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Fast Fractal Compression of Greyscale Images

Jean Cardinal

Abstract—A new algorithm for fractal compression of greyscale images
is presented. It uses some previous results allowing the compression process
to be reduced to a nearest neighbors problem, and is essentially based on a
geometrical partition of the image block feature space. Experimental com-
parisons with previously published methods show a significant improve-
ment in speed with no quality loss.

Index Terms—Fractal compression, image coding, tree searching.

I. INTRODUCTION AND PREVIOUS WORK

We begin with a brief summary of the fractal compression method.
Let (M; d) denote a metric space of digital images, whered is a

given metric. Let�orig be the image we want to encode. We try to
find a mapping� : M ! M , satisfying the following contractivity
property:

90 < s < 1; 8�; � 2M; d(�(�); �(�)) � s:d(�; �) (1)

and

d(�orig; �(�orig)) ' 0: (2)

This distance is called the Collage error. When the operator� is applied
recursively on any initial picture�0, the limit of the sequence�i+1 =
�(�i) does exist and is close to�orig . So�orig should be close to the
fixed point of� .

In the partitioned iterated functions system (PIFS) [1] theory, the
mapping consists of a collection of local blockwise transformations,
and each of these transformations is contractive in the image space.

In the original—and still most used—scheme presented in [1], the
image is partitioned in so-calledrange blocks, which are nonoverlap-
ping image blocks. We construct adomain pool, which is a collection of
larger overlapping image blocks. For each ranger, we try to find a do-
maind and a transformationf so thatf(d) ' r. The transformationf
consists of two parts: a spatial part, usually a translation and a scaling;
and a massic part, modifying the pixels in the block. The massic part
is itself usually composed of a rotation or a symmetry, and of a lu-
minance transform, modifying the pixels intensities. Traditionally, the
distortion measure used is the mean square error (MSE). In the scheme
described in [1], the luminance transform is a first-degree polynomial,
so only two coefficients, called respectively the scaling (order-1), and
the offset (order-0), have to be computed. To ensure the contractivity
of the transformation, the scaling coefficient should have a magnitude
less than one.

The problem in the fractal method is that it needs a huge amount
of processing time for compression: for each range, the whole domain
pool has to be scanned in order to find the best matching domain. Many
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attempts to reduce the compression time have been made. The first of
them was block classification: the search is restricted to domain blocks
in the class of the range. For example in [1] blocks are classified using
edge informations, and in [2] the quadrants variances of the block are
sorted to obtain 72 block classes. But one important step has been made
in [3], where the best match search process is reduced to a nearest
neighbor search in a suitable metric space. In this technique, each block
is associated with a feature vector so that minimizing the collage error
between the range and the domain is equivalent to minimizing the dis-
tance between the corresponding feature vectors. This is possible if the
feature vector is chosen invariant to block transformations. The search
for a best match then simply consists of finding the nearest vector in
the vector space. Note that this result is exact only when we ignore the
contractivity constraint: practically, we will have to find more than one
vector close enough to the query. This can however be done much faster
than the linear search using—as suggested in [3]—a k–d tree structure
(first described in [4]).

Similar ideas are exploited in, e.g., [5] and [6]. In a recent book [7],
another related method is described, close to the one we describe in
this paper, although less sophisticated. These techniques clearly out-
perform the classical methods relying on a reduction of the size of the
domain pool, either by classification or using some heuristic, like local
searching. For more insights on the efficiency of these different classes
of algorithms, one can refer to [7]. Finally, such techniques may be
compared to those used in vector quantization, like the one presented
in [8], which is in turn closely related to [9].

We present here a new algorithm allowing even more acceleration in
the compression process. Although it is closely related to more classical
tree structures, it appears to be faster than the previous methods.

II. GENERAL DESCRIPTION

As described above, the problem of seeking the best transformations
can be reduced to the classical computational geometry problem of
finding nearest neighbors in a Euclidean space.1

Our algorithm takes two sets of image blocks as parameters: the do-
main blocks set and the range blocks set. All the feature vectors—or
keys—corresponding to each block in the two sets are computed: the
feature vectors may be, for instance, given by the Saupe’s projection
operator�. This operator was called thenormalized projection oper-
ator, and was first introduced in [2, Appendix]. It is written

�(x) =
x� hx; ei:e

k x� hx; ei:e k (3)

wheree = (1; � � � ; 1)=
p
k, k is the number of dimensions, andh:; :i

denotes the dot product. We assume that image blocks have the same
size (i.e., the domain blocks have been downsized), and we treat them
as simple vectors in<k. Actually, applying this operator is equivalent
to makingx both zero-sum and normalized. In [6], a similar operator is
defined in the frequency domain, and in [3], the operator is generalized
to the case where fixed basis blocks are used instead of a simple offset
term. Our approach, described in the following, is applicable to those
cases as well.

