This is page i
Printer: Opaque this

A Hybrid Fractal Encoding technique for
Image Compression

E Cloete
Department of Computer Science & Information Systems
UNISA, South Africa
cloete@alpha.unisa.ac.za

LM Venter
Department of Computer Science & Information Systems
PU for CHE, South Africa
rkwlmv@puknet.puk.ac.za

28 November, 1998



ii

ABSTRACT

In this paper we address the time complexity problem associated with frac-
tal image coding. In particular, we introduce a novel hybrid technique called
Fractal Vector Quantization coding (FVQ), which takes advantage of the
best qualities of fractal coding and vector quantization (VQ).

Our proposed approach is a multistep method. VQ is used to construct a
set of primitives' representing small fractions of arbitary real world im-
ages. The affine transformation for each primitive is found through fractal
encoding, creating a set of fractal vectors. These primitives with their cor-
responding fractal vectors form the fractal dictionary. Once the dictionary
is compiled, this step is not repeated. The dictionary is used in a VQ en-
coding approach to approximate arbitrary input images to produce high
compression ratios in acceptable encoding times. The achieved image qual-
ity, obtained after the decoding step, is also of high standard.

1 Introduction

Images which are encoded and decoded with standard fractal coding meth-
ods maintain good image qualities together with high compression ratios.
However, one of the major drawbacks of this method is that the encoder is
computationally expensive. The fractal decoder is simple and reconstructs
the fractal encoded images with little time complexity. Detailed explana-
tions of fractal coding can be found in publications such as [2, 7, 13].

Another image coder, vector quantization (VQ), exhibits a much better
performance in encoding time but the image quality of a VQ decoded image
does not compare favourably to the results obtained with fractal coding.
Another drawback of the VQ coder is that the codebook in an integral
part of both the encoder and decoder. This implies that the VQ decoder
is inferior to the fractal decoder when storage space (a primary reason
for coding images) is considered. The publications such as [9, 17] can be
consulted for detailed discussions on vector quantization.

In this paper, a novel hybrid image coding technique utilizing the positive
aspects of these two approaches is proposed. Some researchers [10, 13, 14,
21] have pointed out the similarity between variants of the VQ coder and
the fractal coder, and some have also suggested a combination of the these
coders. Hamzaoui et al. [12] implemented this idea when they merged the
fractal and VQ coders as an integral part of a new hybrid coder to reduce
the search for the best fractal code. Similar to our method (and conven-
tional fractal coding methods), their encoded image consists of a set of
precomputed affine transformations. In their coder cluster centers are pre-
computed according to the mean-removed shape-gain (MRSG) VQ method
[9] by grouping vectors around their corresponding nearest neighbors. The

n this context, a primitive is considered a most basic building block.



iii

set of cluster centres forms the VQ codebook from which a suitable match
for each range block is defined through an affine transformation. If the
resulting distortion is satisfying, the range block is encoded by the affine
transformation of the nearest cluster center. However, if the least square
approximation yields an unacceptable high distortion, the range block is
encoded by standard fractal coding. This way the search is reduced consid-
erably, yet almost full search fidelity is maintained. A conventional fractal
decoder reconstructs the original image.

In our method, we precompute not only a codebook but also the affine
transformation of each codebook vector. The VQ codebook is transformed
into what we call a fractal dictionary consisting of fractal vectors. Each
fractal vector is constituted of a primitive part and a fractal code part.
Our encoder uses the VQ method of finding the best approximation for a
range block by comparing the range blocks to the primitives in the frac-
tal dictionary. If the least square distorion is sufficiently small, the fractal
code of the matching primitive is recorded. However, for unsatisfying dis-
tortions, the conventional fractal coder is employed to find a better match,
after which the primitive dictionary is updated with the new primitive
(contracted domain block) and fractal code (affine transformation).

Many researches [1, 15, 18, 23, 6, 22, 20] (and many more) have al-
ready suggested and established methods to improve the image qualities
and search schemes of both coders. However, we restricted ourselves to
basic and uncomplicated implementations of the base methods in order
to introduce and establish the FVQ coder. This was done because results
from simple implementations are more easily analysed than results from
optimised methods.

