Faster Fractal Image Coding Using Similarity
Search in a KL-transformed Feature Space

Jean Cardinal*

Brussels Free University
Computer Science Department
Campus de la Plaine
Bld. du Triomphe CP212
B-1050 Brussels - BELGIUM
Phone : 00-32-2-6505601
Fax : 00-32-2-6505867

jcardin@ulb. ac.be

Abstract. Fractal coding is an efficient method of image compression
but has a major drawback: the very slow compression phase, due to a
time-consuming similarity search between image blocks. A general ac-
celeration method based on feature vectors is described, of which we
can find many instances in the literature. This general method is then
optimized using the well-known Karhunen-Loeve expansion, allowing op-
timal — in a sense to be defined — dimensionality reduction of the search
space. Finally, a simple and fast search algorithm is designed, based on
orthogonal range searching and avoiding the “curse of dimensionality”
problem of classical best match search methods.

1 Introduction

1.1 Fractal Image Compression

The fractal compression method has been implemented for the first time in
1989 ([12]) and extensively described since then in many different publications
(e.g- [9]). In fractal image compression, we try to find a mapping W in the
image space so that the fixed point of this mapping exists, is unique, and is
as close as possible to the image I we want to encode. W is itself composed
of m different block-wise mappings w;,? = 1,...,m. Each mapping w; maps
a so-called domain block onto a smaller range block. The set R of range blocks
forms a partition of the image I, and each range block is uniquely coded by a
transformation w;. There is no restriction concerning the set of domains, but
these are usually taken among a set of potential domains called the domain
pool, and are usually bigger than the ranges. The mappings w; consist in two
parts: a spatial part, translating from the domain position in the image to the
range position and scaling the domain size down to the range size, and a massic

* This work is supported by a PhD. scholarship from the National Scientific Research
Fund (FNRS)

294

part, modifying the pixels in the block. The massic part is itself composed of two
transformations: a scaling operation, multiplying all the pixel values in the block
by a coeflicient s;, and an offset operation, adding a constant coefficient o; to
each pixel value. The encoding process consists in finding for each range the best
domain in the domain pool: the one that gives the least mean square error (MSE)
when modified by the scaling and offset operations. Of course, the coefficients s;
and o; are computed so that they minimize the error, using a simple regression
formula. The decoding simply consists in iterating the mapping W from any
initial image. Having |s;| < 1,Vi =1,...,m ensures the convergence during the
decoding (we can however show that a weaker condition such as |s;| < 1.2 is
sufficient, see e.g. [9]).

The original algorithm compares each range with every domain. This method
is very slow, and the compression of a single image may take hours. The simplest
improvement is the use of classification schemes: dividing the domain pool in a
number of classes, and comparing only the domains falling in the same class as
the range. Classification schemes are numerous (e.g. [12], [9]), but none of them
decreases the complexity order of the search. There are anyway some methods
that achieve this goal, often with a slight quality loss (see e.g. [1])

The structure of the remainder of this paper is as follows. In section 1.2, we
review the idea of feature vectors, and describe some previous work in which
this idea is exploited. In sections 1.3 and 1.4, we briefly summarize the prop-
erties of the Karhunen-Loeve transform, and show how they can be used in
nearest-neighbor searching problems. Section 2 describes the main contribution
of this paper: a fast general acceleration technique. In section 2.1, we show how
an useful representation of image blocks may be designed using the Karhunen-
Loeve transform, and an appropriate search algorithm is described in 2.2. Finally
experimental results are presented and commented in section 2.4.

1.2 A Fast General Method Using Feature Vectors

A good method to solve the problem of finding the best domain block for each
range has been described in several papers ([17],[22],[13]), with different formu-
lations and features. The general scheme is as follows:

1. find an operator mapping image blocks to feature vectors, so that mini-
mizing the distance (e.g. the euclidean distance) between a feature vector
corresponding to a range and a feature vector corresponding to a domain
is equivalent to minimizing the collage error obtained when choosing the
domain to code the range. Let us call Sg and Sp the feature vectors sets
corresponding to the ranges and the domains, respectively;

2. for each element of Sg, perform a search in Sp and find the closest domain
feature vector. Use this domain to code the range.

Note that, since the ranges and the domains have not the same dimensionality,
each block should be subsampled to the same size. Furthermore, the contractivity
condition must be checked, so more than one domain should be tested in order
to avoid scaling coefficients that are greater than one.

