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Abstract

A novel paradigm for fractal coding selectively corrects the
fractal code for selected domain blocks with an image-
adaptive VQ codebook.  The codebook is generated from
the initial uncorrected fractal code and is therefore
available at the decoder.  An efficient trade-off results
between incremental performance and bit rate.

1.  Introduction

Since the landmark paper in 1992 by A. Jacquin [1] on
image coding with iterated function systems (IFS), many
authors have studied IFS (or "fractal") and proposed many
improvements to Jacquin’s algorithm [2].  While IFS has
been viewed as a promising technique that might overtake
more established coding methods, generally it has not so far
lived up to these expectations.

One fundamental problem of IFS coding methods is
the lack of direct control over the reconstruction error
(between original and decoded images) since the encoder
attempts only to minimize the collage error (between the
original and the self-similar transformation of the original
generated in the encoder). Although the well-known
Collage Theorem gives an upper bound on the
reconstruction error as a function of the collage error,
minimizing collage error does not minimize the
reconstruction error.  In practice, the reconstruction error is
larger and often much larger than the collage error.
This paper introduces a technique based on vector
quantization (VQ) to reduce the collage error in such a way
that the difference between the collage and reconstruction
errors will also be substantially reduced. This is done in a
selective manner without significantly increasing the bit
rate.

1.1 Review of fractal coding

Basic concepts.  Let, µorig be the image to be compressed,
µinit an arbitrary initial image, µ and ν two generic images,

and d(µ,ν), a distortion measure which measures the
dissimilarity between images. A transformation τ which
maps an image into another image is said to be contractive
if: ( ) ( )( ) ( )νµσντµτ ,., dd <  with 0 < σ < 1, where σ is the

contractivity of τ.  Then τn(µinit) converges to an attractor
µa as n approaches infinity, where µa is independent of
µinit. The Collage Theorem states: that if there exists a

transformation τ such that, ( )( ) εµτµ <origorigd , and τ is

contractive with contractivity σ, then
( ) ( )σεµµ −< 1/, aorigd .

The task of the encoder is to determine a
transformation τ (an "IFS code") for which τ (µorig) is as
similar as possible to µorig subject to a limitation on the
number of bits needed to specify τ.  The IFS code τ is
transmitted to the decoder which then computes the
attractor µa as the reconstructed image. The reconstruction
error is upper-bounded by the Collage Theorem.

Encoding stage. In Jacquin’s approach, the encoder
finds the transformation τ from the original image µorig as a
sum of affine transformations (τi), one for each range
block, Ri, each of which maps a particular domain block
into the corresponding range block Ri where the domain
and range are partitioned at different resolutions; typically
with square range blocks of size BxB and domain blocks of
size 2Bx2B. (Generally B is 8 pixels.)  For each range
block, the encoder searches for the best collage match from
a suitably transformed and selected domain block.  For this
search, candidate domain blocks are transformed in three
steps, by performing sub-sampling, isometry, and scale and
shift operations on the block luminance values.

Decoding Stage. To decode an image, the received IFS
code, τ, is applied to an arbitrary initial image µinit to form
an image µ1.  The process is repeated to obtain µ2 from µ1,
and so on, until it reaches µa.  Typically, less than ten
iterations are needed for convergence.

Weakness of Fractal Coding. The collage theorem
gives only an upper bound on the reconstruction error as a
function of the collage error.  There is no encoding method



known that directly minimizes reconstruction error.  Here,
we take a first step in this direction by modifying the IFS
code τ in order to simultaneously make both the
reconstruction error and collage error as low as possible.

1.2  IFS versus VQ

In fractal encoding, the set of domain blocks of µorig

may be viewed as a basic VQ codebook.  The affine
transformations of the sub-sampled code vectors in this
basic codebook form an extended codebook, corresponding
to mean-shape-gain VQ [3], providing a large pool of code
vectors for obtaining a collage approximation to µorig.
With conventional VQ, either a fixed or image-adaptive
codebook may be used, but in the latter case, the code
vectors must be transmitted.  The main advantage of the
IFS approach is that an image-adaptive codebook is
obtained without the need to explicitly transmit it to the
decoder. The main drawback is the lack of control over the
reconstruction error since IFS coding is lossy and the
"virtual" codebook (set of domain blocks of µa) obtained at
the decoder is not exactly the same as the codebook which
had been used for computing the IFS code during the
coding stage.

2. New fractal codec

2.1 Introduction

The proposed scheme can be divided into two stages.
The first is the conventional IFS code estimation following
Jacquin.  The second stage directly reduces the collage
error by adding a quantized vectorial shift to selected local
block IFS codes.  In this step, the local blocks are chosen
according to their contribution to the gap between the
collage and reconstruction errors.
In this paper, the dissimilarity measure between images is
the Euclidean norm of the difference image.  We define the

collage error: ( )origorigcE µτµ −= , the reconstruction

error: aorigrE µµ −= and the gap between the collage

and reconstruction errors, later referred to simply as the

«gap»: ( )origafE µτµ −= .

