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Abstract. In the encoding phase of fractal image compression, most of
the time is taken in finding the closest match between each range block
and a large pool of domain blocks. We use the intrablock variance dis-
tributions of domain blocks to reduce the search space. For finding a
close match, we need search only the domain blocks whose maximal
intrablock variance quadrants are at the same corner as the range block. |
Thus, we reduce the number of transforms applied on each domain |
block from eight to two. We also adopt the longest-distance-first vector |
quantization scheme to divide the large pool of domain blocks into clus-
ters. Thus, the number of domain blocks to be searched is also reduced.
The experimental results show that our algorithm can reduce encoding
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1 Introduction

Fractal image compression is a good scheme for image
compression with high quality and compression ratio. It is
based on the representation of an image obtained from con-
tractive transforms of fixed points close to the original
image.!~3 However, the conventional fractal encoding takes
much time for searching domain blocks; thus, much effort
has been put into reducing the fractal encoding time. >~

The concept of classification can help us to reduce the
encoding time in fractal image compression.2*!2!3 The
main idea is that we only find the best-matching block in
some subsets of all blocks. Though we may not find the
best-matching block among all blocks, we can usually find
a near-best-matching block. If the classification method is a
good enough one, we have a good chance to find the best-
or near-best-matching block. We can use the classification
method instead of the exhaustive searching method to re-
duce the encoding time.

In this paper, to reduce the searching space, we propose
a new classification method that applies the longest dis-
tance first (LDF) classification’ on the intrablock variance
distribution of domain blocks. For finding a close match,
we need search only the domain blocks whose maximal
intrablock variance quadrants are at the same corner as the
range block. We reduce the number of transform calcula-
tions applied on each domain block from eight to two, due
to the intrablock variance distribution. We also adopt the
LDF vector quantization (VQ) scheme to partition the large
pool of domain blocks into clusters. Thereby the number of
domain blocks needing to be searched is also reduced. The
experimental results show that our algorithm can reduce the
encoding time with only slight loss of quality.

The rest of this paper is organized as follows. In Sec. 2,
we briefly introduce the fractal compression scheme and
review some related algorithms. In Sec. 3, we present our
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algorithm for fractal compression based on the intrablock
variance distribution. The experimental results and perfor-
mance analysis, compared with other fractal algorithms, are

given in Sec. 4. Finally, we state some conclusions in
Sec. 5.

2 Previous Work

Fractal image compression is based on the representation of
an image by contractive transforms of which the fixed
points are close to the original image.” The contractive
transform and the iterated function system (IFS) are two
fundamental tools of fractal image compression. The con-
tractive transform ensures that all points will be sent to
fixed points if we repeat the contractive transform 7 times
where n is large enough. The IFS is the set of contractive

transforms that map R? into R?, so we can represent an IFS
as

T={1;:R*—R> i=1,.m}

We can iteratively apply the corresponding contractive
transform to produce a reconstructed image. If the block
size is large, fractal image compression is a method with
high compression ratio, because we need store only a few
bits for the fractal parameters.

In the fractal encoding scheme,’ the original image is
partitioned into N nonoverlapping range blocks of size 1
Xn, denoted as R={R, ""’RNR}' The original image is
also divided into N, overlapping domain blocks of size
2nX2n, denoted as D={D, »--»Dy_}. Then we contract
domain blocks to the size of a range block with the sub-
sample scheme, denoted as D={D,,....D Nyt
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For a range block R;, to seek the closest match in the
pool of domain blocks, we use a sliding window of size
27X 2n on the image, which slides column by column and

then row by row, and we subsample the sliding window D
to find the domain block with the minimum distortion

DiSthacLal(tr(ﬁj)’Ri)'
Given a range block R;=(b,.b,,...,by), where N
=n2, if the coordinate transform function v, is used to

estimate R;, where v,.(Dj) =(a,,a,,...,ay), then the com-
plete transform we use is as follows’:

t,(fjj)=s,--vr(l§j)+0i‘ (l)

The distortion, s;, and o; are defined, respectively, as fol-
lows:

N
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If a range block is sufficiently smooth, that is, the vari-
ance of the block is smaller than a predefined threshold,
then we use the mean of the block to represent all its pixels.

