A Parallel Approach to Image Decoding in the
Fractal Image Block Coding Scheme

Lubomir DEDERA — Jén CHMURNY
Department of Informatics and Computers, Military Academy,
031 19 Liptovsky Mikulas, Slovakia

In this paper a new parallel decoding algorithm for a fractal image coding
scheme is designed. The algorithm utilizes a neural-network-like computational
model where the number of steps corresponds to the number of iterations of the
“traditional” iterative algorithm.
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1 Introduction

Fractal image compression, based on the theory of contractive transformations,
began with the work of Michael Barnsley [1, 2] and Arnauld Jacquin [3, 4]. Since
then a large amount of work on the topics has been undertaken which has given
the fractal image coding the power to become a serious competitor of the estab-
lished compression techniques. Neural networks (NN) were suggested for image
decoding in fractal image coding schemes in [5] where two methods were intro-
duced: the first method for generating Iterated Function System (IFS) attractors
and the second method for generating invariant measures of IF'S. Both proposed
methods are of more theoretical than practical importance. The aim of this pa-
per is to design a NN-like decoding algorithm for the “traditional” block-based
fractal image coding scheme.

The rest of the paper is organized as follows: Section 2 describes the basic
principles of the fractal image block coding. Section 3 introduces a new parallel
decoding algorithm. The parallel computational structure the algorithm is based
on has been derived from the mathematical model of the code which has been
designed by means of the theory of graphs. This structure has much in common
with recurrent neural networks. The algorithm itself utilizes the massive par-
allelism for the computation of the values of pixels. Section 4 summarizes the
properties of the proposed parallel approach to image decoding.



2 Coding scheme

Let I be an original image. A set R of non-overlapping partitions of I, R =
{Ry,...,R,} such that Ul_, R; = I, is called a range pool; R;, i = 1,...,n are
called range blocks. In the experiments described later square range blocks of the
same size have been used.

A set D of (overlapping) partitions of I, D = {Dx, ..., Dy}, is called a domain
pool; D;, 1 =1,...,m are called domain blocks. In this case square domain blocks
of twice the size of range blocks distributed uniformly over the image I have been
used.

Each domain block D; € D has been scaled down to the size of a range
block using the pixel averaging operator avg and then 8 isometries of the square
(to-identity, t1, to-reflections about mid-horisontal and mid-vertical axes, t3, t4-
reflections about both diagonals, and 5, tg, t7-rotations through 90°, 180°, 270°)
have been applied on it [3, 6]. The resulting pool C of the size 8m is called a
codebook pool.

Next we can consider each range block as a vector R € RP where p is the
number of pixels in the range block R. The encoding problem for the range block
R (using a codebook block C) is then the least squares problem

in [|[R—A 1
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where A is a p x 2 matrix with columns C,(1,...,1)T, 2 = (a,b)T € R?is a
vector of coefficients, and the symbol || - || denotes the Euclidean norm defined

by the formula

Iyl = zy @

The goal of the solution to (1) is to find the best approximation of the coded
range block R using the codebook block C and the fixed basis block (1,...,1)T.
The results are two coefficients a, b, which can be interpreted as contrast scaling
and luminance shift, for which (1) reaches the minimal value.

If the codebook block C' € C is not in the linear span [(1,...,1)%], then the
minimization problem (1) has a unique solution

T=(ATA)'ATR (3)
where the matrix (ATA) AT = AT is a so called pseudo-inverse of A. The
approximated “collage block” can be expressed as

col(R) = AATR. (4)

The aim of encoding is to find the best-matching Cr € C to each R € R (with
the lowest value ||R — Az|| among all C' € C) and the corresponding coefficients
agr, br (1). The code of each range block then consists of the following items (see
also Figure 1):



Figure 1: Description of the code



e index of the optimal domain block (corresponding to the optimal codebook
block Cg)

e applied isometry isg (corresponding to the optimal codebook block C)
e coefficient ag, |ag| <1

e coefficient bp.

Since the method is based on the theory of contractive transformations and
Banach’s fixed point theorem (the condition |ag| < 1 assures convergence), de-
coding can be performed using the following iteration scheme

R = qp isp o avg(DY) + bg (5)

where isp denotes the isometry operator used for the coding of the range block
R, avg the averaging operator applied on the optimal domain block Dy and
equalizing the size of domain and range blocks, ag the contrast scaling coefficient,
br the luminance shift coefficient (both coefficients correspond to the particular
range block R), and () denotes an iteration step (see also Figure 1). One iteration
cycle consists of the application of eq. (5) on each R € R.

3 Parallel decoding algorithm

3.1 The mathematical model of the code

The mathematical model of the code can be described by means of directed
graphs. Suppose, for simplicity, that the size of domain blocks is twice the size
of range blocks. Then, the dependence of the pixel values of codebook (range)
blocks (R) on the pixel values of domain blocks (D) is as depicted in Figure 2. In
this case the value of a pixel is approximated using the value of four corresponding
pixels in the domain block.

Let I be an original image, R = {Ry,...,R,} its range partition, D an
arbitrary domain pool consisting of blocks of twice the size of the size of range
blocks in R and let C; be the code of the image I defined by the formula

CI = {(RiaDiaiSiaaia bz); 1 S 1 S n} (6)

where R; is the coded range block, D; € D is the corresponding domain block,
is; € {t0,.-.,t7} is the used isometry, a; € R is the used contrast scaling and
b; € R is the used luminance shift.

For the code C it is possible to construct the following directed graph G,
(Figure 3): G¢, = (V, H) where the set of vertices V' = V; UV, contains vertices



Figure 2: Correspondence of pixels



Figure 3: The graph representation of the code



of two types and the set of edges H = H;|J H, contains edges of two types as
well. The set of vertices V] contains all pixels, i.e.

