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ABSTRACT

This paper presents a new partitioning scheme for fractal
image coding, based on triangles and quadrilaterals. The
aim is to have the advantage of the triangles over the square
and rectangular blocks, in terms of adaptivity to the image
(reduction of the block effect), and to reduce the blocks
number by grouping neighboring triangles into quadrilat-
erals. Quadrilaterals permit a reduction of the number of
local contractive affine transformations composing the frac-
tal transform, and thus to increase the compression ratio,
while preserving the visual quality of the decoded image.

1. INTRODUCTION

The partitioning scheme is very important for fractal im-
age compression. Y. Fisher in [3] proposes the quadtree-
based partitioning and a more flexible one: the H-V par-
tition, based on rectangles [4].This last one is arranged so
that edges in the image tend to run diagonally through the
blocks. In this paper we propose the Delaunay triangulation
satisfying the following properties:

e it is fully flexible because it can be computed on a
set of points well localized on the image support, de-
pending on its grey level content

o the storage of the partition is efficient: one bit is used
to code the addition or the suppression of a point
(triangle vertex) in the triangulation

e triangles can have any orientation, and reduce the
block effect in the decoded image.

2. THE FRACTAL TRANSFORM

Let us consider an eventually contractive operator W de-
fined from the metric space (X, d) of digital images to itself,
where d is a given distance. W is eventually contractive if
it is contractive at the n'”? iterate. W has a unique fized
point A; given by:

lim W°*(B) = A, = W(A,),
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VBeX, (1)

where W°* means the k" iterate of W. In this case, the
image A; is completely defined by the operator W. The
principle of fractal image compression is to construct an
operator W for which the fixed point A; is a close approxi-
mation to a given image A to encode. The operator W has
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to be eventually contractive and to minimize the distance
d(W(A), A). This requirement is given by the generalized
collage theorem [3]:

d(A,A) < - 127

—1-—s —0

d(A,W(4)) (2)
where s is the contractivity of W°" and o is the Lipschitz
factor of W (if W is contractive, ¢ < 1). The formula
(2) shows that the minimization of d(A, W(A)) is subop-
timal but much easier to realize than the minimization of
d(A, A), as A; is unknown during the encoding step. One
solution, originaly proposed by Jacquin [5], is to partition
the image A into N non-overlapping squares R;,

N
A:URi with RinR; =0,
i=1

and to map on each square R; the most similar trans-
formed block wi(Da;)). @ is an application from [1...N]
to [1...M] where M < N: the block D), different and
larger than R;, can be choosen anywhere in the image and
can be mapped onto one or more different blocks of the par-
tition R. In this case, the transformed image A with the
operator W discussed above is expressed as:

W(A) = U wi(Dagi))- (3)

W is composed of local transforms w; and thus returns the
union of transformed parts of the image A, in order to have
A very close to W(A). This is possible if the image A is
sufficiently piecewise self-similar and if the partition R is
computed in a grey level dependent way. The compressed
representation of the image A typically contains the parti-
tion construction rule, the N local contractive transforms
w; coefficients associated to each block R; and the coding of
the corresponding block D); shapes and locations in the im-
age. We show in section 5 that the triangles D; are searched
in a partition D, (not anywhere in the image) in order to
make the encoding step possible, in terms of computing
times.

3. DELAUNAY TRIANGULATION

Let S be a set of points in the plane. The Delaunay trian-
gulation DT'(S) associated to S is the unique triangulation



with empty circles. More formally, DT(S) = {(p,q,r) €
S%,C(p,q,r) NS — (p,q,r) = 0}, where C(p,q,r) is the
circle circumscribed by the three points p, ¢, and r. An
important property of the Delaunay triangulation for our
compression application is the local maz-min angle criteria
which maximizes the smallest interior angle of the triangu-
lation. This property reduces the error in the localization
of each pixel in the triangles.

We choose an incremental approach to compute the Delau-
nay triangulation because of its two main advantages: the
dynamic and optimal aspects [2]. The computation of the
set of points adapted to the image content is done with a
split and merge approach [1] as it is detailed in the following
algorithm:

1. Initialization of the process with a lattice on the im-
age support.

2. Repeat until convergence: homogeneity of all the tri-
angles (standard deviation of each triangle is less than
a fixed threshold F) and triangle sizes greater than a
fixed threshold 7'

(a) Compute the Delaunay triangulation (dynamic
management with the incremental algorithm).
In practice 10000 triangles are computed in less
than 1 second on a Silicon Graphics Indigo work-
station.

(b) Compute the grey level mean value, standard
deviation and size of each triangle.

(c) Split each non-homogeneous triangle (standard
deviation is greater than E) by adding a point
on its barycenter.