Otherwise, we search all the contracted domain blocks D T
to get the near-closest match with the range block, that is,
we apply the transform 7, (the r’th-coordinate transform
and grayscale transform) to find the smallest distortion.

Note that, if the contracted domain block D ; is smooth, b ;
is removed from the pool of domain blocks that we are
going to search.

Many algorithms have incorporated efforts to reduce the
encoding time of fractal image connpression.z'g"o’13 Lee
and Lee proposed a simple method'? to reduce the search-
ing time for finding a close match between a range block
and a large pool of domain blocks. Their method is based
on the fact that two blocks are not similar if the difference
of their variances is large. A search window is used to re-
duce the size of the search pool of contracted domain
blocks. A small search-window size will reduce the encod-
ing time, but a large one will produce reconstructed images
with better quality. The algorithm first sorts all contracted
domain blocks according to their self-variances. Then for
each range block, it finds the domain block in the search
window with the closest match, that is, whose self-variance
is closest to that of the range block.

Lee!' proposed a method similar to_that of Lee and
Lee.'" The main difference is that Lee'' uses a flexible
search area instead of a fixed search-window size. The
search area is bounded by a distortion inequality. We usu-
ally estimate the distortion by the squared Euclidean dis-
tance (SED). Lee defined the squared variance distance
(SVD) and derived an inequality between SED and SVD.
We need to search for the minimum distortion only in those

domain blocks that satisfy the distortion inequality. Thus,
we have a flexible search area for finding the minimum
distortion, and we do not have to pay attention to setting the
search-window size.

In order to speed up fractal encoding, one can apply
classification to reduce the number of domain blocks to be
searched for each range block. Fisher® proposed a classifi-
cation scheme with three major classes and 24 subclasses
for each major class. While searching for the match of do-
main blocks for each range block, he searches only the
domain blocks that are in the same class as the range block.
Hence the encoding time required for searching can be re-
duced.

Pfefferman et al.'® also proposed a classification
scheme, called Y- In it, each block is divided into four
quadrants, and all blocks are classified into 24 classes by
their quadrant ordering relations (4!= 24). When searching
for the closest match for each range block in the pool of
domain blocks, we can choose the one of the 24 transforms
that has the same quadrant ordering relation, so that the
transformed domain blocks will be in the same class as the
range block. This scheme can reduce the encoding time, but
the compression ratio is a little worse than with the conven-
tional fractal encoding.

For training a local VQ codeboo the original im-
age is partitioned into a set of training vectors, At the end
of the classification, similar vectors are put into the same
cluster. The VQ clustering concept can be applied to clas-
sification of domain blocks.'? An efficient codebook gen-
eration algorithm for VQ is also very important. The LDF
algorithm is one efficient method to generate the
codebook.”

In the clustering scheme of fractal compression with
VQ,!? the training set consists of all domain blocks, and the
LDF algorithm is used to train a codebook with size N¢. In
other words, the pool of domain blocks is divided into N¢
clusters after LDF is performed. When we search for the
closest match for each range block, we first find the closest
codeword in the codebook; then we search the domain
blocks associated with the codeword (cluster). The LDF
fractal encoding method effectively reduces the encoding
time, and the quality of the reconstructed images is compa-
rable to that obtained by other methods.

k,14_16

3 The Intrablock Variance Distribution Scheme

Lee and Lee!? pointed out that two blocks are not similar if
the difference of their variances is large. We utilize this fact
and consider the shape of each block. We observe that if
two blocks are similar, the distributions of intrablock vari-
ances of these two blocks should also be similar. How to
represent the notion of similarity between distributions of
intrablock variance is, however, a problem. We propose a
simple heuristic: two blocks are similar if their quadrants
with the maximal intrablock variance are in the same cor-
ner. More precisely, in our heuristics, to find the best match
for a range block, we search only the set of transformed
domain blocks whose quadrants with the maximal in-
trablock variance are in the same corner as the range block.

We first define the intrablock variance. We divide a
block A into four quadrants A, A®), A®), and AW, as
shown in Fig. 1(a). The intrablock variance of quadrant
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A | 4@ AQ | 4@ AB) | AW
AR | A1) AB) | A@) A4 | 4@
(2) The original block A. (b} v (A). (c) va(A).
AW | 4A6) A | A4 FORWS)
AD | 4Q) AL | 4GB A® | A
(d) vs(4). () va(A). (f) vs(4).
AB) | A@ AW} 4@ A®@ | 4
AD | 4@) ABY | A() AW | 4B
(&) vs(4). (h) vr(A). (1) vs(A).