The next phase consists in recursively partitioning the search space,
containing both the range keys and the domain keys, until a sufficiently

1The search space should be defined as Euclidean due to scalar products used
in the following developments.
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small numberu of domain keys is left in each subspace. Each of the
ranges corresponding to the keys left in a subspace is then compared to
each of the domains corresponding to the remaining domain keys, and
the best transformation for each range is saved. Sometimes the process
can end up with a subspace containing no domain at all. This exception
case must be treated separately, for example by canceling the previous
partition. The information used for the partitioning need not be saved,
which means that the technique does not use much memory space.

The core of the algorithm is, of course, contained in the partitioning
procedure. One possible way is given by the so-called optimal k–d tree
construction algorithm (see [4]): the space is partitioned along a hy-
perplane dividing the key set in two halves, each containing the same
number of keys, and orthogonal to the axis for which the distribution
of the keys projections has the widest spread. This solution, also used
in [7], is easy to handle, especially when we have to backtrack through
the levels, but since we only perform a descent in the tree we can use a
more efficient technique.

A generalization of this method consists of finding a hyperplane with
no restriction on its direction.

In the method presented, the search space is recursively divided in
two parts by a(k � 1)-dimensional hyperplane. At each step, the di-
viding hyperplane may be represented by a normalized vectorv 2 <k

and a scalar value� 2 <, where the hyperplane is orthogonal tov and
contains the point�:v. The problem is then to find the hyperplane by
finding the correspondingv and� at each step. Each key will be on
one side of the hyperplane or the other, depending on whetherhp; vi
is larger or smaller than�. An illustration may be found in Fig. 1.

The complexity of the partitioning process isO(k(NR +ND)) for
each level, whereNR andND are the number of ranges and domains,
respectively.

A good solution for findingv has been proposed in [9], where the
direction of the plane is given by the principal eigenvectorvopt of the
covariance matrix of the keys distribution. We will define this solution
as optimal, because this direction maximizes the residual variance of
the keys, i.e., it is the most discriminant one-dimensional axis we can
find.

In our algorithm we introduce a heuristic in order to find a good
cutting hyperplane without having to computevopt, which may be
time-consuming, especially in high dimensions. The method is for-
mally described as follows.

• Let fri 2 <k j i = 1 � � �NRg andfdi 2 <k j i = 1 � � �NDg be
the feature vectors sets for the ranges and the domains.

• Compute the gravity center of the range distribution:
g = (1=NR)

N

i=1
ri.

• For eachi 2 1 � � �NR, compute the projection ofri on the unit
sphere centered ong: si = (ri � g)= k ri � g k.

• The partitioning hyperplane will be orthogonal to the direction
given byv = w= kwk, where:w = (1=NR)

N

i=1
si, and will

contain the pointg.
The value corresponding to� is given byhg; vi.
The goal of the heuristic is to find a significant direction in the cloud

of points. We first take the gravity center of the points in order to center
the distribution, and then simply take the average of the directions “ob-
served” from this point. This very simple technique is reminiscent of
the iteration proposed in [10] to compute a good approximation of the
principal component. Note that ifkwk= 0, we must choose an arbitrary
vector. This case, however, has never been encountered during our ex-
periments.

When the optimal directionvopt is used, this method also tends to
maximize the average distance between each range key and the border
of the cell containing it, and minimizes the probability of having an
interesting neighbor in an adjacent cell. We expect our heuristic to have
the same property.

Fig. 1. Illustration of the partitioning process: dashed lines represent the
subsequent splitting hyperplanes. A domain-range pair is tested only if the
corresponding keys fall in the same cell.

In our method, we assume that the range keys spatial distribution is
similar to the domain keys one. This assumption can be considered as
a corollary of the local self-similarity property exploited in the PIFS
model. The algorithm takes this idea into account, and only uses the
ranges to find the partitioning hyperplanes: ranges usually being less
numerous than domains, the calculation is faster.

