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We are concerned with function approximation and image representation using Iter-
ated Function Systems (IFS) over £P( X, u): An N-map IFS with grey level maps
(TIFSM), to be denoted as (w, ®), is a set w of N contraction maps w; : X — X
over a compact metric space (X, d) (the “base space”) with an associated set ® of
maps ¢; : R — R. Associated with each IFSM is a contractive operator T" with
fixed point @ € LP(X, 1t). We provide a rigorous solution to the following inverse
problem: Given a target v € LP(X, 1) and an € > 0, find an IFSM whose attractor
satisfies | @ — v Hp< €.

1. INTRODUCTION

The method of “Iterated Function Systems” (IFS)!? has been very successful for the ap-
proximation of fractal sets and images. However, with differing applications and goals,
IFS-type methods on various metric spaces have been devised, e.g. IFS with probabilities
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(IFSP), Iterated Fuzzy Set Systems (IFZS) and IFS with grey level maps (IFSM). In these
methods, the image or target is represented by either a probability distribution or a function
in one or more spatial variables. All methods share the common feature that the target
is represented by an element 7 of a given metric space (Y,dy). Such an element is then
identified as the unique fixed point of a contraction map T : Y — Y, ie. Ty = y. One
may generate § by iterating 7. In order to design an algorithm, one must necessarily define
an appropriate space (Y,dy) and a contraction map 7. We summarize below the various
IFS-type methods in the chronological order in which they were introduced:

1.1 TFS34

On a compact metric space (X, d) (the “base space” of the IF'S, typically a compact subset
of R, e.g. [0,1],[0,1] with d the Euclidean distance on R™). Then Y = H(X), the set of
nonempty compact subsets of X and dy is the Hausdorff metric h, defined as follows. Let
the distance between a point z € X and a set S € H(X) be given by

d(z,5) = inf d(z, 2); (1)
then for each Sy, 5, € H(X),
h(S1,S2) = max{ sup d(z, S3), sup d(z,51)}. (2)
T€S z2€S52

Now let w = {wq, wa, ..., wn}, w; € Con(X ), where
Con(X)={w: X — X|d(w(z),w(y)) < cd(z,y) for some c € [0,1),Vz,y € X}. (3)

Associated with each contraction map w; is a set-valued mapping w; : H(X) — H(X)
defined by w;(5) = {wi(z) : z € S} for S € H(X). Then the operator T associated with
the N-map IF'S w is defined as follows:

-

Il
—

T(S) = | J@:(S), S eHX). (4)

k3

The contractivity of the maps w; on (X, d) implies the contractivity of 7" on (H(X ), h). The
completeness® of (H(X), h) guarantees the existence of a unique fixed point j = A of T in
H(X). The set A, also called the attractor, is the IF'S representation of an image. From
Eq. (4), it satisfies the following self-tiling property,

N
A= L_J Wi(A). (5)

1.2 IFSP34

To an N-map IFS w is now associated a set of probabilities p = {py,p2,...,pn} with
SN, p1 = 1. Let B(X) denote the o-algebra of Borel subsets of X. Then Y = M(X), the
set of all probability measures on B(X). Here, the (Markov) operator is defined as follows:

For a v € M(X) and each S € H(X),

N
(Tv)(S) = (Mv)(S) = zpz’(V(ﬁ){l(S))- (6)
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The distance function dy on Y = M(X ) is the so-called Hutchinson distance dg(y,v): For
pv € M(X),
dutp) = swp | [ gau- [ gav], (7)
ferin(x) L/x by

where

Lis(X) = {f : X — R||f(21) — f(22)| < d(21,22), Ya1,25 € X}. (8)

The contractivity of the IF'S maps w; implies the contractivity of the Markov operator M
on (M(X),dr). The completeness of M(X) guarantees the existence of a unique fixed
point or invariant measure i € M(X ) of M which has been used to represent the grey level
distribution of a picture.

