Fractal Image Compression
by the Classification in the Wavelet Transform Domain

Daiki ENDO  Tsuyoshi HIYANE Kiyoaki ATSUTA  Shozo KONDO
Faculty of Engineering, Tokai University
e-mail : kondo(@keyaki.cc.u-tokai.ac,jp

Abstract

In the fractal image compression the domain-range
comparison step of the encoding is very computationally
intensive. Therefore in order to minimize the rnumber of
domains compared with a range a classification scheme is used.
In this paper we propose a new theory for classification of
domain-range blocks. The classification uses Non-decimated
Separable Discrete Wavelet Transform. The encoding using the
proposed classification is compared with that by Y. Fisher
[1].which uses the average and the variance as features of
images and classifies domain-range blocks into 72 classes. The
Y Fisher's classification uses the variance which represents
only a messy degree of image intensities. The new classification
proposed in this paper represents more effective features of
images and classifies domain-range blocks into 432 classes by
using the average and the power. With this classification, we
are able to encode faster and realize high quality of the image
in fractal image compression.

1, Introduction

In the fractal image compression the domain-range comparison
step of the encoding is very computationally intensive. So in
order to minimize the number of domains compared with a
range a classification scheme is used. The classification scheme
is very effective to reduce computation time for the comparison.
Before the encoding, all the domains in the domain library are
classified; this avoids reclassification of domains. During the
encoding, a potential range is classified, and only domains with
the same (or near) classification are compared with the range.
This significantly reduces the number of domain-range
comparisons. By “near” classifications we mean squares that
would have been classified differently if their pixel values were
slightly different. The idea of using a classification scheme was
developed independently in [2 Jand [3 ].

Many classification schemes are possible; for example,
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Jacquin used a scheme that classified a sub-image into flat,
edge, and texture regions, and Y.Fisher used a scheme that
classified a sub-image into 72 classes by calculating the average
and the variance of sub-image. In this paper a new classification
of domain-range blocks is proposed using Non-decimated
Separable Discrete Wavelet Transform ( NSDWT for short ).
The encoding using the proposed classification is compared
with that by Y.Fisher.

2. The Classification
2.1. Y. Fisher's classification

In the Y. Fisher's classification, a square sub-image is divided
into the upper left, upper right, lower left, and lower right
quadrants, numbered sequentially. On each quadrant values
proportional to the average and the variance is computed:
Let ', , ,rn (i=1234) be the pixel values in the

quadrant i, the average A, and the variance V, are defined as

1 <&
A,:n—z rl, )

J=1

follows.
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j =1
It is always possible to orient the sub-image so that the 4, are
ordered in one of the following three ways:

Major Class 1 : A1=A2=A3=2 A4
Major Class2: A1=A2=2A4=A3
Major Class 3: Al=A4=A2=A3

These correspond to the brightness levels shown in Figure 1.
Once the rotation of the square has been fixed, each of the 3
major classes has 24 subclasses consisting of the 24 orderings
ofthe ¥, . Thus, there are 72 classes in all.




Figure 1. A square image can always be oriented so that the brightness, or average values, of its quadrants fall into one of these three

canonical positions.

22.NSDWT

We explain the NSDWT [4] which uses a non-orthogonal
wavelet, For the 1-D case the decomposition process is shown
in Figure 2. (a). We can decompose the input x(n) into the low
frequency component y,(n) and the high frequency component
z,(n) by the low-pass filter hy(n) and the high-pass filter gi(n),
respectively. That is, y,(n) and z,{n) are defined as follows

yi(n) =D ho(k)x(n - k), 3)
k

z(n) =Y go(k)x(n—k). )
k

The reconstruction process is shown in Figure 2. (b). The low
frequency component is filtered by h*(n) and the high
frequency component is filtered by g¥(n). Then we can
reconstruct x(n) by the sum of the two filtered components.. In
the NSDWT, the decomposed y,(n) and z(n) have the same
size as x(n). Therefore, y,(n) and z(n) contain redundant
information. Table 1 shows the coefficients of the filters h,(n)
and g(n). We define the synthesizing filters h* (n) and g*(n) as
follows

h*y (n) = hy(=n), )

g%, (M =g,(-n). ()

The filter hy(n) is symmetric with respect to the zero and the
filter g,(n) is skew-symmetric with respect to 1/2. We denote by
h,(n) and g (n) the discrete filters obtained by putting 2p-1 zeros
between each coefficients of respectively the hy(n) and gy(n).
For the 2-D case we use the low pass filter
hy(n) ,the high pass filter gy(n) and 1;(n). The filters are
applied to the image in both the horizontal and
vertical directions separately as shown Figure 2. (b).
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Table 1. The Coefficients of the filters

n hi) | em | ko)

