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ABSTRACT

This paper examines the relationship between iterated
function systems (IFS), a fractal approach to image com-
pression, and mixutre of principal components (MPC), a
neural network approach to image compression. Both can
be fundamentally expressed as a local linear transforma-
tion. In IFS, the basis vector comes from the image itself
and evolves during the iterations while in MPC, the trained
network contains the basis basis vectors. A new method of
image compression is presented which uses an MPC net-
work as a library for reducing the search for the large do-
main blocks in IFS. The resulting hybrid approach has bet-
ter rate-distortion characteristics relative to standard IFS
when tested on a standard image.

1. INTRODUCTION

A number of new nonlinear techniques for image compres-
sion have emerged recently which include fractal methods
[1, 2, 3] and neural network methods [4]. They are non-
linear approaches and have been shown to have advantages
over standard techniques. However, for fractal coding, the
computational requirements for encoding an image are sig-
nificant. This paper presents a new method which combines
features of both approaches, resulting in improved perfor-
mance.

2. MIXTURE OF PRINCIPAL COMPONENTS

A new approach to data representation, a mixture of princi-
pal components (MPC), has recently been developed [5, 6].
The MPC representation has been used to develop a number
of novel neural network-based adaptive image compression
methods. It is a modular architecture where each module
consists of a set of one or more basis vectors which performs
a linear transformation on the input data. In addition, each
module represents a class of input data and the basis vectors
of each module defines the class.

Figure 1 illustrates the architecture of the network.
The input vector, x € RY, is linearly transformed by
each of the K modules resulting in K coefficient vectors,
{y1,¥2,...,yk}. Each module contains an orthonormal set
of M basis vectors defining an M-dimensional linear sub-
space. So, if W; € R¥M*M is an N x M matrix whose M
columns contain the M basis vectors, the coefficient vector
vi € RM is calculated as

yi = Wix (1)

The classifier then chooses the output of the winning mod-
ule based on the subspace classifier

arg { max(|[Pix|) | @

where P; € RY*¥ is the linear projection matrix calculated
as
P, = W;W/ ®3)

Since W; is an orthonormal set, i.e., WX W; = I, an equiv-
alent classifier to 2 is

arg { max(|y) } @

The winning class has the largest coefficient vector norm.
The network then outputs the winning class index, k, and
the corresponding coefficient vector, yy.

The decoder has the same set of transformations,
{W1,Wa,...,Wg}. The reconstructed vector, %, is cal-
culated as
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Figure 1. Coding section for MPC network with K classes and
M components per subspace.

The performance of these adaptive networks can surpass
that of the optimal nonadaptive Karhunen Loéve transform
(KLT); up to a 3 dB gain in signal-to-noise can be realized
[5]- Also, the networks have significant computational ad-
vantages in terms of complexity at the decoder over the KLT
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Figure 2. In an IFS, self-similarity is sought between the larger
domain blocks and the smaller range blocks in an image. As-
sociated with each range block is a transformation, t;, which
specifies the self-similar domain block. (From [11])

and the fast discrete cosine transform (DCT). When applied
to the problem of compressing digital chest radiographs, it
was found that compression ratios of between 30:1 and 40:1
can be realized without an unacceptable loss in image qual-
ity [7]. Furthermore, the distortion introduced by the new
method was judged to be generally less objectionable than
that from the KLT. Similar advantages have been demon-
strated for synthetic aperture radar (SAR) images [8].

3. ITERATED FUNCTION SYSTEMS

An emerging technique in image compression is the use
of Iterated Function Systems (IFS) to compactly represent
graphics or images [1, 2, 3, 9]-[15]. With IFS, an image is
represented by a set of mappings which, in general, through
a contractive affine transformation maps larger regions of an
image to self-similar smaller regions. For practical image
compression, a number of restrictions on the mapping func-
tions are imposed. Typically, the regions are image blocks
of a fixed size, the ratio between the larger and smaller
blocks is fixed at two, the blocks may only undergo trans-
lation followed by one of eight symmetry operations (e.g.,
rotation by n x 90°, or a reflection), and the grey level value
gets shifted and scaled.