295

Using this method, the traditional linear search is replaced by a nearest neigh-
bor, or best match search. This problem may be solved in O(log|Sp|) average
time for each query using k-d trees ([5], [3]), with a O(|Sp|.log|Sp|) time pre-
processing step. The overall complexity is then O((|Sp|+ |Sr|).log |Sp|), which
is a quite good improvement compared to the original O(|Sp|.|Sr|)-

Different approaches have been explored, using different operators to com-
pute the feature vectors, and different structures to perform the search. In [22]
and [2] the feature vectors used are the normalized DCT coefficients of the
blocks, in [13], the structure used for the search is a R-tree, and the feature
vectors used are the same as in [17]. We review the different methods in the
following paragraphs.

Normalization The simplest way of finding good feature vectors might be the
one described in [17], and also used in [13]. Suppose that z is a vector obtained
by an ordering of the pixels values of a block (e.g. in scan-line order), and & the
number of pixels in the block. The so-called normalized projection operator is
defined as follows

M.z
o(z) = —— 1
(z) M| (1)
where
ﬂ . s
Mj=4q % lfz_] (2)
-3 ifi#£j

Actually, M is a mean-removing matrix: the mean value of the vector’s compo-
nents is substracted to each component, making it invariant to any translation
whose direction is parallel to the vector (1,1,...,1) (the offset addition in the
block coding transformation). In [18], this operator has been generalized to the
case where a set of p orthogonal fixed basis blocks was used: the matrix M is then
replaced by the operator projecting the vectors on the orthogonal complement of
the subspace spanned by the basis blocks. Finally, the normalization operation
makes the feature vector invariant to any scaling operation on the block. These
vectors have two main properties:

1. the sum of their components is zero (due to the form of the matrix in 2),
2. the sum of their squared components is 1 (due to the normalization in 1).

We can then prove that minimizing the collage error is equivalent to minimizing
the value min(d(¢(z), #(v)), d(—¢(z), #(y))) (where z is the domain and y the
range). The geometrical interpretation of this computation has been extensively
discussed in [18] and [21]. In the latter, the same kind of operator is used to
eliminate useless domain blocks using an angular distance criterion.

Frequency Domain Features. In [4], [22] and [2], feature vectors are com-
puted from the DCT representation of the block, as follows:

296

1. compute the DCT transform of the block,
2. remove the DC component,
3. normalize the other coefficients.

The DC coefficient of the transformed block is the mean intensity of the block, so
that removing it is equivalent to removing the mean of the block, as performed
by M in the image space. It has the interesting side effect of decrementing the
number of dimensions. The main advantage in this representation is that the
energy packing property of the DCT allows the search algorithm to ignore the
last components. This implies, however, a time-consuming frequency transform.
Also note that reducing the number of dimensions by ignoring the high frequency
components is a lossy speedup: the quality is worse than for a search taking all
the components into account.

Extensive experiments on the use of this feature vector are described in [18],
showing the obtained improvements.

1.8 The Discrete Karhunen-Loeve Transform

The discrete Karhunen-Loeve transform (KLT) is also known as Principal Com-
ponent Analysis, Hotelling transform or eigenvector transform!. It has many
properties that are used in the image processing field as well as in multivariate
analysis.

Let S be a set of vectors in a k-dimensional euclidean space. We define the
covariance matriz of this set in the following way:

1
Cs =z) _(z —ms).(z —ms)”, (3)
|S| z€S
where ms = ﬁ Ezes z is called the mean vector. Cs is a k x k matrix where

each element c;; is the sample covariance of the it and j** components of the
vectors in S, and the elements c¢;; on the diagonal are the variances of the ith
component of each vector.

Cs is a real, symmetric matrix, so that it is always possible to find an or-
thonormal basis of eigenvectors. Let us call 4 the k£ x k matrix of eigenvectors,
where the i** column of A is the eigenvector corresponding to the i** greatest
eigenvalue of C's. The K-L transform of a vector z € S is

y=A(z—msg) . (4)

The mean vector of the set S’ = {y | y = A.(zx — ms),z € S} is zero, and
the vector set S’ is oriented in such a way that the variance is maximized on
the first coordinate axes, and minimized on the last ones. The variances on
each coordinate axis are in fact the positive eigenvalues A;, Ag, ..., Ay, where
A1 > A2 > ... > A;. The first axis is called the principal component. The KLT

! Actually, the Hotelling transform is the discrete version of the Karhunen-Loeve ex-
pansion.