2.2  Reducing the collage error

Considering that the image µorig  has been partitioned
into a set of N range blocks, Ri, Ec can be expressed as:

( ) ( )( )∑
≤≤



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RorigiRorigc

ii
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0
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where the notation of Jacquin is followed.  The collage
error can be reduced by correcting one range block, as
follows:

(a)  Select the range block Rk to maximize the error

component  ( ) ( )( )
kk RorigkRorig µτµ − .

(b)  Consider the domain block Dh(k) where h(k) is the
index of the domain block that is mapped to Rk.  The local
IFS map τk can be expressed as a sequence of four
operations: a sub-sampling, r, an isometry, ik, a scalar
multiplication, sk, and a shift ok to each component.  Thus:

( )( ) ( ) 1.
)(

kDorigkkRorigk oris
khk

+









= µµτ �

Then, by modifying τk by τ’k as follows, the error of
collage for this range block will be reduced:

( )( ) ( )( ) kRorigkRorigk O
kk

’’ += µτµτ

where O’k is a quantized version of the vector
( ) ( )( )

kk RorigkRorigkO µτµ −= using a VQ correction

codebook, described later.

2.3  Selection of Blocks for Correction

The difference between errors of collage and
reconstruction Ef can be expressed as,

( )( ) ( )( )∑
≤≤
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where we have used the attractor property:  µa = τ(µa).
To decrease the error between collage and reconstruction,
we then select the domain Dl for correction which provides
the maximum value according to the following criterion:
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Thus, we consider the composite effect that this domain
block has on all range blocks. In this way, we can
determine the global impact that the error between the
original and virtual values of a domain block will have on
the entire image.  Note that the shift and isometry
operations in τi do not affect the gap, however, an element
of the virtual domain pool is responsible for part of the gap
if the difference between it and its corresponding element in
µorig is large after (only) sub-sampling, and if the IFS code
associates it with many range blocks Ri, which are
themselves associated with high scale factors (si).

For a given domain location, the reconstructed error is
generally greater than but of the same order of magnitude
as the collage error, i.e., ( ) ( )( )

ll DorigDa µτµ ≈ .

Furthermore, if several corrections are made and the IFS
iterative process is re-used, only the difference between
( )

lDorigµ and ( )( )
lDorigµτ need be considered. The

difference between ( )
lDaµ and ( )( )

lDorigµτ will continue

to be reduced, approaching zero, by correcting other parts
of the picture.



Hence, the "optimal" vectorial shift to add to r ( )
lDaµ in

order to reduce the gap will be:

( ) ( )( ) 




 −

ll DorigDorig rr µτµ  .

For range blocks of size BxB and domain blocks of size
2Bx2B (with a step of 2B between 2 consecutive domain
blocks), the location of a domain block also corresponds to
a set of 4 range blocks. Hence, the above expression can
also be viewed as a simultaneous correction, according to
the collage error, of a set of 4 range blocks, up to a scale
factor of 2, thus motivating the method of Section 2.2).

In other words, in order to ensure that the resulting
attractor image will be nearly equal to the collage image,
the IFS code τ is modified to obtain τ’ , by adding only
vectorial shifts (without altering the correspondence
between range and domain blocks or the contractivity of the
code).  This is done in such a way
that: ( )( ) ( )origorig µτµττ ’’’ = .  To achieve this, we must

partially reduce the collage error, i.e., ( ) origorig µµτ −’ , to

make τ’  invariant to the collage image.

2.4  Algorithm

Initialization.
a) Compute τ0 and the associated attractor according to

Jacquin’s method.
b) Define the number of correction n.
c) Set the counter loop equal to 0

Correction stage.
a) Stop if loop count is equal to n;
b) Select a domain block (which has not yet been

corrected) according to the criterion defined in 2.3.
c) Select the pixel region of size 2Bx2B which

corresponds to the selected domain block location
d) Sub-sample the selected area using the operator r to

compute the correction vector O of size BxB.
e) Quantize O by selecting the closest error vector O’  in

the correction codebook (see next section for the
design of this codebook);

f) Update the IFS code to obtaining τloop+1, the next

improvement to the IFS code by adding the VQ shift
code vector O’ , after having over-sampled it, by pixel
duplication from size BxB to 2Bx2B.

g) Iterate the upgraded IFS code to spread the correction
and update the domain pool.

h) Increment loop and go to (a).