This process is illustrated in figure 2. Each range block
X; has associated with it a transformation t; which speci-
fies: a translation, (z,y);, a symmetry operator, a grey level
scale factor, a;, and a grey level offset, b;. It is the set of
transformations, T' = {t;|¢ = 1,...,n}, which are stored or
transmitted as the compressed representation. For recon-
struction, an iterative process is performed. Initially, the
domain image is set to some arbitrary value (e.g., a solid
grey level). The range image is constructed using the set of
transformations on the domain image. For the next itera-
tion, the new range image then becomes the domain image
and the process is repeated. The range image converges to
what is referred to as the “attractor image” as the number
of iterations increases. For a good set of transformations,
the attractor image is sufficiently close to the original im-
age.

The operations to calculate a range block, )Acgn_"l)

, at an
iteration n+1 can be expressed as follows. Let f™ (z,y) be
the image generated after n previous iterations. Let H(, ),
be the sampling operator for the block that extracts the

larger domain block at location (x,y) in an image. Let O;
be the symmetry operator for the block that may rotate
or mirror the domain block. Let |2 be the operator that
reduces the size of the block by a factor of two. Then,
let zz(-") be the range block before the scaling and offset is
applied, formed as

Zgn) =2 -0; 'H(w,y)i ' f(n) ($7y) (6)

Let a; be the scaling factor for the block and let b; be
a vector containing N offset factors, b;, for the block
where N is the number of elements in the block, i.e.,
b; = [b; b; ... b;]". The range block is then calculated
as

ﬁ§n+1) = aizgn) + b; (7)

The interesting problem is that of determining the ap-
propriate transformation set for a given image. An exhaus-
tive search of the entire transformation space for each range
block to determine the optimal transformation is impracti-
cal due to the large computational requirements. Therefore,
an active area of research is in determining computationally
efficient methods of searching the transformation space to
calculate the set T for an image [12, 2, 13].

4. RELATIONSHIP BETWEEN MPC AND IFS

To illustrate the relationship between MPC and IFS, let us
rewrite equation 7 as

)ACETH—I) = aiwg,"z) “+ ﬂiW1 (8)
or equivalently
%" =Wy, ©)
where
vi=| 2] (10)
and
Wi = [wi wiy] (1)

In other words, the IFS equation 7 is of the same form as
that of the MPC equation 5.
It follows, then, that w; is simply DC, i.e.,

1
1 ].
W = — . 12
= (12)
1

For W to be an orthonormal system, then the basis vector
ng;) is derived as

(n) _ T
Wl(j;) _ % (wiz

13
28 — (w2 )w | (19

Both representations are based on linear transform cod-
ing. The essential difference between the two methods, is
that for MPC the basis vectors are computed using princi-
pal components analysis from training sessions on sample
images while the single basis vector (recall that w; is fixed

at DC while ng;) is variable) for IFS is generated from a
portion of the image being reconstructed.



5. IFS CODING USING AN MPC NETWORK
LIBRARY

Disregarding the symmetry operator, ©;, for the sake of
simplicity, each image block under IFS is represented as the
(z,y) coordinate of the larger domain block used to form
the transformation basis set W at the given iteration and
the two-dimensional coefficient vector y. However, given
an exhaustive search, numerous domain blocks may form
adequate basis vectors for a given range block. It may be
advantageous then to collect a representative set of domain
block locations prior to coding and limit the search to only
that set to determine the IFS mapping. The training algo-
rithms for MPC networks can be used to generate such a
set.