3. Merge the triangles under the star polygon criteria. If
all the triangles issued from a point p have the same
grey level according a threshold, then p is suppressed.
This is equivalent to triangulate only the star polygon
which is defined by the set of neighbors of p in the
Delaunay triangulation (see Figure 1).

The step (3) consists in suppressing “useless” triangle ver-
tices from the set of points. With such an algorithm, the
image is adaptively divided into small triangles that cover
edged and textured regions, and into larger triangles on ho-
mogeneous regions. Figure 2 presents a result computed on
the well known Lena image.

addi tion of a pm

suppression of a po int
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Figure 1: Addition and suppression of a point in Delaunay
triangulation

There are many other ways to construct the partition.
A possibility that can be used for the computation of the set

of points consists in starting from a dense and regular set of
points, and in operating only one merge step on the initial
triangulation. Small triangles stay on the textured regions
of the image and large triangles appear on the homogeneous
regions.

3
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Figure 2: Split and Merge algorithm computed on the Lena
image and initialized on a lattice. First row: initialization (255
triangles), split 1 (734) and split 2 (971). Second row: split 3
(3720) and merge step (1867 triangles)

4. QUADRILATERALS

This step consists in extracting from the triangulation neigh-
boring triangles that form convex quadrilaterals. The aim
is to significantly reduce the number of blocks, and conse-
quently the number of transformations to code.

Merged triangles

[] Untreated triangles

Figure 3: Extraction rule of quadrilaterals.

The first step is to test whether or not a quadrilateral
is concave (or almost degenerated). This is done by com-
paring the signs of the two vector products vectorl xvector3
and vector2 xvector3 as it is shown in Figure 3. If they have
opposite signs the two triangles will form a convex quadri-
lateral. Otherwise they will result in a concave quadrilat-
eral and we redo the test for another neighboring trian-
gle. Thereafter, we use a multiple test regarding the differ-
ences of mean values and standard deviations between the
two triangles. If the values are less than a given threshold
we merge the two triangles. This algorithm returns many
quadrilaterals on the homogeneous and textured regions.
The contours stay covered by small triangles (Figure 4).



Figure 4: Mixed quadrilateral and triangular partition of the
image Lena: 1706 triangles + 715 quadrilaterals.

5. ENCODING ALGORITHM

The encoding algorithm is based on a two-level Delaunay
triangulation of the image support. Omne of the two lev-
els returns the blocks D; (partition D) discussed in section
2. The partition D is composed of regular blocks and is
not adapted to the image content. It provides a pool of
blocks available for the encoding process. Moreover, the
size of the pool is increased by considering the 6 or 8 isome-
tries (rotations and flips) applied on triangular or quadri-
lateral blocks. The second partition (partition R) returns
blocks R; of smaller or equal “mean area” and is computed
with the algorithms proposed in section 3. It is important
that the two partitions R and D share a large number of
self-similar blocks. Neighboring triangles that form convex
quadrilaterals are then grouped; the other triangles are left
unchanged.

Transformations w; composing the operator W determine
the way to map a block D, ;) onto a block R; and is written
as:

wi(Daiy)

wi($m7ym7f($m7ym)) v ($m7ym) € Da(z‘)

’ ’ 7 /

= (xm7ym7f(xm7ym))
= (vi(zm,Ym), $i f(Zm,ym) + 0i),

where f(Zm, Ym) is the luminance of the pixel at coordinates
(Tm, ym) in the block D), f(Zm, ysm) is the luminance of
the pixel at coordinates (z,,,y,,) in the block R;, and s;,
0; respectively control the contrast and brightness of the
grey level transformation. The spatial transformation v;
maps a block Dy;) onto a block R; (vi(Dagy) = Ri). In
general, two planar quadrangles are not affine images of
each other. Consequently, we use projective tranformations
to map quadrilaterals :

Ui(zm7ym) = (x;n7y:n) =

a;Tm + biym + € Ci%m +diym + fi (4)
GiTm +hiym +1 ) '\ gizm + hiym + 1

The coefficients a; . .. h; are computed considering the four
vertices of the block D,(;y, and the four vertices of the block
R;. The transformation v; of a triangle onto another trian-
gle is affine and is given by (4) with g; and h; = 0.