Fig. 1 The eight self-symmetrical transformations of a block A with
four quadrants.

AW, 1<i<4, with respect to A is defined as

o= S (a-ER 1=iss,

(0
ajeA

where a; represents one pixel value and A is the mean of
block A. Note that the variance of block A is defined as

4
A= 2 (aj‘g)?':z, O gtli).
a;eA i=1

Hence we can calculate the four intrablock variances of
each block A (each range block and each domain block),
and then find the quadrant position ¢, with maximal in-
trablock variance (MIV) among A‘V, A® AG) and A,
That is, A'94) has the MIV among the four quadrants.

For seeking a close match between a range block and the
set of domain blocks, we need search only the set of trans-
formed domain blocks whose MIV quadrants are in the
same corner as the range block. For example, assume the
MIV quadrant of the contracted domain block D ; 1s in the
lower left corner and the MIV quadrant of the range block
R; is in the upper right corner. The eight self-symmetrical
transformations on one block with four quadrants are de-
fined clockwise as follows: identity; rotations through +90,
+180, and +270 deg; and reflections about the —45-deg
diagonal line, the horizontal midline, the 45-deg diagonal
line, and the vertical midline. The eight self-symmetrical
transformations on one block with four quadrants are
shown in Fig. 1. Note that in the figure, A9, 1<i<4, is
not the same as the original A" once the transformations
have been applied. In this example, after transformations on

domain block D;, the MIV quadrants of both v4(D ;) and
vs(D ;) are in the upper right corner. Thus, we only try to
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find a close match between R; and v;(D ;) and between R,

and U5(D ;), and ignore other transformations on D ;- Then
the number of comparisons (transformations) between one
range block and one domain block is reduced from 8 to 2,
For convenient comparison, in our algorithm we always
transform each range block and each domain block so that
the MIV quadrant is in the upper left corner. After the four
intra-block variances of one domain block are calculated,
we need only one transformation, instead of eight, to put
the MIV quadrant in the upper left corner.

Our scheme is to reduce the transforms applied to con-
tracted domain blocks so that we can speed up the encoding
of the fractal image compression. Our algorithm is given as
follows.

Algorithm: Fractal with intra-block variances

e Input: An original image.
* Output: The encoding information.
* Step 1: Partition the original image into Nz nonover-

lapping  range  blocks,  denoted aa R
={R| ,RQ_ ,...,RNR}.

* Step 2: Extract N overlapping domain blocks from
the original image, denoted as D={D, :D3,....Dy }.

* Step 3: Contract each domain block to the size of a
range block, denoted as D={D, ,ﬁz,...,ﬁND}.

e Step 4: For each D ;- calculate its intrablock variances
opm, 1<sm=4, and variance ij:2:1=1013‘-”’" If
J J
0,3j< T,, where T, is a predefined threshold, then
remove D ; from D.

* Step 5: Rotate domain block D ; (use only one of the
four transforms: identity, rotation through +90 deg,
rotation through +180 deg, and rotation through
+270 deg) so that the MIV quadrant of D ; is in the
upper left corner, denoted as d(Dj), for j=1,..,.Np.

Step 6: Apply the LDF algorithm to split the rotated
domain blocks d(D ;) into N clusters, where N is a
predefined codebook size. The set of all clusters is
denoted as C={C, :C,...,Cy }, and the representa-

.

tive codeword of each cluster C; is denoted as P,
Isk<sN,.

* Step 7: For each range block R;, do the following.
*Step 7.1: Calculate the intrablock variance of O gim,

I=ms=4, and the variance chy_=2ﬁ,=]aRgm». If og,
I

<T,, where T, is a predefined threshold, that is, if
the range block R; is smooth enough, then output the
mean of R; to represent R;. Otherwise apply two of
the eight transforms on R;, denoted as ri(R;) and
r2(R;), so that the MIV quadrant of R; is in the upper
left corner.

*Step 7.2: Set a search window size w. The window
size is the number of clusters within which we want to
search for the minimum distortion.