Some interesting and powerful variations of the IFSP have been developed, including (i)
Recurrent IFS® and (ii) “Fractal Block Coding”” or “Local IFS”.® We must also mention
that the latter methods have been extended to function approximation (using affine IF'S

and grey level maps) primarily for the purpose of image compression.”1°

1.3 IFZS!Y

The image, including the grey levels of its pixels, is represented by a function u : X — [0, 1].
The set Y is the family F7*(X) of all functions u : X — [0, 1] which are upper semicontinuous
on (X,d) and such that u(zg) = 1 for some zg € X. We now define the metric dy = d
used for this case. First, let u € F*(X). Now, for each a € [0, 1] define the a-level sets of
u as follows:

[w]* = {ze€X:u(z)>a}, ac(0,1], (9)
[]® = {ze€ X :u(z)>0},

where S denotes the closure of the set S in (X,d). Clearly, [u]* € H(X) for 0 < a < 1.
Then for u,v € F*(X), define

duol,v) = sup_h([u]*, [v]"). (10)
0<a<1
Associated with a set of IFS contraction maps w is a set of functions ® = {¢y, ¢o, ...,

¢n}, ¢ [0,1] — [0, 1], each of them being (i) nondecreasing and (ii) right continuous. In
addition, (iii) ¢;(0) = 0 for 1 <7 < N and (iv) for at least one i* € {1,2,..., N}, ¢;=(1) = 1.
Finally, the map 7' = T : F*(X) — F*(X) is defined as

(Tu)(z) = (Tsu)(z) = sup {gi(a(w;'(z))}, Vo€ X, (11)

1<i<N

where, for B C X, (i) @(B) = sup,cg{u(z)} if B # 0 and (ii) @(@) = 0. The properties
imposed on the functions ¢; along with the contractivity of the IF'S maps w; imply that
Ts is a contraction map on (F*(X),ds). The completeness'? of (F*(X),ds) guarantees
the existence of a unique fixed point # € F*(X) of the operator Ts. This function u will

provide the grey level of each pixel z in the picture. The a-level sets of u obey the following
generalized self-tiling property:

N
[@]* = |J will¢i 0 u]®), a€l0,1]. (12)

=1
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The picture itself can be produced by iterating the map 7T, starting with any initial function
ug € F*(X). The pair of vectors (w, ®) along with the associated map T defines an IFZS
algorithm for image production.

Nevertheless, the Hausdorff metric d, is very restrictive, from both practical (i.e. image
processing) as well as theoretical perspectives. By making two fundamental modifications
to the IFZS approach,' one arrives at an IFS with grey level maps over the space £1( X, ).
This, in turn, serves as the motivation to formulate II'S over the general function spaces
LP(X, p), to which we now turn our attention.

1.4 TFSM®

Let g be a measure on B(X) and for any integer p > 1, let £P(X, u) denote the linear
space of all real-valued functions u such that u” is integrable on (B(X), ). We choose
Y = £P(X, ). The distance function dy is defined by the usual L, norm, i.e.

1/p

dy (u,v) :=dy(u,v) = [/X |u(z) — v(z)|Pdp(z)| . (13)

Associated with an N-map contractive IFS w = {wy,ws, ..., wn} is a set of functions or
grey level maps ® = {1, Pa,..., 0N}, with ¢; : R — R. As suggested by the Markov
operator in the IFSP algorithm, we define the operator T corresponding to the N-map

IFSM (w, ®) as
N

(Tu)(z) =) "du(u(wy ' (2))). (14)

k=1
The prime signifies that the sum operates on all those terms for which w}'(z) is defined.
If wy'(z) =0 forall k=1,2,...,N, then (Tu)(z) := 0.
Under suitable restrictions on the functions ¢;, the IFS contraction factors ¢; and the
measure g, T is a contraction map from LP( X, ) into itself. The completeness of LP( X, u)
guarantees the existence of a unique fixed point @ of 7" in LP( X, u).

2. THE INVERSE PROBLEM

The problem of representing a given image (or a function) by either IF'S, IFSP (and vari-
ations), IFZS or IFF'SM is a typical inverse problem. Such an inverse problem is, in turn,
related to the problem of finding the image/function as the fixed element of a given iteration
algorithm of the type IF'S, [FSP, IFZS or IFSM on £P. As we have shown, the problem
reduces to the mathematical problem of finding;:

1. a suitable metric space Y in which to represent the image (function),
2. a suitable metric dy on Y,
3. a suitable contraction map T :Y — Y.

The fact that this main problem has more than one solution leaves room for the search of
different kinds of optimality.

