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Abstract

The principle of attractor image coding presented in
this paper is based on the theory of IFS (Iterated Func-
tion Systems). The algorithm ezploits piece-wise sim-
tlarities between blocks of different sizes. To improve
the algorithms based on regular and square blocks, we
propose an adaptive Delaunay triangulation of the im-
age support. The originality of the method is to map
the triangles on specific parts of the image in order to
have lots of similarities between them.

1 Introduction

The main purpose of attractor image compression
[1] is to find resolution independant models of images.
A E. Jacquin first proposed an automatic algorithm to
code “real-world” images. (He published recently a re-
view on fracal image coding [5]). His main idea was to
state that an image is formed of transformed copies of
parts of itself. He showed that partitioning images
into square blocks, and designing discrete transfor-
mations acting blockwise, approximates the original
image by a self-similar one. He refered to this ap-
proach as fractal block coding. Many researchers sub-
sequently compressed images with a similar approach
[4]. Another possibility is to compute the parameters
of the transformations directly from local invariant
features of the image. This last idea has been suc-
cesfully implemented on a pixel row of an image [6].
The originality of our approach is the use of Delaunay
tessellation to partition the image support. The ap-
proach benefits from properties of triangulation, such
as adaptivity, and non-rigidity. It is possible to map
triangles on specific parts of the image, in order to
cover edge, shade, or midrange regions. It is possi-
ble to map triangles on specific parts of the image, in
order to cover edge, shade, or midrange regions.

2 Overview of the encoding principle

Let us consider a grey level image A to be encoded.
We see it as the attractor of a contractive operator

W, obtained by lim, .., W°~(B) = A;, VB € X. The
collage theorem, proposed by M.F. Barnsley, makes
it possible to find an operator W whose fixed point
is close to a given one. It states that if it is possi-
ble to cover the image A by transformed parts of it-
self such that the result is close to the image A, then
the operator W approximately defines the image A.
The operator W returns a result close to the origi-
nal image A, starting with any image as explained
above. The covering being not exact, we have an ap-
proximation of the original image during the decoding
phase. A.E. Jacquin partitioned the image into non-
overlapping blocks R; and defined the operator W as:
N

W(A) = J wi(AND;), where AN D; is the restriction

i=1

of A to the part D; of the image A. W is composed
of a collection of local contractive transforms w; and
returns the union of transformed parts of the image A.
Our encoding algorithm consists in using a two-level
triangulation of the image support. One of the two
levels returns blocks D; (partition D), and the other
returns blocks R; of a smaller or equal area (parti-
tion R). The partition R generates non-overlapping
blocks. More details will be given on their construc-
tion in Section 4. The algorithm finds, for each block
R;, a transformed domain block D; which is very close
to R;. The block D; can be found anywhere in the par-
tition D. Then, if we perform the collage of the trans-
formed blocks D; on the blocks R;, we have W(A)
nearly equal to A. In this case, the collage theorem is
satisfied and the operator W encodes the image.

The mappings w; used in our implementation can be
written as:

z a; b; 0 x €
wil vy |=|c d 0 vy |+ fi ]
z 0 0 S; z 0;

The similarity (in terms of grey level) between the
block R; and the transformed block D; is measured
with the square error (SE) given by: d(A N R;,w;(AN
D;)) = 300 (si.dy + 0; — r,)% where d,, and r, are
respectively tlhe intensities of the pixels in the blocks
D; and R;, and ng the number of pixels included in
AN R;. The contractivity of the transform W is in
that case controled by the parameters s;. They have
to be less than 1, in order to insure contractivity.



3 Decoding from fractal code

The fractal code for the compressed image A is
composed of a collection of N contractive transforms
wi(x,y,2). The decoding consists in iterating the op-
erator W, starting with any initial image B. The re-
constructed image is given by A ~ lim,_., W°~(B).
One iteration consists in scanning the blocks R; (in the
same order as during the coding step) and in apply-
ing the affine transformation w; on their corresponding
domain block D;. We usually need 8 to 12 iterations
to converge to the original image. The number of it-
erations depends on the resolution of the image.

4 Adaptive partition of the image sup-
port: Delaunay triangulation

To construct the fractal code, we need to parti-
tion the image support. Different partitions have been
proposed, using regular squares, quadtrees, rectangles
and triangles. This chapter is concerned by Delau-
nay triangulation [8] which offers good properties of
regularity. The unconstrained orientation of triangles
makes it possible to have a data dependant partition.
Essentially there must be a high density of triangles in
regions including details in the image. This principle
can be understood in terms of variance, or gradients
computed on pixels belonging to the interior of trian-
gles. In terms of data structure, a graph environment
is used in order to facilitate the manipulation of the
triangles. The algorithm (an incremental approach)

Figure 1: From left to right: the initial known regular
triangulation, the end of the split step and the merge
step

works by local modifications of the triangulation when
a new triangle is inserted. It proceeds in two steps
which are called Split and Merge [2, 3].