2 Background

2.1 Vector quantization

In standard vector quatization (VQ), a vector quantizer codebook is pre-
compiled as a set of primitives,? say {y;}, which can be used to recreate an
arbitrary real world image. In the encoding step, the input image is seg-
mented into a set of input partitions, say {z;}. A search procedure is then
conducted for each z; to find the best matching y; from the VQ codebook.
Compression is achieved when only the index, j, of the matching primi-
tive is stored. The publications [9] and [17] can be consulted for a detailed
discussion on vector quantization.

2These sets of primitives are usually rather small - from about 512 and up.



iv

2.2 Fractal coding

In standard fractal coding, an imput image is segmented into a set of in-
put partitions, say {z;}. A copy of the input image is also segmented into
analogous (but larger) partitions, say {y;}. The difference between the two
sets is that the first set consists of non-overlapping cells meant to be ap-
proximated by cells from the second set. The analogous set is comprised of
overlapping partition cells in all possible sizes larger than the cells from the
first set so that contraction for an analogous-to-input cell is possible. The
reason for overlapping the second set of cells is to create a wide selection
of cells for comparisons.

After segmentation, an intensive search is conducted in which each input
partition, x;, is matched up with every possible orientation from all the
cells in the analogous set. The best match is recorded. This implies that
for only one input-to-analogous comparison, several isometry operations are
considered to include all possible orientations of the two cells in comparison.
Remember that the analogous set could potentially be very large, which
implies that the number of operations results in a lengthy search for the
best analogous candidate.

During this search, each comparison operation can be described in the
form of an affine transformation which is momentarily stored. When the
best match is found, the corresponding affine transformation is recorded as
the fractal for the particular input cell. [13], [2] or [5] can be consulted for
a detailed explanation of fractal coding.

Standard fractal coding methods rise above many other image coding
techniques in the sense that it maintains high image quality after decoding
but presents high compression ratios during encoding. Also, the fractal
decoder is simple and fast. One drawback of standard fractal coding is that
it is computationally very expensive and hence time-consuming.

Vector quantization on the other hand, exhibits a much better perfor-
mance in encoding times but the image quality of a VQ decoded image does
not compare favourably to the results obtained with fractal coding. Another
deterrent of this coding method is the additional storage requirements im-
posed by the VQ codebook since it is required by both the encoding and
decoding procedures.

In conclusion, the VQ decoder is inferior to the fractal decoder in both
staorage space requirements and image quality but, on the other hand, the
time complexity of the VQ encoder is less than that of the fractal encoder.

2.8 Fractal vector quantization coder

Fractal vector quantization (FVQ) is a novel image coding technique utiliz-
ing the positive aspects of the two coding approaches mentioned above. It
relies on the fundamentals of fractal coding and vector quantization. The
coding is done in three steps, namely the fractal dictionary construction,



the image encoding and the image decoding.

Fractal dictionary construction
The objective in using a fractal dictionary is to reduce the time complexities
associated with traditional fractal coding methods. In order to achieve this
goal, the fractal dictionary is compiled once, and updated periodically.

The fractal dictionary contains fractal records consisting of two compo-
nents: a primitive and an affine transformation. In the fractal dictionary
construction process, (see the details below) a primitive dictionary is com-
piled using a vector quantization algorithm. This primitive dictionary is
similar to the VQ codebook in the sense that it consists of a relative small
number of primitives which can be used to approximate arbitrary digital
images. The fractal dictionary consists of these primitive together with a
fractal (affine transformation) that describes the primitive.

The final fractal dictionary is subject to modification during the encod-
ing process of an arbitrary image only if a suitable fractal vector (in the
comparison between the primitives and a particular input cell) cannot be
found. In such an event, the affine transformation of the input partition is
sought in a conventional manner. A new fractal vector is compiled by using
the input partition as primitive and the newly found affine transformation
as companion. The new fractal vector is appended to the fractal dictionary.
(In our experiments, this did not happen often which is also clearly seen in
the slight time increase from working only with the dictionary to improving
the dictionary during encoding.)

The encoding process
In the second step, an input image (to be encoded), is segmented into input
partition cells. The FVQ encoder uses the fractal dictionary to approximate
each partition cell with a suitable fractal vector. This is achieved by a com-
parison of a partition cell to the primitive part of each fractal vector. Once
an acceptable partition-to-primitive match is found, the affine transforma-
tion of the particular fractal code is stored. In this way, the time-consuming
exhaustive searches of conventional fractal coding is avoided.

The decoding process
In the final step, a conventional fractal decoder is used to decode the com-
pressed image.