The similarity (in terms of grey levels) between a block
R; and the transformed block D,(;) is measured with the
square error (SE) given by:

d(Ri,wi(Da(iy)) =

Ny

> [F @) = 51 (07 (@ 1)) — 0]

=1

for any (#1,, Y1) € Ri, where n, is the number of pixels
included in R;. We use the inverse transformation v; in
order to consider all the “discret” points in the block R;. If
the block R; is smaller than D,;, the block D, is sub-
sampled. However a non uniform subsampling is done when
we compare two different shape quadrilaterals. A better so-
lution that we use is described below (Fig. 5):

The transformation of the four vertices is given by:

7
[]:[]:[] Vh=1..4
Yk Yi br yx

The transformation of a point (zm,ym) in the block D4

m

is given by:
T | | am Zm
yvln - bm ym
with:
(1—a)(1-8)
A _ ap azx as ag 0/(1—6)
b | | b1 bz b3 by B(1l— o)
af
(x3,y3) (x4, y4)
(x'3,y'3) (X'4,y'4)
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Da i)
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Figure 5: Mapping of a quadrilateral onto another.

The point (z1,,ys,) is generally not on the discrete grid of
the image support. A supplementary bilinear interpolation
scheme can be used to compute its grey level value. We
choose the simplest approximation to its nearest “discret”
point.

The contractivity of the transform W is controlled by the
parameters s;. If s = Maz;{si} V i =1...N is less than
1, W is insured to be eventually contractive, considering
the L. distance. Moreover, it is experimentaly verified that
W stays eventually contractive if s < 1.5 [3].

The computation time for a 256 x 256 image coding is about
2 to 10 minutes, depending on the desired compression ratio
and consequently the number of blocks in the partition R.
This long computing time is mainly due to the scanning of
pixels in triangular blocks.



Figure 6: Associations at the end of the encoding step: the
bold-lined square is mapped onto each fine quadrilateral, and
the hatched triangle onto each fine triangle

6. DECODING ALGORITHM

The decoding consists, after reconstruction of the two par-
titions R and D, in iterating the operator W, starting with
any initial image B. The reconstructed image is given by
A~ limy, o W (B). One iteration consists in scanning
each block R; and in applying the transformation w; (affine
or projective, depending on the block shape) on their cor-
responding domain block D). The grey level fu(zm,ym)
of the pixel m in the block R; at the nt? iteration of W is
given by :

Fa(@omy ym) = si famr (07 (@, yim)) +0i ¥ (@, yim) € Ri.

The algorithm needs 5 to 10 iterations to converge. We
observe that the number of iterations is mainly dependent
on the blocks size differences between the two partitions.
The computation time for a 256 x 256 image is less than
5 seconds. Studies on fast decoder convergence have been
done in [6].

7. COMPRESSION

To encode an image, we need to store the coefficients of the
N mappings w;, composing the operator W. One mapping
is needed for each block R; in the partition R. The Delau-
nay tessellation is coded in a graph environment.

Thus, for one transformation w;, it is only necessary to code:

e the position of the triangle D; in Delaunay graph with
My bits (M1 = |log,(nb. of blocks in partitionD)].

e the orientation for the collage with 3 bits (6 possibili-
ties to map a triangle onto another, and 8 possibilities
to map a quadrilateral onto another)

e the scale (s;) coefficient quantized with 6 bits
e the offset (0;) coefficient quantized with 6 bits

In addition, the method of computing the image adapted
partition R must be coded. Since we always start with a
known regular distribution of points to construct the De-
launay triangulation, it is only usefull to code the split and
merge processes. At each stage, one bit codes a triangle
vertex (non-)addition or (non-)suppression. For example,
the final partition in figure 2 is coded with 3460 bits. The

string of 0 and 1 can, moreover, be entropy compressed.
The remaining coefficients a; ... h; are not stored because
they can be computed by the decoder, knowing the two par-
titions R and D). The total number of bits necessary to code
the operator W is given by: Niot = N(64+6+3+ Mr)+ X
with N = total number of blocks R; in the partition R and
X is the number of bits to code the partition R.

8. RESULTS AND CONCLUSION

We present decoding results computed on the grey level
image Lena (512 x 512). The use of quadrilaterals allows:

e to increase the compression ratio by reducing the
number of transformations w; to code

e or to increase the quality of the decoded image, while
preserving a constant compression ratio, by comput-
ing smaller triangles on the contours of the image,
before the quadrilaterals extraction

triangles | triangles 4+ quadrilaterals
T. =24.7:1 | 30.14 dB 29.95 dB
T. = 31.6:1 | 29.16 dB 29.16 dB
T. = 34.9:1 | 28.80 dB 29.00 dB
Table 1: Decoding results: Peak signal to noise ratios

(PSNR) at different compression ratios (7).

Table 1 confirms that if the compression ratio increases, the
decoded image quality stays higher with a mixed triangular
and quadrilateral partition R than with a triangular parti-
tion. The reconstructed images contain fewer artifacts and
block effects on the diagonal edges, than methods based on
the quadtree partitioning. This new partitioning scheme
is convenient for fractal image compression and could be
more optimized. We are working on using a gradient image
to more constrain the triangulation.
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