297

is optimal in the sense that the mean square error induced by the suppression
of the last vector components, those having the least variance, is minimal (see

below).

1.4 The Use of the KLT in Best Match Searching

The KLT has been used since a long time in best match searching algorithms (see
e.g. [14]). Some vector quantization algorithms project the set S on its principal
component and use this projection to quickly eliminate best match candidates
([15],[7]). It has also been shown that applying the KLT on a vector set before
constructing a multidimensional indexing structure improves the speed of the
search (see e.g. [20]). Some multidimensional tree structures based on a hierar-
chical space subdivision also use the principal component to partition the vector
set ([19]). Actually, the KLT is very efficient in de-skewing a distribution, i.e.
removing the correlation between vector components, so it is useful in strongly
correlated data sets.

Before continuing, we will note some facts about distance measurement in a
KL-transformed vector space. As A denotes an orthonormal basis of eigenvec-
tors, the KLT is a distance-preserving transformation. If we denote d(z,y) the
euclidean distance between z € S and y € S, we have:

d(z,y) = d(z', ¢/) (5)

where ' = A.(z —ms) € §" and ¥ = A.(y — ms) € §'. So, if we define the set
S’ as the projections of the vectors in S’ on the first b coordinate axes, we can
say:

d(z,y) > d(z",y") (6)

where z'' and 3" are the vectors corresponding to z and y in the set S’. This
property is useful in the search methods using a projection on the principal
component: if the distance between a projection of a vector z on this axis and
the projection of a query vector is already greater than the distance to the cur-
rent best match, then = does not deserve any more consideration. The principal
component should be used as projection axis, since it maximizes the number of
eliminated candidates. To control the amount of variance projected on the first
b axes, we will use the same notation than in [7], and introduce the following
preservation ratio:

(7)

This definition is generalized to any type of transform by replacing the eigen-
values by the variances on each axis. Another definition of the optimality of
the KLT is that it maximizes the preservation ratio, i.e. there is no other or-
thonormal basis for which the preservation ratio is greater. When the data set

298

is strongly correlated, we can choose b so that the preservation ratio is not be-
low a predefined threshold. Using this threshold, we can bound the difference
d(z,y) — d(z",y") on the average, and perform a search in the b-dimensional
space.

2 Using the KLT in the Fractal Compression Best Match
Search

2.1 Applying the KLT to the Feature Vectors

The computation of KL-transformed feature vectors may be carried out in four
steps:

. compute the mean-removed normalized feature vectors ¢(z),
. center the distribution, so that the mean vector is zero,

. compute A4,

. multiply each feature vector by A.

B W N =

The distribution of interest here is Sp, but one could imagine to use Sg as
well. We will introduce the notations S, = {¢' | ¥ = A.(y — ms,),y € Sp},
and Sy, ={y' |y = A.(y — ms,),y € Sk}

The problem is that, even if the original image blocks form a strongly corre-
lated vector set, the normalized feature vectors may lose this property, and the
preservation ratio for a fixed b is quite different in the two sets. The principal
component of the non-normalized 4x4 blocks in the Lena image preserves more
than 85% of the variance, but less than 55% for the feature vectors. Another
important remark is that all the normalized feature vectors belong to the unit
sphere, so the variances may not be as large as for the non-normalized vectors.

Another approach would be to compute the feature vectors from a KLT-based
representation. We would like these KLT-based feature vectors to be invariant to
the transformations used in the iterated system. This approach is more difficult
than the one used for the DCT, since the KLT is a data-dependent transform.
The DCT approach is also simpler when dealing with the projection part of the
operator: we simply ignore the DC coeflicient of the transformed vector. The
equivalent operation in a KL-transformed space is much more complicated. This
is why we think that the KLT should be applied in the last stage of the process,
on the normalized projected feature vectors ¢(z). More efficient energy packing
and dimensionality reduction are expected compared to the DCT, since the KLT
performs an optimal dimensionality reduction on every distribution.

Experimental results showing the preservation ratios confirm these hypoth-
esis. Figure 1 shows the results obtained on 16K 4 x 4 image blocks taken from
the Lena image.