We have already provided a solution to the inverse problem for measure approximation
using IFSP.!* In this paper, we outline a solution to the inverse problem for function /image
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approximation using IFSM. In an accompanying paper,'® to be referred to as Paper 11, we
outline an algorithm for the construction of [FSM approximations of arbitrary accuracy to
functions and images along with some numerical computations. Because of space limita-
tions, theorems are presented below without proofs. A detailed discussion, complete with
proofs will appear elsewhere.!?

Throughout this paper, we shall employ the following additional notation:

e Con(X): as above, the set of contraction maps on X. We denote the contractivity
factor of w € C'on(X) as

c:= sup d(w(‘r)vw(y))/d(‘rvy) (15)
zyeX z#y
In applications, we shall be primarily concerned with contractive similitude maps on
X, i.e. inversions, rotations, reflections followed by translations. For convenience, we
denote this set of maps as Sim(X) C Con(X), i.e.

e Sim(X)={w:X — X | dlw(z),w(y)) = cd(z,y) for some ¢ € [0,1),Yz,y € X}.

¢ dgon(x): a metric on the function space Con(X). For f,g € Con(X),

e M(X): as before, the set of measures on B(X), the g-algebra of Borel subsets of X.
In the special case that X C RP, let m{”) € M(X) denote the Lebesgue measure on
B(X).

1 ifz € A,

o [4(z): the indicator function of aset A C X. I4(z) = { 0 if otherwise

o Lip(R)={¢: R — R||o(t1) — ¢(t2)| < K|t1 — t2],Vt1,t2 € R for some K € [0,00)}.

IFS methods are generally based upon Banach’s Fixed Point Theorem or Contraction
Mapping Principle (CMP) as well as two simple yet powerful consequences. For convenience,
we state these results below.

Theorem 1 (CMP) Let (Y, dy) be a complete metric space. Suppose there exists a mapping
f € Con(Y) with contractivity factor ¢ € [0,1). Then there exists a unique § € Y such that
f(¥) =7. Moreover, for anyy €Y, dy(f"(y),7) — 0 as n — cc.

The following result has often been referred to in the IFS literature as the “Collage Theo-
rem” 161

Theorem 2 Let (Y,dy) be a complete metric space. Given a y € Y suppose that there
exists a map f € Con(Y') with contractivity factor ¢ € [0,1) such that dy(y, f(y)) <e. Ifg
is the fized point of f, i.e. f(y) =7, then dy(y,7) < ¢/(1 - ¢).

Finally, the following establishes the continuity of fixed points of contraction maps on
(Y, dy).

Theorem 3 Let (Y,dy) be a metric space and f,g € Con(Y) with fized points j; and 7,
respectively. Then

1
dY(?]H?g) < _—Cdeon(Y)(fag)7 (17)

1

where ¢y is the contractivity factor of f.
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This result was used to derive continuity properties of IF'S attractors and IFSP invariant
measures'” as well as attractors of IFZS'® and IFSM'3 .

3. IFS WITH MAPS (IFSM) ON £P(X, )

Having defined above an N-map [FSM (w, ®) with associated operator T', we now establish
some sufficient conditions on the IFS and grey level maps to ensure that 7" maps LP( X, i)
into itself.

Proposition 1 Let (w,®) denote an N-map IFSM with associated operator T defined
above. Assume that:

1. For any u € LP(X, p), uo w,?l € LP(X,pn),1<k<N, and
2. ¢p € Lip(R), 1 <k <N.

Then for 1 <p < oo, T : LP(X,pu) — LP(X, un).

Proposition 2 Let X ¢ RP, D € {1,2,..}, and p = mP). Let (w,®) be an N-map
IFSM such that wy, € Sim(X) and ¢ € Lip(R) for 1 <k < N. Then for a p € [1,00) and
u? v 6 'Cp(X7 l'[/)?

dy(Tu, Tv) < C(D,p)dy(u,v), (18)
where
N
C(D,p)=Y eP"K?. (19)
k=1

Proof: For u,v € LP(X, p),

N
| Tu=Tol, = (], |3 Toutu(ug () = Su(wtw (2]

N

< XU, 16nu(u @) = dutolp (@)lrde]
N
= e, lonuto) - utoto) P
N
PP wlw) — o) |Pdyl/P
< S luty) - vw)Pd)
N
= K u=vll (20)
k=1

Remark 1 If C(D,p) < 1, then T is contractive over the space (LP(X, m(D)),d.p) and
possesses a unique fired point .