III. EXPERIMENTAL COMPARISON

Briefly, three methods will be tested, each one corresponding to a
different choice forv:

1) random method:v is chosen randomly;
2) optimal method:v = vopt;
3) heuristic method:v is chosen from the heuristic described above.
Note that in the optimal case, the calculation ofvopt is also restricted

to the ranges keys. In each case,� is the average of the distribution of
the projections of the keys onv: the calculation is faster than for the
median, and it gives similar results.

The three methods above are compared to the classical k–d tree al-
gorithm.

The compression scheme used in the tests is quite simple: the image
partition is a three-level quadtree with range blocks sizes of fours, eight,
and 16 pixels. The domain pool is constituted by domains twice as big
as ranges, and aligned on a 2� 2 pixels lattice. No square isometry
(block rotations or symmetries) is used in the transformations.

The keys are computed using the� operator.2

A simple uniform quantization has been used to store the coefficients
of the tranformations: seven bits were used for the offset (order-0 coef-
ficient), and five for the scaling (order-1 coefficient). The domain pool
index is not quantized, so that the number of bits used by the index is
the same for all the transformations in one level of the tree, and equal
to dlog(domain pool size)e.

The computation of the eigenvector in the optimal method is done
using a fast implementation of the Jacobi diagonalization algorithm.

The k–d tree search algorithm has been optimized too: instead of
searching for the nearest neighbor, we look for a(1 + �)-nearest
neighbor. (This is a point whose distance to the query is less than
(1 + �) times the distance of the nearest neighbor.) It is implemented
as a simple relaxation of the backtracking condition called the
ball-overlap-bounds testin [4]. We have set� = 3: This optimization

2Normally, for each blockx, two keys must be inserted:�(x) and��(x).
For our tests, only the first key is used: this has the same effect as reducing the
domain pool by half.
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Fig. 2. Results for Zelda: (a) timings and (b) quality.

leads to a great improvement in speed and only a small precision
loss. In our new algorithms, we have also foundu = 300 to be
optimal for the problem (u is the maximum number of direct domain
comparisons).

The algorithms have been tested on 12 images of the standard greyset
available at the Waterloo Bragzone website3 using a Pentium-based
machine. The size of the images is 512� 512, with eight bits per pixel.

IV. RESULTS

Graphs of compression ratios and compression times are given for
two images: Zelda and Goldhill (Figs. 2 and 3). The quality is mea-

3http://links.uwaterloo.ca

sured using the peak-signal-to-noise ratio. Two general graphs are also
showed, for which the values have been averaged on the basis of the
whole image set (Fig. 4).

We can say that

• three new methods are always faster than the k–d tree method.
Acceleration ratio is varying between 1.5 and 3;

• optimal method gives better quality results compared to the
random method;

• time loss using the optimal method compared to the random and
heuristic methods is around 20%;

• on the average, for a fixed encoding time, the k-d tree method
gives no better quality results than the three other ones, and even
worse results for low compression ratios;
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(a)

(b)

Fig. 3. Results for Goldhill: (a) timings and (b) quality.

• use of the heuristic induces no time loss compared to the random
method and gives better results, close to the optimal method ones.

Note that the speed of the algorithms is measured versus the quality:
the random method, for instance, actually takes more time for a fixed
degradation.

V. CONCLUSION

Our new algorithm for fractal codes searching is simple to im-
plement, faster than the classical methods and space-economical.
The speed of the algorithm is essentially due to the fact that there

is no backtracking in the hierarchical partitioning structure. This
backtracking process introduces aO(2k) constant in the complexity of
the k-d tree search. We successfully compensate the loss of precision
by a more meaningful partitioning of the search space. The fact that
the partition is adapted to the range blocks distribution only also
contributes to the efficiency of the search. This method may also be
seen as a classification scheme where each bucket represents a class.

Further experiments and refinements can be tested: for example we
have not taken into account the fact that the feature vectors�(x) all
belong to the a unit(k � 1)-dimensional hypersphere. We could also
have applied a dimensionality reduction technique such as in [6], or an
overlapping cells principle, like in [7].
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Fig. 4. Averaged results: (a) timings and (b) quality.
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Low-Bit-Rate Video Coding Using Dense Motion Field and
Uncovered Background Prediction

K. P. Lim, M. N. Chong, and A. Das

Abstract—It is well known that accurate dense motion field can improve
the video coding efficiency. This paper presents a novel Markov random
field (MRF) model that estimates both the dense motion and uncovered
background fields in image sequences, and the application of these esti-
mates in H.263-based video coding framework.

Index Terms—Dense motion field, H.263, Markov random field, video
coding.