*Step 7.3: Find w codewords (clusters) close to ri(R;)
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and w codewords close to r,(R;). The set of the 2w
corresponding close-cluster indices is denoted as S§;
={S) s sS 1), 1<IS2, s0 that V&S, Distgyen
(PkJ.I(Ri))ZDiStfracml (Px,.marl(Ri)) Vsl,m € Sl'

«Step 7.4: Find a rotated domain block with the mini-
mum distortion among the 2w close clusters. That is,

find d(D ;) such that Distyea(d(D min).r(Ry) is the
minimum, Vcl(lf)j) eC,, . Ismsw, and [=1,2.

Step 7.5: We can find the relative transform v ,., since
we know the rotation used on the domain block and
the transform used on the range block. Then output /;
[the values of D;, v,. s;, 0; in Eq. (1)].

In our algorithm, instead of performing classification on
all eight transformations of domain blocks, we use only one
transformation for classification. After the transformation,
the MIV quadrant of each contracted domain block is in the
upper left corner. Thus, we can reduce the time taken for
the classification. In addition, the number of transforms ap-
plied to the comparison of one range block and one con-
tracted domain block is reduced from 8 to 2.

If we directly apply the intrablock variance distribution
scheme to the conventional fractal compression method, we
may find some cases where the optimal domain block
matched with the range block is excluded. The main reason
is that we reduce the number of transforms to 2, and we
only consider the transforms such that the quadrant with the
MIV is in the upper left corner. However, some special
blocks may have two or three quadrants with approximately
equal MIV values. In this case, our simple intrablock vari-
ance distribution method will select one of the quadrants
with the same MIV value.

In our algorithm, the intrablock variance distribution
method is applied, for reducing the number of transforma-
tions, on the domain block pool when performing the LDF
classification and on each range block to find the good
matching domain block in some cluster. The LDF classifi-
cation method will partition the pool of domain blocks into
many small clusters. The probability that the optimal do-
main block is excluded for each range block depends on the
LDF classification method and intrablock variance distribu-
tion method. For finding a better block match, we set the
window size equal to the number of clusters to be searched.
A small search-window size will reduce the encoding time,
but a large one will have a better chance of finding the
optimal domain block for each range block and get better
reconstructed image quality. In the conventional fractal
compression, the optimal domain block is found. In our
algorithm, a near-optimal domain block is found; thus the
required time is reduced, with slight loss of quality.

The threshold T, is used to decide if a block is smooth.
With smaller T,,, we can get the reconstructed image with
better quality; with larger 7, we can reduce the encoding
time and increase the compression ratio. In this work, after
experimental tests, we set 7,=25, which performs well in
most of our experiments. Hence the smooth range blocks
are represented as their means; the smooth domain blocks
in the search pool are no longer needed.

4 Experimental Results and Performance
Analysis

In this section, we show our experimental results and ana-
lyze the performance of our algorithms. Our algorithm is
implemented by Borland C+ +Builder on a PC with AMD
Thunder Bird™ processor (1 GHz) and 256 Mbyte of
RAM. Our testing images include “Lena,” “F16,” “Pep-
per,” and “Baboon.” For a more reliable evaluation of our
method, we used another 50 test images. All of these im-
ages are of 256 gray levels with resolution 256X 256. Our
initial image for reconstructing the image from the encod-
ing information is an image whose pixel values are all 128.

To measure the quality of the reconstructed image, we
use the peak signal-to-noise ratio (PSNR), which is defined
as

255°
(1/LxL)2f=1Ef=1(xij—fij)2 ,

PSNR=10log;y

where L X L=size of image, x;;= pixel value of the original
image at coordinate (i, j), and %; ;= pixel value of the recon-
structed image at coordinate (i, j).9’17 The best measure for
image compression is human vision. If we cannot perceive
the difference between the original image and reconstructed
image, we can conclude the compression method is a good
one. But it is a hard task to quantitate the sensorial mea-
sure. We use the PSNR measure in this paper, since it is a
widely used quantitive and mathematical measure for the
reconstructed image quality.