A few remarks might be useful on the way the transformation may be com-
puted efficiently. First, note that the centering step of the KLT is facultative in
our application: the variances will not be affected by the position of the mean

299

vector, so this step may be skipped, and 4 may be replaced by
y=Azx (8)

Another remark is about the compared computation time of the DCT and the
KLT. The computation of 4 has a O(k%.|Sp|+k>) time complexity, if we suppose
that the matrix is computed from the Sp distribution. This is a severe drawback
compared to the DCT, where no such computation is needed. A good approx-
imation of 4 may however be obtained by subsampling the data set on which
it is computed. The KL-transformation of a vector also takes O(k?) operations,
compared to O(k.log k) for the DCT. Experimental tests carried on on 512x512
images show however that this additional computation time is not as important
as the one needed for the computation of A.

100

90

80

70

preservation ratio

60

40—] 6 8 10 ‘ 14 16
number of components

Fig. 1. Preservation ratios (in percent) for energy-packing feature vectors.

2.2 An Appropriate Search Algorithm

Range? searching consists in reporting all vectors that are contained in a query
volume. For the search of the domain in the Karhunen-Loeve transformed feature
space, we use a modified orthogonal range search algorithm. Orthogonal range
searching in a k-dimensional space consists in searching only the subspace defined
by the products of £ 1-dimensional intervals, on each of the k coordinate axes.
So the search is restricted in a hyper-volume bounded by two (k —1)-dimensional
hyper-planes on each axis. It is the equivalent of a spherical range search when

2 The word “range” is to be understand in its original meaning, it does not refer to
range blocks.

300

the Lo, metric is used. Range searching and nearest neighbor searching are two
closely related problems, which often use the same kind of structures: quadtrees
([8]), k-d trees ([5]), R-trees ([11]).

We outline here a general algorithm which does not use any tree structure.
It is extensively described and analyzed in [16], although the same paradigm
has already been exploited in some earlier algorithms ([10], [14]). The steps
are shown in algorithm 1. The notation z = (21, ...,%;) is used for the vector
components. This algorithm returns the set of vectors contained in the hypercube
of side 2.¢ centered on the query point). This set may contain many vectors,
and in that case an additional exhaustive search should be made. If the result
is the empty set, then another search should be performed with a greater e.
In [16], an efficient structure is designed to handle these operations. First, the

Algorithm 1 The general range search algorithm
S is the searched vector set
Q@ is the query vector
the side of the search box is 2.¢
vector set V, T
Ve {zlz €521 €[Q1—¢€Q1 +€f}
for : =2 to k do
Te—{z|z €S zec|[Qi—¢Qi+el}
V<V¥VnT
end for
return V

vectors are sorted along each coordinate axis: k sorted lists are obtained. A
mapping is maintained from the elements of each sorted lists to each vector of
the original set, so that one can retrieve the index of a vector from its position
in the sorted lists in constant time. This indirection is called backward mapping.
The opposite mapping is also recorded, and is called forward mapping. To find
the set {z|z € S,z; € [Q; — €, Q; + €]}, two binary searches are performed, one
for each limit, in the i*® ordered list. Then we compute the intersection between
the set of vectors lying in the interval and V, the set of vectors left in the previous
step. The forward mapping allows the algorithm to use only integer comparisons
for computing this intersection.

In order to suit the needs of the application, and to exploit as much as pos-
sible the properties of the transformed feature vectors, this algorithm is slightly
modified. The modified version is shown in algorithm 2. In this algorithm, the
trimming of the list stops as soon as the current set contains less than a prede-
fined number r of vectors. The returned vectors are not always contained in the
2.e-sided hypercube, but the algorithm guarantees that at least r vectors are re-
turned (excepted in the case where the first set {z|z € S,z1 € [Q1 — €, @1 + €]}
contains less than r elements, which can be made exceptional by correctly tuning
the value of ¢).

301

Algorithm 2 The modified range search algorithm

S is the searched vector set
Q@ is the query vector
the side of the search box is 2.e
vector set V, V', T
Ve {zlz €521 €[Q1—€Q1 +el}
7 — 2
while |V| > r and i < k do
Te—{z|ze€S,zc|[Qi—¢Qi+el}
ViV
V<¥VnT
7—1+1
end while
if |V| > r then
return V'
else
return V'

end if

The preprocessing step has time complexity O(k.|S|.log|S|) if we use the
heapsort algorithm. The cost of establishing the); + € bounds on each axis is
O(k.log |S|). The cost of the trimming of the lists for a single query depends on
the distribution of the vectors. It has been shown in [16] that the time complexity
of the original algorithm for the case where the vectors are uniformly distributed
in the unit hypercube is O(|S|.(e + 1=)) for small e.