This paper presents a hybrid technique which combines
both IFS and MPC. Initially, an MPC network of subspace
dimension M = 2 with the first component fixed at DC
and the second allowed to vary and K classes is trained on
a “typical” image or set of images. This network is then
used to form a library of a limited number of locations (K
of them) for choosing the large sized blocks for the map-
ping. Initially, the image to be coded is searched to find
the location of the best match in the image for each MPC
module. Then, during coding, only those K locations in
the image are searched to determine the large block used
for the affine transform. This approach saves both search
time and bits required for encoding the location.

6. METHOD

6.1. MPC Network Training

Using training methods similar to [8], a number of MPC
networks were trained on a set of standard images. The
block size chosen was 8 x 8. This set did not include the
standard “Lenna” image which was used later for evalua-
tion. The number of classes was grown from 1 to 1024 by
doubling the number of classes. In each case, the number of
components was fixed at one common DC component plus
a single, second component per class.

6.2. IFS Coding

In IFS coding, the mapping from the larger domain block to
the smaller range block may be specified by the (x,y) coor-
dinate, a symmetry code, a grey level offset and a grey level
scale factor. For this evaluation, no symmetry transforma-
tion was performed and the scale and offset values were not
quantized. To vary the representation, the spacing of the
grid from which the larger domain block were chosen was
varied, including grid step spacings of 2, 4, 8, 16, and 32.
The domain block size was 16 x 16 and the range block size
was 8 x 8. For each of these 5 representations for the test
image, the MSE was recorded after the system converged.

6.3. IFS Coding Using an MPC Network Library

Each of the trained MPC networks were used as the library
for the hybrid IFS/MPC method. For a given network,
each class basis set was matched against each possible do-
main block (a grid spacing of 1, i.e., an exhaustive search)
reduced to the range block size (8 x 8). The (z,y) coor-
dinate of the domain block which best matched the class
was recorded for the class. A subspace classifier was used
to choose the winning block. The resulting set of class,
coordinate pairs were then used as the library of domain
blocks to be searched to construct the self-affine mapping
for the IFS representation. This library is stored with the
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Figure 3. Rate-distortion curves for each of the three tech-
niques. The rate is the number of bits per pixel required to
encode the class index for IFS using an MPC library, or the co-
ordinates on the domain grid of the domain block for standard
IFS.

subsequently encoded representation of the image. In con-
structing the IFS, only those domain blocks in the library
are searched for each range block. Instead of recording the
coordinates of each domain block, only its index in the li-
brary is stored. As above, no quantization was performed
on the scale and offset coefficients.

7. RESULTS

Figure 3 shows the rate-distortion curves for the two tech-
niques. Since the two coefficients corresponding to the scale
and offset for the two IFS methods were not quantized, only
the coordinate information determined the base bit rate.

When comparing the two IFS approaches, the figure
shows that for the same number of bits required for en-
coding either the coordinates of the domain blocks or the
index of the MPC library for each range block, the use of
the hybrid IFS method results in less distortion. For ex-
ample, at an index or coordinate bit rate of 0.125 bits per
pixel, the standard IFS had a PSNR of 29.0 dB while the
hybrid IFS method’s PSNR was 29.8 dB.

Figures 4 and 5 show the results at 0.125 bpp for the stan-
dard IFS and hybrid IFS with MPC library coding methods
respectively. The hybrid IFS method shows less distortion
than the standard IFS. For example, the block effect distor-
tion is less noticeable in smooth regions with the IFS/MPC
method. Also, the edge of the shoulder in the bottom right
of the image is preserved under the IFS/MPC method while
the IFS approach introduces significant distortion. This
difference in quality agree with the numerical error results
shown above.

8. CONCLUSION

This paper illustrates the conceptual similarities between
the IFS representation and the MPC representation for im-
age coding. IFS is in effect a transform coding method



Figure 4. IFS coding at 0.125 bpp for coordinate encoding.

where the basis vectors are generated from a portion of the
image being reconstructed. By exploiting this similarity,
a new method had been developed which uses a library of
domain blocks generated by MPC in an IFS scheme. This
new method appears to result in significant improvements
over the standard IFS method. Both the search complexity
is reduced as well as the distortion.
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