The operation of the FVQ coder is depicted in diagram 1.



vi

Diagram 1: Operation of the FVQ coder

3 Designing the FVQ coder

In this section, the theoretical details of the design of the FVQ coder are
explained.

3.1 Fractal Dictionary

The creation of the fractal dictionary proceeds in two phases.

Phase 1: Creating the primitive dictionary
A primitive dictionary is designed from an initial codebook by using LINDE’s
[17] splitting algorithm. This initial codebook includes a set of vectors, {v;}
which must be optimized into the primitives {p;} of the primitive dictio-
nary.

The training set® {t;} serves as input to the splitting algorithm. The
first vector of the codebook is generated by averaging the entire training
set (vq = % > t; with n the number of training vectors). Now an iterative
process is started, in which each vector v; in the codebook is split into
two new vectors v; + € and v; — €, with € a fixed perturbation. (In our
experiments, we found that a value of € = 0.01 worked well in all cases.)
Each split vector is recorded in the initial codebook. This is done until a
stopping criteria, such as a specific number of vectors, is reached.

3In VQ, a training set refers to a finite collection of sample vectors generated from a
source distribution in order to represent the characteristics of the source.



vii

The initial codebook must be optimized to be able to represent all (or at
least as many as feasible) possible fractions of arbitrary real world images.
The LBG algorithm [17], which runs the codebook iteratively through two
steps, is used to optimize the initial codebook into a primitive dictionary.

In each iteration, a new codebook is built from the previous codebook.
In the first step, the code vector v; nearest neighbor condition, which in-
sists that a partition cell x; consists of all those points x which have less
distortion when reproduced with code vector v; than with any other code
vector.

The centroid condition is used to find the successive codebook which is
the best reproduction for the partition cell designed in the previous step.

The codebook is considered optimal (to be used as primitive dictionary)
when the partial distortion?* is below a convenient (preset) threshold value.

The primitive dictionary consists of primitives, p;, which are considered
to represent different fractions of real world images. (At this stage the set
{p;} is the same as the set {v;}.)

Phase 2: From primitive dictionary to fractal dictionary
In the next stage, the primitive dictionary is subject to a standard fractal
coding algorthm where the primitives are fractalized. The outcome of the
fractalization process produces the fractal vectors.

The fractalization process which is based on the work of Jacquin [13]
consists in principle of the following steps:

The primitives, p;(0 < i < N), of the primitive codebook are the input
cells to be subject to the rest of the algorithm. (The primitive dictionary
are reformatted to represent an input matrix so that segmentation can
occur naturally.)

A number of analogous cells, a; (0 < j < M,) are generated by shifting a
window of twice® the input primitive cell size across the input matrix. If a
pixel spacing of 1 pixel is used in both the horizontal and vertical directions
a very large number of analogous cells are generated. On the one hand this
is necessary to have a wide selection to compare input-to-analogous cells to
find the best representative for a particular input primitive. On the other
hand, a large number of analogous cells complicates the search time and
results in slow encoding times.

After segmentation, an affine transformation 7; : a; — p; is defined for
each input primitive. When the affine transform is applied to the input
matrix, a spatial transformation, &; : a; — p;, determines how a analogous
cell is mapped to an input primitive.

This transformation reflects the size of the cell and the isometry of the
transformation. A massic transformation, v; : &(a;) — p;, controls the

4The quality degradation of a decoded image is called the distortion incurred by the
coder, and is measurable by a suitable distortion metric
51t may be any size bigger than the input primitive, twice is convenient.



viii

contrast and brightness of the transformation. The affine transformation
is written as 7;(p;) = ti(0;.€(p;) + (i), where a;, (; refers to the contrast
(offset) and brightness (scaling) settings, while £(p;) represents the grey
value at p; and ¢; indicates the isometry. In practice, p; represents all the
grey scale values of a particular analogous cell a;.

To find the contracted analogous cell £(a;) that best fits a given input
primitive cell p;, least squares regression method [11] is used. In this stage,
an p; scans through all the analogous cells to find a particular a; which
minimizes dyrsg(pi, 7i(a;)). The transformation with the minimum distor-
tion is selected and the fractal vector, f;(p;,7;), is compiled by the input
primitive and the corresponding affine transformation.