We start with a small number of points (triangles ver-
tices) regularly distributed on the image support (Fig.
1). The split step consists in adding a point on the
barycenter of each non homogeneous triangle (vari-
ance or gradient criteria). The split process continues
until convergence. Thus it stops when either the tri-
angles are homogeneous or the surfaces of the trian-
gles are less than a given threshold. The merge step
consists in deleting neighboring triangles with similar
mean grey levels. Those triangles are suppressed from
the graph. We note that the number of triangles is in-
ferior to the number of squares or rectangles obtained
in previous algorithms.

5 Compression Ratio

To encode an image we need to store the coeffi-
cients of the N mappings w; composing the operator
W. One mapping is needed for each block R; in the
partition R. The Delaunay tessellation is coded in a
graph environment.

Thus, for one transformation w;, it is only necessary
to code:

e the position of the triangle D; in Delaunay graph

o the orientation for the collage (6 possibilities to map
a triangle onto another)

e the scale (s;) coefficient

o the offset (0;) coefficient

It has been verified that 6 bits to code s; and 6 bits
for o; are sufficient in the general case to provide a vi-
sualy good reconstructed image. The orientation for
the collages needs 3 bits to be coded.

In addition, we must code the way to obtain the im-
age adapted partitions R and D. Since we always
start with a known regular distribution of points to
construct the Delaunay triangulation, it is only use-
full to code the split and merge process, with 1 bit for
a split of a triangle and 1 bit for a merge of a trian-
gle: the division of a triangle during the split steps is
coded with a “1”, the non-division with a “0”. The
obtained string of binary codes can moreover be com-
pressed with classical techniques like the Run Length
Coding. For example, the image “femme” partition R
in Fig. 2 is coded by an uncompressed string of 1564
bits.

The total number of bits necessary to code the opera-
tor W is thus given by: Nypy = N(64+6+3+ M)+ X
with N = total number of blocks R; in the partition
R, X = number of bits to code the two partitions pro-
cesses and M = log,(nb. of blocks D;) = number of
bits to code the position of the block D; in the graph
of triangles D.

6 Results

We have presented results on 256 % 256, 8 bpp grey
level images “femme” and “peeper” (fig. 2). First we
constructed the operator W of the image on a Delau-
nay triangulation, using the split and merge approach.
The resulting tessellation returns irregular triangles
which are image constrained. Large triangles appear
in homogeneous parts of the image. There are 1024
triangles in the partition R for the image “femme”,
1225 triangles for the image “peeper”, and 576 tri-
angles in the partitions D for the two images. The
search for the matching of range blocks is done among
a limited number of triangles D; and not anywhere
in the image. In order to preserve a good fidelity of
reconstructed image with respect to the original, the
two partitions have to present a maximum number of
similar blocks, and also to be image dependant. The
unconstrained orientation of the triangles gives good
results. The decoded image does not present discon-
tinuities, like blocking artifacts as observed with fixed
square block based methods.



Figure 2: Decoding results. From top to down: first,
second and tenth iteration starting with a white im-
age, the original image, and the associated partition
R. Left: Compression ratio = 18.3, PSNR = 27.4 dB.
Right: Compression ratio = 15.6, PSNR = 27.3 dB
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Figure 3: a: triangles obtained with the Split and
Merge algorithm, b: containt triangles

7 Discussions about perspective works

The coding algorithm can be improved by a classi-

fication scheme of the triangles. The classification cre-
ates different types of triangles. The use of a contour
image allows separation of triangles in two classes:
edge triangles and others. Thus, the search, for a given
edge range block, is done through a list of edge domain
blocks.
The split and merge algorithm as presented returns
triangular patches covering homogeneous and edge re-
gions of the image. This particularity is due to the use
of a variance criteria during the split process. It would
be more cunning to force the triangles edges onto, or
close to the image edges, in order to increase the sim-
ilarities between blocks. It has been verified that if
the edge of a transformed triangle w;(D;) is close to
an edge, this triangle is often mapped onto another
triangle R; close to the same edge, with a similar gra-
dient vector. On figure 3.a we notice that if a triangle
D; covers an edge, its neighbours are not similar in
terms of minimizing the distance between the trans-
formed block w;(D;) and its target block R;. When
we visually compare two triangles, only the gray level
surface inside these triangles is important, and not the
grey level mean or variance. In consequence, when the
triangles edges are close to the image edges (Fig. 3.b),
we obtain a set of similar blocks [7]. The collages are
more efficient. In a future work, to construct this par-
tition, we propose to start with a regular distribution
of points on the image support and to add other points
on the image edges. Next, the split process runs on
the initial triangles with a constraint to let unchanged
the triangles close to an edge.
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