It can seem strange to use an algorithm for which the complexity grows
linearly with the number of domains instead of a tree-based one, logarithmic in
the same variable. Two reasons motivate this choice:

1. the cost of a search in a multidimensional tree is logarithmic in the number of
elements in the tree, but roughly exponential in the number of dimensions of
the searched space: this is the well-known “curse of dimensionality” problem,
which often makes some tree search methods useless in high dimensions. One
can easily understand that by remarking that in a k—dimensional rectangular
cell grid, a single cell has always 3* — 1 neighbors (two cells are neighbors if
they have at least one common point), which is exponential in k.

2. The cost of the range search algorithm also depends on e, which is quite
small.

As a consequence, the constant factors involved in the two complexities are of
very different orders, and make the range search method attractive.

In these algorithms, the elimination of candidates begins on the first axis,
and ends on the k** (or before in the modified version), in that order. This order
is justified by the energy packing property of the vectors. We can easily show
that the average number of candidates left after the b** iteration (including the

302

search on the first axis) is:

b
1. 1] 2 9)
=1
where

P;=P{z; €[Qi—¢Q; +€|Q} (10)

is the probability that z; lies in the interesting interval on the i** axis, for a
given @@ and any z € S. As the coordinate axes are sorted according to the
variances of the corresponding components of the vectors, the algorithm ends up
more rapidly with a small subset of the elements than for any other order, and
the most important components are taken into account first.

To give an estimation of the average number of iterations of algorithm 2, we
will place ourselves in a simplistic situation where the two following assertions

hold:

1. the vector components {z;|¢ = 1,...,k, z € S} are independent, uniform
random variables lying in the range [—I;/2, +1;/2],
2. V1< i<k wehavel;, = a.l;_1, where 0 < a < 1.

The second assertion is an attempt to model the energy packing due to the KLT.
It is fairly easy to show that the average number of iterations is®

log % + y/log(P1./a)? — 2.loga.logc
log a

b= ; (11)

where ¢ = 7/|S| is the desired ratio of points left at the end of the search. In the
case where a = 1, i.e. if we search in a hypercube, the solution is

log ¢
log Pl

b= -1 (12)

For a precise description of the developments, one can refer to [6].

2.3 Implementation

In order to show the improvements obtained, four different methods have been
implemented:

1. a simple k-d tree search using the mean-removed normalized feature vectors,

2. a k-d tree search using the KL-transformed feature vectors,

3. a modified range search (algorithm 2) using the KL-transformed feature
vectors,

4. a modified range search using the DCT-based feature vectors.

% the basis in which the logarithms are taken has no importance.

303

Only the first method finds the exact nearest neighbor in the feature vector
space. The two others perform an approximated search: for the k-d tree using
the KL-transformed vectors, the least significant components are ignored, and
for the modified range search, the trimming of the lists should stop before the
k** axis, and ignore as well the remaining components.

Three different range block sizes have been used: 4x4, 8§ x8 and 16x 16. These
sizes are the ones usually used in quadtree partitioning schemes, and they have
been tested separately. The domain blocks are aligned on a 4x4 square lattice,
and they are two times bigger than the range blocks. No square isometry is
used in the transformations. All the blocks, regardless of the original size, are
first down-sized to size 4x4, thus fixing £ =16, and the different normalizations
and transform operations are performed in IR'®. The KL basis — as described
in section 2.1 — is computed from the domain blocks distribution. Also note
that in the three methods, for the sake of simplicity, we only use the vectors
corresponding to ¢(z), and forget the opposite key —¢(z).

The transformation coeflicients are quantized, and the collage error is com-
puted using the quantized coefficients. 5 and 7 bits are used for s; and o;, re-
spectively. We allow s; to vary between -1.2 and +1.2.

For the k-d tree methods, an optimized algorithm has been used, based on the
original algorithm from Bentley ([5]), and implementing the distance refinement
of Arya ([3]), which avoids a lot of floating point operations during the search.
The search is not approximate, and the r nearest neighbors are sought. In our
tests, we have found r = 10 to be a good value for the application. This value is
also the maximum number of elements contained in each bucket of the tree. For
the case where the KL-transformed vectors are used, only the first b components
are used: as we have seen, the 90% preservation ratio is obtained with > =12 on
the Lena image, which is the reason why we have used this value for our tests.