Table 1 shows the performance of various fractal
algorithms.2’4‘9'10“13 A small search-window size reduces
the encoding time, but a large one yields reconstructed im-
ages with better quality. We set the window size at 3000 for
the local variance fractal (LVF) method'®; this size is a
good trade-off between fractal encoding time and the qual-
ity of reconstructed images. As we can see in the average of
the 50 test images, the encoding time of our scheme is
between those of the Fisher classification® and LDF fractal
image compre:ssion,12 and the quality of the reconstructed
image is between that of LDF fractal image compression
and that of fractal encoding with variance-ordered partial
search (VPS).!

The only algorithm that takes less time than ours is frac-
tal encoding with Fisher classification, but the quality of its
reconstructed images is much worse than that obtained in
our algorithm. Fisher® uses the mean and variance order
relations of quadrants to classify all domain blocks into 3
x 24 classes. For a given range block, he searches only the
class that has the same mean and variance order relation as
that block. But the best-matching block may be in some
other class after a coordinate transformation is applied.
Thus different sequences of classification and transforma-
tion will yield different results. Hence, Fisher’s method
takes less time but yields worse reconstructed image qual-
ity.

The VPS method!! uses the distortion inequality be-
tween SED and SVD to bound the search area. The method
may reduce the number of domain blocks for matching
with each range block. It requires additional time to com-
pute the SED and SVD values, and it also needs to verify
the distortion inequality. If an image is complicated, like
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Table 1 Performance of various fractal aigorithms. The window size of the local variance fractal (LVF)
Is 3000. Image 256X 256, threshold 25. (a) Domain block size 8 X 8, range block size 4x 4. (b) Domain

block size 16X 16, range block size 8 x 8.

(a) (b)
Time Bit rate Time Bit rate
Image Algorithm PSNR (s) (bits/pixel) PSNR (s) {bits/pixe!)
“Lena” Conv. fractal* 33.9594 3355.4650 1.2634 28.1364 2540.7400 0.3566
Yerass ™ 34.0166 328.1510 1.3272 28.1341 297.9330 0.3794
LVF™® 32.3305 233.4290 1.2634 27.1589 223.1890 0.3566
VPSS! 32.0662 421.8470 1.2634 27.9494 1890.8290 0.3566
Fisher? 30.6072 64.2000 1.2634 26.6649 126.4100 0.3566
LDF fractal'? 33.6956 190.6750 1.2634 28.1149 184.1850 0.3566
Our scheme 33.7067 45,3350 1.2634 28.0945 73.6950 0.3566
“F16" Conw. fractal* 32.1948 2491.4310 1.2054 25.7915 2121.2400 0.3201
Yelass™ 32.3126 248.1550 1.2638 25.7039 226.0320 0.3380
LVF0 30.2904 178.7400 1.2054 25.1129 167.6090 0.3201
VPSS! 29.8026 409.6000 1.2054 25.5892 1662.6250 0.3201
Fisher? 27.7408 30.4300 1.2054 24.3190 20.3800 0.3201
LDF fractal? 32.0254 152.5150 1.2054 25.6301 138.9230 0.3201
Our scheme 31.9783 46.5400 1.2054 25.6012 67.9810 0.3201
“Pepper” Conv. fractal* 33.3405 3307.2260 1.3524 26.9574 2494.4200 0.3755
Yelass™ 33.3332 326.7510 1.4242 26.8140 300.9200 0.4002
LVF0 31.9643 229.3550 1.3524 26.2108 225.2850 0.3755
VPS™ 29.9808 273.3960 1.3524 26.9016 2665.1300 0.3755
Fisher? 31.1345 83.1660 1.3524 26.3814 102.6600 0.3755
LDF fractal'? 33.1467 227.7060 1.3524 26.8843 220.3690 0.3755
Our scheme 33.1291 73.9350 1.3524 26.7390 83.5310 0.3755
“Baboon” Conv. fractal* 27.1063 3712.4600 1.8157 23.1487 2578.4990 0.4308
Yeiass'® 27.2292 495.4850 1.9296 23.2142 361.1450 0.4614
LVF0 25.3877 357.6900 1.8157 22.8010 266.5100 0.4308
VPS™" 26.9375 5299.8650 1.8157 23.1434 3961.4350 0.4308
Fisher? 25.2067 87.8950 1.8157 22,4050 65.8750 0.4308
LDF fractal'? 26.9515 330.9240 1.8157 23.0751 155.6600 0.4308
Our scheme 26.7879 84.6500 1.8157 23.0024 86.9410 0.4308
Av. above 4 Conv. fractal* 31.6503 3216.6460 1.4092 26.0085 24337250 0.3708
Yoass'> 31.7217 349.6355 1.4862 25.9666 296.5075 0.3950
LVF™0 29.9932 249.8035 1.4092 25.3209 220.6483 0.3708
vpPs" 29.5168 1601.1770 1.4092 25.8959 2545.0048 0.3708
Fisher? 28.6723 66.4228 1.4092 24.9426 78.8313 0.3708
LDF fractal’? 31.4548 225.4550 1.4092 25,9261 174.7843 0.3708
Our scheme 31.4005 62.6150 1.4092 25.8593 78.0280 0.3708
Av. 50 test Conv. fractal* 30.6148 2862.9681 1.2084 25.8409 2180.6427 0.3264
Ve 30.4859 326.7684 1.2886 25.8087 273.4181 0.3501
LVF1° 29.1432 232.4405 1.2084 25,1633 204.4043 0.3264
VvPsH 29.2564 1423.9290 1.2084 25.7603 2737.5170 0.3264
Fisher? 28.4969 82.8976 1.2084 24,4806 68.3166 0.3264
LDF fractal'? 30.2600 198.3854 1.2084 25.7310 153.5858 0.3264
Our scheme 30.2526 86.8004 1.2084 25.6670 97.0054 0.3264