3.2 FVQ Encoder

The encoding implementation is based on a standard VQ encoding algo-
rithm [9]. According to this algorithm an input image is segmented into
input partition cells {z;} having the same dimension as the primitives of
the fractal dictionary. For each cell, z;, a primitive p; from the dictionary
is selected, by using some selection criterion, such as finding the primitive
PDopt for which d(z;,p;) has a minimum value, with d some distance function
such as the mean squared error function.

If this kind of selection criteria is used, it could happen that the match
between a particular partition and the primitive is not visually satisfactory.
To overcome this visual annoyance, the algorithm was improved by prede-
termining a tolerance that has to be met. If the tolerance is not met, the
standard fractal encoder is used to find the affine transformation for the
particular input partition cell. A new fractal vector is compiled by using
the input partition cell as primitive and the matching affine transformation.
The fractal dictionary is improved by appending the new fractal vector to
the dictionary. The results shown below shows that the time complexity of
this improved FVQ is slightly higher than the FVQ, but the visual appear-
ance of the result is better.

3.8 FVQ Decoder

During the encoding step, the affine transformation of the best matched
primitive is recorded. The decoding step follows the standard fractal decod-
ing algorithm which reads the recorded affine transformations and applies
each one in turn to a random initial image. The process is iterated until
an image of acceptable quality is constructed. After reconstruction of the
image, the blocky artifacts visible between cell boundaries are removed by
a smoothing algorithm. Grey level smoothing [4] [8] [16] is an operation
which is used to remove high and low peaks usually indicating noise in
images. Smoothing algorithms are usually applied to large blocks (8x8)
because averaging of small (4x4) blocks may degrade the quality [19].



4 FVQ coder experimental results

The architecture used in the experiments was a 133 MHz Pentium with a
single Intel processor with 256 cache onboard and 44 megabyte memory.

In table 1, we present the results of a single experiment.

This table is typical of all experiments conducted, and clearly shows that
the FVQ gives a better compression ratio, memory storage and encoding
times when compared with VQ. The quality performance of the FVQ coder
(as measured by the PSNR) is roughly of the same order as that of the VQ
coder. The coding delay of the FVQ is a vast improvement over that of the
standard fractal coder.

The error images shown in figurers xx to yy clearly illustrates that the
achievable image quality of FVQ is similar to that of standard fractal coding
in a fraction of the encoding time.

5 Conclusion and Future research

The new coder not only appears to have the same outstanding features
as its two base coders, but also appears to have prevailed over their draw-
backs. The FVQ technique has the additional advantage of flexibility, in the
sense that the fractal dictionary is not stagnant. The algorithm is adaptive
because it allows the tailoring of the fractal dictionary when it proves to
be inadequate.

Barthel et al. [3] consider a unification between the fractal coder and
a transform coder in which they the qualities of the transform coder to
reduce the blocky artifacts which is present in the fractal coder at very
high bit rates and also introduces a fast codebook search scheme to select
domain blocks efficiently for range block matches. In the same way, many
other improvements of the base methods have already been suggested and
well implemented. A sound research direction would be to introduce im-
proved fractal encoders to design an optimal fractal dictionary. Introducing
adaptive or variable rate vector quantizers would improve the quantizer
performance in the construction of an optimal codebook as well as the en-
coding of an image. The introduction of improved algorithms should be
done in conjunction with algorithm complexity, storage requirements and
acceptable image quality.



FIGURE 1. Standard Fractal encoding

FIGURE 2. Standard Vector Quantization



FIGURE 3. Standard FVQ

FIGURE 4. Improved FVQ

xi



xii

FIGURE 5. Standard Fractal encoding

FIGURE 6. Standard Vector Quantization



xiii

FIGURE 7. Standard FVQ

FIGURE 8. Improved FVQ



Xiv

Coder Performances

Fractal VQ  Std. FVQ Imp. FV(Q

Partition cell size 4x4 4x4 4x4 4x4
Preprocessing (seconds) 0 451 500 500
Encoding time (seconds) 25176.9 14 14 93
Compression ratio 12.8:1 8:1 12.8:1 12.8:1
PSNR (dB) 34.8 30.11 27.70 31.93
Bit rate (bpp) 0.65 1 0.65 0.65
Decoding time (seconds) 2 2 2 2
Storage space (bytes) 20480 32768 20480 20480
Extra decoder storage (bytes) 0 65536 0 0

6
[1]

[2]

[6]

[7]

[8]

[9]

TABLE 1. Comparison of Fractal, VQ and FVQ coders

REFERENCES

B. Bani-Eqgbal. Speeding up fractal image compression. In M. Rab-
bani, E. J. Delp, and S. A. Rajala, editors, Still Image Compression,
volume 2418 of SPIE, pages 67-74, San Jose, CA, USA, February 1995.