We have not tested the scheme using a k-d tree with DC-transformed vectors,
because we can see on figure 1 that the preservation ratio for b6 =12 is the same
as with the KLT, so the two methods should perform comparably. One can refer
to [18] for this experiment.

For the modified range search method, the number of elements needed has
been fixed to r =20, and we use € =0.3. These values have been found empiri-
cally. The number of iterations in the trimming loop of algorithm 2 using these
parameters is roughly varying between 6 and 13.

The memory requirements for the KLT-based methods are the same as for
the simpler feature vectors, since only the KL-transformed representations are
saved.

2.4 Results

The three methods have been tested on 7 grey-scale images of size 512x512:
Lena, Zelda, Peppers, Baboon, Goldhill, Barbara and Boat. For each block size,
the overall collage error (MSE) and the average compression times in seconds
are given. The time needed for the preprocessing steps (computation of the KLT
basis and construction of the search structures) is also reported. The collage

304

error is used instead of the decoded error for the sake of both simplicity and
generality. The compression ratio is constant for a given block size and a coding
of the transformations. In our simple quantization scheme, a transformation
is coded in 26 bits, and the compression ratios for the three block sizes are
respectively 1:5, 1:20 and 1:100.

Average time and error results are presented in tables 1, 2 and 3. The tim-
ings have been made on a Pentium-based machine. We can make the following
conclusions:

1. the dimensionality reduction using the KLT does not introduce noticeable
error,

2. this dimensionality reduction speeds up the search up to a factor of 2,

3. the modified range search method is faster than the other two, excepted for
the 16x 16 blocks,

4. significant MSE gains are observed for the 16x 16 case,

5. the preprocessing steps in the modified range search are not prohibitive, and
largely compensated by the speed gain during the search (at least for the
4x4 and 8x8 blocks),

6. the performances of the KLT-based feature vectors and the DCT-based ones
are very close to each other, with a slight advantage for the DCT, mainly
due to the fast preprocessing step.

Note that the block dimension used does not change the value of k: the search
is always performed in IR'®. The main difference is that for a larger block size,
the total number of ranges is decreasing, and the encoding is faster.

We can explain the results obtained for the bigger blocks by the fact that the
distribution of the feature vectors is not the same for all the sizes: bigger blocks
seem to give feature vectors with less variance. The choice of € in the modified
range search method should have been different for each block size, according to
the distribution of the feature vectors.

We can imagine to use the new search method in a quadtree partitioning
scheme. In that case, one transform is necessary for each quadtree level. The
memory requirements are however the same as for a static partitioning corre-
sponding to the last quadtree level.

Table 1. Results for 4x4 blocks

Encoder Preprocessing time (s.) Total time (s.) MSE

k-d tree — no transform 5.32 935.92 37.50

k-d tree — with KLT and b =12 13.18 417.93 37.83
modified range search — with KLT 15.32 153.79 38.49

modified range search — with DCT 8.61 153.36 38.49

305

Table 2. Results for 8 x8 blocks

Encoder Preprocessing time (s.) Total time (s.) MSE

k-d tree — no transform 6.32 186.79 137.09

k-d tree — with KLT and b =12 13.89 92.21 140.63
modified range search — with KLT 15.75 73.79 137.37
modified range search — with DCT 9.32 68.21 137.54

Table 3. Results for 16 x16 blocks

Encoder Preprocessing time (s.) Total time (s.) MSE

k-d tree — no transform 9.89 45.93 265.07

k-d tree — with KLT and b =12 17.32 33.93 267.85
modified range search — with KLT 18.89 51.36 257.12
modified range search — with DCT 12.32 44.92 257.04

3 Conclusion

In this paper, we have reviewed the general method of fractal compression using
feature vectors, shown the improvements that could be obtained using a decor-
relating rigid transform, and designed a simple algorithm using these features,
faster than other methods of the same flavor. An optimized implementation of
the technique, integrating an efficient block partition, could lead to competitive
coder performances. Other experiments using more specific feature vectors, or
wavelet domain transformations, could be fruitful too.

4 Acknowledgements

The author thanks Dietmar Saupe, Brendt Wohlberg, and Giuseppe Lauria for
useful discussions and pieces of advice on this subject, and Efstathios Had-
jidemetriou and Sameer Nene for providing the code of the algorithm described
in [16]. The remarks of the referees also greatly helped to improve the quality of
this text.

