I; = wy ;(X), and eight child blocks, J; = w3 k(X). It is not surprising that for a given
number of IFSM maps, N, the local [IFSM method yields much better results than normal
IFSM, since the former seeks to tile the target v(z) with only parts of itself.
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Fig. 2 Approximations to the target set v(z) = sin(wz) on X = [0,1] yielded by the “Local IFSM”
method of Sec. 3.1 using ni parent cells and nz child cells. (a) (n1,n2) = (1,4). (b) (n1,n2) = (2,4). (c)
(nl,nj) = (47 8)

4.2 Tmage Approximation in [0,1]*> Using Local IFSM

Figure 3 shows the target image “Lena”, a 512 x 512 pixel greyscale image, with each pixel
having 256 possible values (8 bits, with values from 0 to 255, which were rescaled to values
in [0,1]).

4.2.1 Nonoverlapping Local IFSM method

Given a child block, Jj, we test all parent blocks I;. For each parent block, we test all eight
()
27] !
collage distance. Naturally, we then select the parent which produces the best overall collage

of J.

possible contraction maps w; :,1 < [ < 8, selecting the map which produces the minimum
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Fig. 3 Target image v(z,y): 512 x 512 pixel array, 8 bits per pixel.

In Fig. 4 we have used 8% = 64 parent blocks and 162 = 256 child blocks. The execution
time was 296 s. (All computations were done in FORTRAN using an IBM Model 355
POWERStation equipped with a RISC processor. No special work was done to optimize
the code. At this time, we were primarily interested in comparing execution times required
for different IF'SM methods.) In Fig. 5 we have used 162 = 256 parent blocks and 322 = 1024
child blocks. The execution time was 3383 s.

Fig. 4 Local IFSM approximation. (ni,ns) = (8%,16%). || — v ||1= 0.04.
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Fig. 5 Local IFSM approximation. (ni,n2) = (16%,32%). || @ — v |j1= 0.029.

4.2.2  Querlapping LIFSM method

For each child block Ji, and each possible parent block /;, consider all eight maps wz(:']), 1<
[ < 8, simultaneously, i.e. we compute the minimum of the quadratic form in Eq. (27)
- a quadratic programming problem in 9 unknowns. This approach actually represents a
saving in time over the method used in Figs. 4 and 5. For example, the approximation in
Fig. 6 was produced with 32? parents and 642 children, representing a two-fold increase in

resolution over the approximation in Fig. 5.

Fig. 6 “Overlapping” Local IFSM approximation: 8 maps from parent I; to Ji. (ni,n2) = (32%,642).
|| @ —v |1= 0.018.
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Nevertheless, the calculations required 3402 s of execution time, roughly the same time as

required for Fig. 5. For almost all child cells Ji, the QP algorithm located a minimum of

9

vp» With no more than two grey level maps

the collage distance A% on the boundary of II

¢§Cl) differing significantly from zero.

ACKNOWLEDGMENTS

We wish to thank Prof. M.E. Jernigan, Department of Systems Design Engineering, Faculty
of Engineering, University of Waterloo for making available to us the VIP (Vision and
Image Processing) system developed in the Department of Systems Design for research and
educational use. VIP has been very helpful for the manipulation and output of images
used in our study. This research was supported by grants from the Natural Sciences and
Engineering Council of Canada, which are hereby gratefully acknowledged.

REFERENCES
1. B. Forte and E. R. Vrscay, Fractals 2, 325 (1994).
2. B. Forte and E. R. Vrscay, Solving the inverse problem for measures using iterated function

systems: a new approach, preprint, 1993.
. A. Jacquin, TEEE Trans. Image Proc. 1, 18 (1992).
4. M. F. Barnsley and L. P. Hurd, Fractal Image Compression, A K. Peters, Wellesley, Mass., 1993.
5. Y. Fisher, A discussion of fractal image compression, in Chaos and Fractals, New Frontiers of
Science, edited by H. O. Peitgen, H. Jurgens, and D. Saupe, Springer-Verlag, 1994.
6. E. W. Jacobs, Y. Fisher, and R. D. Ross, Signal Processing 29, 251 (1992).

[