Remark 2 If0 < ¢, <1 for 1 <k < N then C(D,p) < 1 for some p > 1 implies that
C(D,q)< 1 forall1 <q<p.

Remark 3 Note that for T to be contractive, i.e. C(D,p) < 1, we can relax the restriction
that all IFS maps be contractive, i.e. that ¢, <1 for 1 <k < N.
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Remark 4 In the special case that the sets wi(X) do not overlap, a stronger estimate for
the Lipschitz constant C(D,p) can be obtained, namely,

N
O(D,p) =[S LK. (21)

k=1
Example 1 X = [0,1], p = m), N = 3, wi(z) = %(m +i—1),i=1,2,3, with grey level
maps ¢1(t) = %t, P2(t) = %, ¢s(t) = %t + % The fized point u(z) is (up to an equivalence
class) the “Devil’s staircase function”: u(z) is continuous at all v € X and differentiable
for all X \ C, where C' denotes the ternary Cantor set on [0,1].
Example 2 X = [0,1], N =3, p = m(V, wi(z) = %(aj +i—1),i=1,2,3, with grey level
maps ¢1(t) = %t, Po(t) = %t, ¢3(t) = 2t. Then w:= 0 is a fized point of T'. However, T is
contractive only on L£'(X, m(1),

3.1 Affine IFSM on £P(X,pu)

In applications, it is convenient to employ affine IF'S maps wy € Sim(X) as well as affine
grey level maps ¢;. The latter have the form

op(t) =t + 0k, teR, k=1,2,..,N. (22)
We shall refer to such a system (w, ®) as an affine IFSM. The action of the operator T’
associated with an affine IFSM may be written as follows: For u € £P( X, u),

N

(Tu)(x) = Y [onu(wy (2)) + Brlu, x)()]- (23)

k=1

From Proposition 2, if X ¢ RP, then for u,v € LP(X, m(D)),

dy(Tu, Tv) < C(D,p)dy(u,v), (24)
where
d D/p
C(D,p) = [2 ;" al]. (25)

Remark 5 If 3, =0 for 1 <k < N, then u(z) := 0 is a fized point of T
Remark 6 Let X =[0,1] and u = m() with wi(z) =s;z+a; and¢; = |si] <1,1<i < N.
If T is contractive with fized point w, then

N
u(z) = Z/O‘kﬂ(x;kak)-Fﬁkfwk(X)(ﬂﬁ) (26)
k=1
N
= D lawtu(z) + Bexe()]. (27)
k=1

In other words, w may be written as a linear combination of both piecewise constant functions
Xk(z) as well as functions i(z) which are obtained by dilatations and translations of u(z)
and Ix(z) = 1, respectively. This is reminiscent of the role of scaling functions in wavelet
theory.
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Theorem 4 Let X C RY and p € M(X). Define L5(X,p) C LP(X, ) to be the set of
fized points @ of all contractive N-map affine IFSM (w,®) for 1 < N < oo, on X. Then
L5(X, p) is dense in (LP(X, u), dy).

The above result is a consequence of the fact' that the set S(X) of step functions in X is
dense in LP(X, p).

3.2 Infinite-Dimensional Affine IFSM on £P(X, pu)

It seems intuitively obvious that the accuracy to which we can approximate a function by
the attractor of an IFSM will increase with the number of maps N used in the IFSM. For
this reason, we now consider IFSM with an infinite number of IFS and grey level maps,
i.e. N = oo. However, for such systems be useful in the solution to the inverse problem on
LP(X, 1), we impose a condition on the IFS maps according to the following definitions.
Definition 1 Let (X, d) be a compact metric space and yp € M(X). A family A of subsets
A = {A;} of X is “u-dense” in a family B of subsets B of X if for every ¢ > 0 and any
B € B there ezists a collection A C A such that A C B and u(B\ A) < e.