Decoding. With the new IFS code, the associated
attractor can be found in the same manner as in classical
IFS decoding, except there is an additional step of vectorial
shifting for some local transformations.

Figure 1. Visual representation of distances
This figure shows how the three distances Ec, Er and Ef
decrease as a function of  the number of corrected domain
blocks according to the algorithm described in this section
without VQ, i.e.,  step (e) of stage 2) is omitted. The

quantitites origµ , ( )origloop µτ , and ( )init
n
loop µτ  are

respectively associated with symbols ‘o’ , ‘ x’  and ‘ * ’ .
Results are for the 256x256 Lena image.  The number ‘loop’
of corrected domain blocks vary from 0 (at right) to 256 (at
left), with intermediate steps of 1, 2, 5, 10, 20, 30, 40, 50,
75, 100, 128, 150, 200 and 208. The initial values of Ec and
Er (i.e. with loop = 0), in terms of RMSE, are respectively
10.92 and 11.21; the final ones are both 8.39.

2.5 Correction codebook design

In order to preserve an efficient compression rate, the
vectorial corrections have to quantized. Several design
methods can lead to an efficient codebook [3]. Here, we
take the following approach:

1. The codebook is initialized to the range pool (blocks of
size BxB) extracted from the attractor associated with τ0.
2. To each sub-block of size B/2xB/2 (i.e. corresponding
to the size of a subsampled range block), its average value
is subtracted (based on the remark that the matching
between blocks for IFS code estimation is realized in such a
way the resulting average value of collage errors is zero for
all range blocks),
3. The number of vectors is reduced from M to M’  (with
M’  << M) using a modified version of the Lloyd algorithm:
that is to say, final vectors of the codebook must be
elements of the training set (the initial codebook.).
4.  The size of the codebook is enlarged firstly from M’  to
8.M’  by using isometries (isometry-VQ), and secondly to
8.g.M’  by using a scale factor (gain-VQ).  Moreover, if
needed, the codebook can be further enlarged by
constraining one quarter of the correction block’s pixels to
be zero, so that only ¾ of the block is corrected.



The main advantage of this approach is to preserve the
features of fractal coding: the codebook of errors is
included in the IFS code (i.e., the attractor) itself, and in
this way:
(a) The codebook of corrections is adaptive and it is
not necessary to transmit it to the decoder (as in the basic
IFS coding approach where it is not necessary to transmit
the domain pool) since the decoder can directly compute
the codebook from the IFS code by omitting the
corrections.
(b) The compressed data obtained by this scheme is
still theoretically independent of the size of the image: if
the attractor is decoded using a scale factor [4], the
correction codebook will also be automatically created at
the appropriate resolution.

Bit rate. The increase in the bit rate due to the
correction stage will be given by, sdom + n.scor where sdom,
is the size of the domain pool (1 bit per block indicates if
there is a correction or not), n is the number of corrected

domain blocks, and cors2  is the size of the correction
codebook.

Preliminary results. In spite of the performance
penalty resulting from quantization of the corrections, the
improvement offered by the new algorithm in terms of
quality and control over the image reconstruction is very
promising.  Typically only 10 corrections are enough to
reduce the reconstruction error to the point where it is equal
to the original collage error.
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Illustration 2: Preliminary results
This illustration shows how the collage and reconstruction
errors vary according to the number of corrected domain
blocks using the entire algorithm (including VQ of
corrections) for the 256x256 Lena image.

3. Concluding remarks

The proposed scheme retains the advantages of the
classical IFS codec, i.e., an adaptive codebook is
automatically available at the receiver, while mitigating the
key weakness of the IFS codec, namely, a reconstruction
error that can be substantially in excess of the collage error.

Each correction to the IFS code is based on adding a
quantized vectorial shift to some local τi. This modification
of the IFS code does not alter the contractivity and not only
is the collage error reduced, but also the error of
reconstruction is also controlled by the corrections.

We have shown that, in order to decrease the gap
between the errors of collage and reconstruction, it suffices
to correct, according to the collage errors, only some parts
of the picture up to a scale factor of 2  (In our example,
only one index is necessary to correct a region equivalent to
4 range blocks).  Moreover, it is necessary to take into
account only regions that include part of a domain block
which itself creates a non-zero additional error, after having
considered scale factors of its associated range blocks.

Initial simulations of the new algorithm show the
correction of a single domain block propagates to
improvements in other regions of the image after re-
applying the iterative process.  Thus, because the algorithm
ties the collage error to the reconstruction error, each
additional correction step further decreases both the collage
error and, concurrently, the reconstruction error.

We are currently investigating several improvements to
the proposed algorithm.  Specifically, these include ways to
increase the effective size of the correction codebook and
the use of  the scale factors to control the precision of
correction (and hence, the bit rate).
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