M. F. Barnsley and L. P. Hurd. Fractal Image Compression. A K
Peters, Wellesley, Massachusetts, 1993.

K. U. Barthel, J. Schiittemeyer, T. Voyé, and P. Noll. A new image
coding technique unifying fractal and transform coding. In IEEFE In-
ternational Conference on Image Processing, volume I1I of ICIP, pages
112-116, Austin, Texas, USA, November 1994.

H. Bassman and P. W. Besslich. Ad Oculos, Digital Image Processing.
International Thompson Publishing, Sheffield, 1995.

E. Cloete and L. M. Venter. Fractal image compression. South African
Science Journal, 1998. August 1998.

W. H. Equitz. Fast algorithms for VQ picture coding. An Interna-
tional Conference on Acoustics, Speech, and Signal Processing, pages
725728, 1987.

Y. Fisher. Fractal Image Compression - Theory and Application.
Springer-Verlag, New York, 1995.

Y. Fisher, S. Perkins, A. Walker, and E. Wolfart. Spatial filters.
WWW, 1994. http://ql27-3.coventry.ac.uk/hipr/csmooth.html.

A. Gersho and R. M. Gray. Vector Quantization and Signal Compres-
sion. Kluwer Academic Publishers, Boston, 1992.



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

XV

M. Gharavi-Alkhansari and T. S. Huang. Fractal-based techniques for
a generalized image coding method. In IEEE International Confer-
ence on Image Processing, volume III of ICIP, pages 112-116, Austin,
Texas, USA, November 1994.

P. E. Gill, W. Murray, and M. H. Wright. Numerical Linear Alge-
bra and optimization. Addison-Wesley Publishing Company, Redwood
City, California, USA, 1991.

R. Hamzaoui, M. Miiller, and D. Saupe. Vg-enhanced fractal
image compression. In IEFEE International Conference on Im-
age Processing, ICIP’96, Lausanne, September 1996. Also avail-
able by anonymous ftp in ftp.informatik.uni-freiburg.de in docu-
ments/papers/fractal/Hamz96b.ps.gz.

A. Jacquin. Image coding based on a fractal theory of iterated contrac-
tive image transformations. IEEE Transactions on image processing,
1(1):18-30, January 1992.

C.-S. Kim and R. H. Park. Image coding based on fractal approx-
imation and vector quantization. In IEEE International Conference
on Image Processing, volume III of ICIP, pages 268271, Washington,
D.C., USA, October 1995.

S. Lepsoy and G. E. Oien. Fast attractor image by adaptive code-
book clustering. Fractal Image Compression - Theory and Applica-
tion, pages 177-198, New York, 1995. Springer-Verlag.

R. Lewis. Practical Digital Image Processing. Ellis Horwood Limited,
West Sussex, England, 1990.

Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantizer
design. IEEE Transactions on Communications, COM-28(1):84-95,
January 1980.

D. M. Monro and S. J. Woolley. Fractal image compression without
searching. In IEEE International Conference on Acoustics, Speech
and Signal Processing, volume 5 of ICASSP, pages 557560, Adelaide,
Australia, April 1994.

M. Nelson. The Data Compression Book. M & T Books, New York,
1996.

B. Ramamurthi and A. Gersho. Classified vector quantization of im-
ages. IEEE Transaction Communications, COM-34, Nov 1986.

T. E. Ramstad and S. Lepsoy. Block-based attractor coding: Potential
and comparison to vector quantization. Conference Record of the 27th
Asilomar Conference on Signals, Systems and Computers, pages 1504—
1508, 1993.



xvi

[22] D. Saupe. Breaking the time complexity of fractal image compression.
Technical Report 53, Institut fiir Informatik, Freiburg, Germany, 1994.

[23] D. Saupe.  Accelerating fractal image compression by multi-
dimensional nearest neigbor search. In J. A. Storer and M. Cohn,
editors, IEEE Data Compression Conference, DCC, pages 222-231,
UT, USA, March 1995. Snowbird.