Definition 2 Let w = {wq, wy, ...}, w; € Con(X) be an infinite-dimensional IF'S. We say
that w generates a “p-dense and nonoverlapping” — to be abbreviated as “u-d-n” — family
A of subsets of X if for every ¢ > 0 and every B C X there exists a finite set of integers
i, > 1,1 <k <N, such that

1. A= URL wi (X) C B,
2. W((B\A) < ¢ and
3. p(w; (X)Nw; (X)) =0ifk#L

The p-d-n property allows us to include, within a single infinite-dimensional IF'S, an infinite
set of finite-dimensional IFS which provide arbitrarily small degrees of refinement. A useful
set of affine maps satisfying such a condition on X = [0, 1] with respect to Lebesgue measure
m) is given by the following “wavelet-type” functions:

wi(z) =27 e 4+5-1), i=1,2,..., 5=1,2,...,2". (28)

For each i* > 1, the set of maps {w;+;,7=1,2,.. .,Qi*} provides a set of 2% y-nonoverlap-
ping contractions of [0, 1] which tile [0, 1].

Theorem 5 Let X C RP, = mP) and p > 1. Also let w = {wy,ws, ...}, w; € Sim(X),
such that w generates a p-d-n family of subsets of X. Now define the sequences,

a = {a = (041,042, "')7ak €R, Z CElakV) < 1}7 (29)
k=1

b = {p=(0,02..),0c € R}
Then

1. The operator T associated with the affine IFSM (w,®), where ¢;(t) = ot + B;, 1 =
1,2,..., with « € a and (8 € b, is contractive on (LP(X, mP)), dy,).

2. Define S? = {u € LP(X,mP)), Tu = u for some (a,) € (a,b)}. Then SP is dense
in (LP(X,m),d,).
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Now suppose that (w, ®) is an infinite-dimensional affine I'SM with contractive 7" operator
on LP(X, p). Then T possesses a fixed point @ € LP(X, p), i.e. T@ =u. From Eq. (22), we

may write
o0

a(z) = Y (axyu(e) + Bexa(2)), (30)
k=1
where ¥1(z) = @(wy ' (), k = 1,2, .... We may regard Eq. (29) in two ways: (i) as a Fourier
expansion of 7(z) in the set of functions (assuming that @ is not a constant) {4y, xx}72, or
(ii) as a mixed “wavelet-type” expansion, where @ and the constant function Ix(z) =1 are
scaling functions from which the functions ¥ and xi, respectively, are obtained through
the dilations and translations produced by the w;l.

4. THE INVERSE PROBLEM FOR IFSM ON £F(X, u)

From the Collage Theorem (Theorem 2), the inverse problem for the approximation of
functions in LP(X, i) by IFSM may now be posed as follows:

Given a target function v € LP(X, p) and a § > 0, find an IFSM (w, ®) with associated
operator T such that d,(v,Tv) =|| v —Tv [|,< 6.

Both our formal solution to this problem as well as the associated algorithm are based
on a strategy used in solving the inverse problem of measure approximation using IFSP.!4
Instead of working with a finite set of IFS maps w; and associated maps ¢;, all of which
would have to be optimized, we work with an infinite set of fized IF'S maps satisfying the u-d-
n property on X. As such, the w; are considered to form a fixed basis for the representation
of compact subsets of X. Only an optimization over the grey level maps ¢; is required.

Now let

wV = {wy, wy, ...,wy}, N=1,2, ..., (31)

denote N-map truncations of w. Also let

QN = {¢17¢27"'7¢N}7 (32)

denote an associated N-vector of grey level maps with the restriction that the ¢; € Lip(R).
Let TV : LP(X, ) — LP(X, ) be the operator associated with the N-map IFSM (w'V, V).
Given a target function v € LP(X, u1), the following result ensures that the collage distance
|| v—TNv], can be made arbitrarily small.

Theorem 6 Let v € LP(X,u), where p € [1,00). Assume that w = {wy,wy,...}, w; €
Con(X), such that w generates a p-d-n family A of subsets of X. Define the N-map
truncations (w¥, ®N) as above, with ¢; € Lip(R). Then

lim inf || v—Tv |, = 0. (33)

In our following paper (II. Algorithm and computations),'® we describe an algorithm for
the construction of IFSM approximations of arbitrary accuracy to a target set v € L2( X, p).
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