References

1. E. Amram and J. Blanc-Talon (Oct. 1997): “Quick search algorithm for fractal
image compression”. Proc. ICIP-97 IEEE International Conference on Image Pro-
cessing, Santa Barbara, California.

2. 0. C. Au, M. L. Liou and L. K. Ma (Oct. 1997): “Fast fractal encoding in fre-
quency domain”. Proc. ICIP-97 IEEE International Conference on Image Pro-
cessing, Santa Barbara, California.

3. S. Arya and D. Mount (1993): “Algorithms for fast vector quantization”. Proc.
Data Compression Conference, J. A. Storer and M. Cohn eds., Snowbird, Utah,
IEEE Computer Society Press, 381-390.

306

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

K. U. Barthel (1995): Festbilcodierung bei niedrigen bitraten unter verwendung frak-
taler methoden im orts und frequenzbereich. PhD. Thesis, Technische Universitat
Berlin.

. J. L. Bentley, R. A. Finkel and J. H. Friedman (1977): “An algorithm for finding

best matches in logarithmic expected time”. ACM Trans. Math. Software, 3(3):
209-226.

. J. Cardinal (1998): “Fractal compression using the discrete Karhunen-

Loeve transform”. Brussels Free University, Internal Report,
http://homepages.ulb.ac.be/~ jcardin.

. C.-C. Chang, D.-C. Lin and T.-S. Chen (1997): “An improved VQ codebook search

algorithm using principal component analysis”. Journal of Visual Communications
and Image Representation, Vol.8, No.1, March, pp. 27-37.

. R. Finkel and J. L. Bentley (1974): “Quadtrees: a data structure for retrieval of

composite keys”. Acta Inf., 4, 1, 1-9.

. Y. Fisher (1994): Fractal image compression - Theory and application. Springer-

Verlag, New York.

J. H. Friedman, F. Baskett and L. J. Shustek (Oct. 1975): “An algorithm for finding
nearest neighbors”. IEEE Trans. Comput., vol. C-24, pp. 1000-1006.

A. Guttman (1984): “R-trees: a dynamic index structure for spatial searching”.
Proceedings of the ACM SIGMQOD International Conference on the Management
of Data, pp. 47-57.

A. Jacquin (August 1989): A Fractal Theory of Iterated Markov Operators with
Applications to Digital Image Coding. PhD. thesis, Georgia Institute of Technology.
J. Kominek (1995): “Algorithm for fast fractal image compression”. Proceedings
from IS&T/SPIE 1995 Symposium on Electronic Imaging: Science & Technology,
vol. 2419 Digital Video Compression: Algorithms and Technologies 1995.

R. Lee (1976): “Application of principal component analysis to multikey search-
ing”. IEEE Transactions on Software Engineering, SE 2(3): 185-193.

C. H. Lee and L. H. Chen (1995): “High-speed closest codeword search algorithms
for vector quantization”, Signal Processing 43, pp. 323-331.

S. A. Nene and S. K. Nayar (Sept. 1997): “A simple algorithm for nearest neigh-
bor search in high dimensions”. IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 19, No 9, pp. 989-1003.

D. Saupe (1998): “Accelerating fractal image compression by multi-dimensional
nearest-neighbour search”. Proceedings DC(C’95 Data Compression Conference,
J.A. Storer and M.Cohn (eds.), IEEE Comp. Soc. Press.

D. Saupe (1995): “Fractal image compression via nearest neighbor search”. Conf.
Proc. NATQO ASI Fractal Image Encoding and Analysis, Trondheim, July 1995, Y.
Fisher (ed.), Springer-Verlag, New York.

R. F. Sproull (1991): “Refinements to nearest-neighbor searching in k-dimensional
trees”. Algorithmica, 6, p. 579-589.

D. A. White and R. Jain (1997): “Algorithms and strategies for similarity re-
trieval”. Visual Computing Laboratory, University of California, Internal Report.
http://vision.ucsd.edu/papers.

B. E. Wohlberg and G. de Jager (1994): “On the reduction of fractal image com-
pression encoding time”. 1994 IEEE South African Symposium on Communica-
tions and Signal Processing (COMSIG’94), pp. 158-161.

B. E. Wohlberg and G. de Jager (1995): “Fast image domain fractal compression
by DCT domain block matching”. Electronic Letters, 31, 869—870.