0 0.0 0.0 -0.00003
1 0.0 -0.00008] 0.00727
2 0.0625] -0.01643] 0.03118
3 025007 -0.10872] 0.06623
4 0.3750{ -0.59261] 0.79113
5 0.2500{ 0.59261] 0.06623
6 0.0625] 0.10872] 0.03118
7 0.0f 0.01643] 0.00727
8 0.0/ 0.00008f 0.00003

we define 1* (n) as follows
Iy *(m) =1y (—n). (M

To decompose an input image into the low frequency
component hy(n) is applied to the image in both the horizontal
and vertical directions. The vertical (horizontal)high frequency
component can be obtained by applying g(n) (I(n)) to the
image in the horizontal direction and l,(n) (g,(n)) in the vertical
direction as shown in Figure 2. (c). The decomposition
(reconstruction) process can be continued using h.(n), g(n) and
1(0) (n*,(n), g* () and I%,(n).

2.3. A New Classification using the NSDWT

The Y. Fisher's classification uses the variance which represents
only a messy degree of image intensities. We propose a new
classification using the NSDWT which represents more
effective features of an image.

An original image is decomposed into the low frequency
component Y(m,n), the vertical high frequency component
Z,(m,n) and the horizontal high frequency component Z,(m,n)
by the NSDWT shown in Figure 2. (c).



»i(n) »,(n) ()
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Figure 2. NSDWT (@) The decomposition process in 1-D case.  (b) The reconstruction process in 1-D case. (c) The decomposition

process in 2-D case by “Lena”.

Classification of the low frequency component is the same
as the Y. Fisher's described above. Then the low frequency
component Y(m,n) is classified into 3 major classes. Each of
the two high frequency components is classified into 12
subclasses consisting of the 12 configurations of the P, 's
maximum and the P, 's minimum where P, are the power of
the quadrants defined as follows.

Po=3 7 (i=1234. @®)
j=1

In the high frequency component, the FV; seems to be
the P, , because the A, is almost zero. Therefore we use the
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power as the features of an image. Thus, there are 3 X 12X
12=432 classes in all.

3. Experiments

The encoding using the proposed classification is
compared with that using the Y.Fisher’s classification.
We use “Lena”, “Girl”, “Milkdrop” and “Mandrill” (512
X 512[8bit/pixel] respectively) as experimental images.
We measure PSNR, Bit Rate, and the encoding time
with the Quadtree Partition. 12 bits were used to
quantize the scaling coefficient and the offset. We use
PC with Pentium I 300MHz.
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Figure 3. Experimental Results (a) The decoded image “Lena” (28.77[dB], 0.29[bit/pixel]). (d) The decoded image “Girl” (29.21[dB],
0.21[bit/pixel]). (g) The decoded image “Milkdrop” (34.61[dB], 0.26[bit/pixel]). (j) The decoded image “Mandrill” (22.31[dB],
1.36[bit/pixel]). (b), (¢), (h) and (k) are the PSNR versus compression ratio curve of each images. (c), (f), (i) and (I) are the
encoding time versus compression ratio curve of each images.
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4. Experimental Results

‘The decode images which are encoded by the proposed
classification, the PSNR versus compression ratio curve and the
encoding time versus compression ratio curve are shown in
Figure 3. By this comparison we can see that the encoding
quality of the Y.Fisher’s classification is a little better than the
one using the NSDWT for “Lena”. For “Girl”, the encoding
quality of the classification using the NSDWT is nearly equal to
the Y.Fisher’s in the low bit rate. For “Milkdrop”, the encoding
quality of the classification using the NSDWT is better than the
Y.Fisher’s in the high bit rate especially. For “Mandrill”, the
encoding quality of the Y.Fisher’s classification is a little better
than the one using the NSDWT, but the encoding quality of the
classification using the NSDWT is nearly equal to the
Y.Fisher’s in the low bit rate. PSNR is low relatively because of
containing a large amount of the high frequency component. As
to the encoding time, we can see that the encoding time rate of
the classification using the NSDWT is 12 ~ 1/3 of the
Y.Fisher’s.

5. Conclusions

We have discussed about the classification scheme of fractal
image compression. Although the encoding quality of the
classification using the NSDWT depends on the kinds of the
images, we know that the encoding quality of the classification
using the NSDWT is nearly equal to the Y.Fisher’s. Especially
as to the image which is containing a large quantity of the low
frequency component, such as “Milkdrop”, we can see that the
encoding quality of the classification using the NSDWT is
better than the Y.Fisher’s. And the encoding time performance
of the classification using the NSDWT is better than the
Y.Fisher’s. Thus the classification schermne using the NSDWT is
more effective to reduce the encoding time than the Y.Fisher’s .

6. Future Works

We have used only the 1*high frequency components of the
NSDWT for the classification. However the 1* high frequency
component contain a relatively large amount of the white noise,
therefore the 1* high frequency components of the NSDWT is
influcnced by the white noise very much. Thus we can expect
that classification by the 2™ high frequency components are
better than that by the 1# high frequency components.
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