“Baboon,” the VPS distortion inequality may not be satis-
fied in most range blocks. Almost all matching between
range blocks and domain blocks has to be checked. Then
the VPS method will take more time than the conventional
fractal compression method.

In Table 1, it is interesting that some of these algorithms
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take more time when the range block size becomes smaller,
from 8 X 8 to 4 X4, but the others are not. Qur scheme with
range block size 4 X4 takes less time than with 8 X 8. More

precisely, the “Lena’ image with our scheme shows a 40%
reduction in encoding time on going from range block size
8 X8 to 4X4. One might think that it would require more
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Table 2 PSNR comparison for conventional fractal method, our method, and JPEG 2000. Image size
256 256, fractal threshold 25. (a) Domain block size 88, range block size 4X 4; (b) domain block
size 16X 16, range block size 8x8; (c) domain block size 32X 32, range block size 16x16; (d)
domain block size 64x 64, range block size 32X 32.

(a) (b) (c) (d)

Bit Bit Bit Bit

rate rate rate rate

(bits/ (bits/ (bits/ (bits/

image Algorithm PSNR pixel) PSNR pixel) PSNR pixel) PSNR pixel)
“Lena” Conv. fractal* 33.9594 1.2634 28.1364 0.3566 £3.8904 0.0898 18.9320 0.0225
Our scheme 33.7067 1.2634 28.0945 0.3566 23.7092 0.0898 18.8821 0.0225
JPEG 2000'® 39.6195 1.2634 30.5544 0.3566 23.5941 0.0898 14.5580 0.0272
“F16” Conv. fractal* 32.1948 1.2054 25.7915 0.3201 21.6580 0.0898 18.0104 0.0225
Our scheme 31.9783 1.2054 25.6012 0.3201 21.3195 0.0898 18.1620 0.0225
JPEG 20008 38.1917 1.2054 28.0914 0.3201 22.0216 0.0898 11.5123 0.0272
“Pepper” Conv. fractal* 33.3405 1.3524 26.9574 0.3755 23.1996 0.0898 16.7928 0.0225
Our scheme 33.1291 1.3524 26.7390 0.3755 23.0782 0.0898 18.0671 0.0225
JPEG 2000'® 37.3644 1.3524 30.1077 0.3755 22.6863 0.0898 14.1919 0.0272
“Baboon” Conv. fractal* 27.1063 1.8157 23.1487 0.4308 21.4388 0.0898 19.4220 0.0225
Our scheme 26.7879 1.8157 23.0024 0.4308 21.3536 0.0898 19.5885 0.0225
JPEG 20008 32.7895 1.8157 24.5569 0.4308 21.5082 0.0898 16.4020 0.0272
Average Conv. fractal* 31.6503 1.4092 26.0085 0.3708 22.5467 0.0898 18.2893 0.0225
Our scheme 31.4005 1.4092 25,8593 0.3708 22,3651 0.0898 18.6659 0.0225
JPEG 200018 36.9913 1.4092 28.3276 0.3708 22,4528 0.0898 14.1661 0.0272

time when the range block size decreases from 8 X8 to 4
X 4, because the number of range blocks is quadrupled. The
reduced amount of computation is the major reason for the
time reduction.