Vi={(,4): 0<i<m,0<j<n} (7)
The set V5 contains vertices corresponding to the elements of the code Cj, i.e.
Vo={z:z € Ci}. (8)

From the point of view of interpretation the values of luminance shifts are used.
The edges belonging to the set H; express the dependence of the value of each
pixel on the values of four different pixels, i.e.

Hy = {[z,y]: y = (i,5) € iNE(R, D, iz, a,b) € C; : y € RAz € Dg(iz(D),1,4))}

(9)
where Dg(D,i,j) denotes the set of those four pixels belonging to the domain
block D which correspond (after pixel averaging) to the pixel (i, j) € R (Figure 2).
An edge [z, y] € H, if and only if the value of pixel y € V] has been approximated
with the quintuple corresponding to the vertex = € V5, i.e.

Hy={[z,y]: yeViAz € Vo ANy € hg(z)} (10)

where hg represents the projection R x D x {¢g,...,t7} Xx R Xx R — R defined
by the formula hg((R, D,iz,a,b)) = R. All the edges belonging to the set H;
will be weighted with one quarter of the value of the corresponding coefficient a
(contrast scaling), i.e. with the function h; : H; — R defined by the formula

1
hi([z,y]) = 14 = A(R, D,iz,a,b) € C;: y=(i,j) € RAx € Dg(iz(D),1,j)
(11)

and the edges in H, will be weighted with the constant 1, i.e. with the function
he: Hy — R,

ha([z,y]) = 1. (12)

3.2 Parallel computational model

According to the graph G, it is possible to construct a neural-network-type
parallel computational model solving the image decoding problem in the following
way:

e Each vertex of the graph G, is assigned one neuron (the neurons are de-
noted by the same symbols as the vertices of the graph).

e Each neuron which corresponds to a vertex in the set V; is assigned the cor-
responding pixel and the state of each neuron in the t—th step, ¢ =0,1,2,. ..
expresses the value of the pixel which was determined in a particular step.
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e Each neuron which corresponds to a vertex in the set V5 is assigned a con-
stant input expressing the value of the luminance shift which the particular
vertex represents.

e The matrix of connection weights W between neurons with the size [V|x |V/|
is defined in the following way:

hl(Ul,’Ug), if [’1)1,’1)2] c Hl;
w’u1,v2 = 1, 1f [UlaUQ] S HQ, (]‘3)
0, otherwise.

Let v;(t) represent the state of the neuron v; in the t—th step. Then the
parallel computational model described above represents a discrete dynamical
system where the dynamics is defined by the equation

\4
Ui(t + 1) = Z ijvivj(t) (14)
j=1
where v; € V4 and
vk (t) = ho(zk) (15)

where v, € V5, z; is the coding quintuple corresponding to the vertex v and
hy is a projection R x D X {i,...,t7} X R x R — R defined by the formula
hy((R, D,iz,a,b)) = b.

Since at most five synapses leads to each neuron the matrix W will be sparse.
The decoding algorithm itself can be described in the following way:

1. t:=0;
2. v(0) := 0 for all v € V;
3. v(t+ 1) i= S w0, (8);
4. t:=t+1;
5. If t < the number of iterations required then
e Goto 3;
else
e Finish.

The proposed parallel computational structure performs decoding using the
iterative algorithm (Section 2), but it utilizes the fact that the values of pixels
can be computed in parallel during single iteration steps. The states of the
neurons will converge towards the states which represent the values of pixels after
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Figure 4: Results of decoding after 0, 1, 2, 3, 4, 5 iterations

decoding. The functional equivalence of both approaches (and the correctness of
the new algorithm as well) comes from the fact that the four synapses leading
to a neuron which corresponds to a pixel from neurons of the same type perform
space contraction by pixel averaging and contrast scaling (multiplication by the
coefficient a) at the same time. The synapse leading to the neuron from the
neuron corresponding to a particular luminance shift b adds this value to the
value described above.

The process of decoding for the 512x512x8 image “Lena” after the particular
number of iterations can be observed from Figure 4. The image code has been
obtained using range blocks of the size 828, domain blocks of the size 16x16
distributed uniformly over the whole image and a codebook of the size 1600
blocks. The bitrate achieved is 0.368 bpp. The process starts with a black image
(v;(0) = 0, v; € V1) and the result after 5 iterations, in terms of peak-to-peak
signal-to-noise ratio, is 30.50 dB.

4 Conclusion

The properties of the proposed parallel approach can be summarized as follows:



The number of steps required for image decoding depends on the contrast
scaling coefficients of the transformations used for image coding (practically
5 —30).

The process of learning in terms of neural networks is replaced by the image
coding process (not performed by means of neural networks). The results of
this process (6) are the connection weights (13), (11) of the designed parallel
computational structure and the values of the neurons V5 (15) which can
be regarded as the input neurons.

In the 3rd step of the algorithm only the values of neurons which belong to
the set V] are computed since the states of neurons belonging to the set V5
do not change their values.

In the case when the computed values of pixels exceed the boundary values
(e.g. 0 and 255), it is necessary to round them to these boundary values;
naturally the same holds true for the basic iterative algorithm.

Since the new parallel decoding algorithm and the basic iterative algorithm
are based on the same theory, the results are also the same (e.g. [8, 9, 12]).

The method can also be used in the case of a diffent ratio of the sizes of
domain and range blocks; in this case it is necessary to modify the set of
edges (synapses) H; and its weights in order to express the dependence of
the values of pixels and averaging operations.

The proposed algorithm can be extended to other fractal coding schemes (e.g.
[13]) with different shapes and sizes of range blocks.
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