Indeed, in a 256X256 image, we have (256— 16+ 1)?
and (256— 8+ 1)* domain blocks when the domain block
sizes are 16X 16 and 8 X 8, respectively. There are (256/8)*
and (256/4)? range blocks when the range block sizes are
8 X8 and 4 X 4, respectively. For calculating the MIV of a
block, we need about four times as much computation for
range block size 8 X8 as for 4X4. Hence, we need the
same time for calculating the MIV of all range blocks, but
the ratio of MIV computation for domain block size 8 X8
to that for 16X 16 is (256~ 8+ 1)%/(256—16-+1)*X (1/4)
=0.26687. For seeking the matching block, the number of
range blocks examined is quadrupled. Since we use the
LDF method to classify all domain blocks, we need to
search only some domain blocks. We also consider only
two of the eight transforms of the conventional fractal
method. Hence, our scheme takes less encoding time as the
range block size decreases from 8 X8 to 4X4. It should be
noted that our method may take less time and yield better
reconstructed image quality with range block size 4X4
than with 8 X 8.

Table 2 shows the PSNR comparison for the conven-
tional fractal method, our method, and JPEG 2000.'® The
JPEG 2000 standard is an excellent method with little en-
coding time and high reconstructed image quality at com-
pression ratios less than 100. In the table, we find that the
PSNR of JPEG 2000 is better than that of the fractal
method when the range block size is 4 X4 or 8 X 8. But the
PSNR of the fractal image compression method is compa-

rable to that of JPEG 2000 when the range block size is
16X 16. When the range block size of the fractal compres-
sion method is enlarged to 32X 32, the PSNR of the fractal
compression method is better than that of JPEG 2000. Note
that in Table 2(d), the bit rate of JPEG 2000 cannot be
made the same as that of fractal compression, because the
least bit rate of JPEG 2000 in images with size 256X 256
and 8-bit gray levels is 0.0272 bits/pixel.

Our algorithm speeds up fractal encoding successfully
with very small degradation in the quality of the recon-
structed image. Figure 2 shows the “Lena” image recon-
structed by our algorithm. Its image size is 256X 256, range
block size is 4 X 4, domain block size is 8 X 8, and PSNR is
33.7067 with 1.2634 bits per pixel. If we inspect Fig. 2
minutely, we may find some block effects. Fractal image
compression is of course a block-oriented method. If the
range block size is larger, the block effect will be more
apparent. However, we may find the block effect is not
apparent for uniform backgrounds, such as clear sky, sea, or
solid regions.

5 Conclusion

In this paper, we propose a fast encoding algorithm for
fractal image compression based on the intrablock variance
distribution. In the conventional fractal encoding algorithm,
it takes a ot of time to search for a best match from large
pool of transformed domain blocks for each range block.
We reduce the number of transforms applied to each do-
main block from 8 to 2. Thus, the time required for the
comparison between one range block and one domain block
is reduced. In addition, the LDF VQ scheme is used to
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Fig. 2 “Lena” reconstructed by our algorithm. Range biock size 4

X 4; domain block size 8x8; PSNR 33.7067; bit rate 1.2634 bits/
pixel.

divide the large pool of domain blocks into clusters.
Thereby the number of domain blocks needing to be
searched is also reduced.

Experimental results also show that our method is faster
than the conventional fractal encoding method and the LDF
fractal compression method, with only slight loss of quality
of the reconstructed images under the same compression
ratio. We also explain why our algorithm takes less encod-
ing time when the range block size becomes smaller. It is
interesting that our method with range block size 4 X4 may
take less time and yield better reconstructed image quality
than with 8 X 8.

Considering the trade-off between encoding time and
reconstructed image quality, the performance of our scheme
is better than that of other fractal compression methods. By
our experimental results, JPEG 2000 is superior to fractal
image compression, if the PSNR is the major consideration
the compression ratio is not too high. But if we want a very
high compression ratio, the reconstructed image quality of
the fractal compression method is better than that of JPEG
2000.
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