I. INTRODUCTION

It has been found that coding efficiency is improved by applying
dense motion field (DMF) to video coding algorithm [1], [2], [11]. In
[1] and [11], modified a Horn–Schunck [3] algorithm is used to com-
pute DMF, whereas in [2], Markov random field (MRF) is adopted.
These approaches [1], [2], [11] suffer a major drawback for relying
heavily on motion information for image reconstruction. Therefore,
when new objects appear in the video scene, they are unable to encode
the new information efficiently [10].

In this paper, we present a novel MRF model to improve the dense
motion field estimation by overcoming the problem of occlusion. In ad-
dition, a new video-coding framework that uses dense motion field and
the property of motion continuum for video coding without incurring
huge motion overheads is presented.

II. DENSEMOTION FIELD ESTIMATION

Occlusion is an inherent problem for DMF estimation since motion
is not defined in the occluded regions. The proposed MRF model ad-
dresses this problem by using a novel approach to estimate both the
occlusion and dense motion fields based on the duality principle of
occlusion; the occluded region is the uncovered region if the frame se-
quence is viewed in the reversed direction and it is true vice-versa.

A. MAP Formulation

Let ggg
kkk

denote thekth frame. Letdddk�1; k(~x) be the motion vector
on the spatial location~x in gggkkk�1 indicating a corresponding point on
~x + dddk�1; k(~x) in gggkkk lying on the same motion trajectory. To model
occlusion field accurately using the duality of occlusion, the MRFs are
modeled in a bi-directional Bayesian framework that is different from
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the work reported in [4]–[6]. The new MRF models for the motion and
occlusion fields are derived as follows.

Let
dddfff=dddkkk�1;kkk forward motion field;
uuufff=uuukkk�1;kkk forward uncovered background label field

whereuuufff (~x) = 1 indicates that site~x
contains an uncovered background pixel
in framegggkkk�1 anduuufff(~x) = 0

indicates otherwise;
dddbbb=dddk; kk; kk; k�1 backward motion field;
uuubbb=uuuk;kk; kk; k�1 backward uncovered background

label field whereuuubbb(~x) = 1 indicates that
site~x contains an uncovered background
pixel in framegggkkk anduuubbb(~x) = 0

indicates otherwise.

Hence, given the observed framesgggkkk�1 andgggkkk, the MAP estimates can
be written as

(ûuuf ; d̂ddf ; ûuub; d̂ddb)

= arg max
u ; d ; u ; d

p(uuuf ; dddf ; uuub; dddbjgggk; gggk�1): (1)

Direct relaxation of the four unknown fields is too complex to be
solved; (1) is estimated by solving the forward and backward fields
separately. Using Bayes rule, (1) can be formulated in two ways. The
first is to condition the backward fieldsuuubbb anddddbbb and, framegggkkk�1 in
(1). This leads to the MAP estimates of the forward fields

(ûuuf ; d̂ddf) = arg max
u ; d

fp(gggkjuuuf ; dddf ; uuub; dddb; gggk�1)

� p(uuuf jdddf ; uuub; dddb; gggk�1)

� p(dddf juuub; dddb; gggk�1)p(uuub; dddbjgggk�1)g:

(2)

The MAP estimates of the backward fields are derived by conditioning
(1) with the forward fields,uuufff ,dddfff , andgggkkk. This leads to the other MAP
estimates of the backward fields

(ûuub; d̂ddb) = arg max
u ; d

fp(gggk�1juuub; dddb; uuuf ; dddf ; gggk)

� p(uuubjdddb; uuuf ; dddf ; gggk)

� p(dddbjuuuf ; dddf ; gggk)p(uuuf ; dddf jgggk)g: (3)

By solving (2) and (3) alternately, the MAP of (1) can be estimated.
From (2), the likelihood is modeled as a Gaussian distribution with
zero mean and variance�2. Let� = 1=2�2,N be the number of sites
and' the set of all sites in the image, the potential function [9] of the
likelihood is given as

Uu(gggkjuuuf ; dddf ; uuub; dddb; gggk�1)

=
1

2N
ln(2��2) + �

~x2'

[gggk(~x+ dddf(~x))� gggk�1(~x)]
2: (4)

Using the Hammersley–Clifford Theorem [7], Gibbs distributions are
used to specify the MRFs. The motion fieldprior model consists of
singleton and doubleton clique potential functions

V c
d (dddf juuub; dddb; gggk�1) = V c1

d (dddf) + V c2
d (dddf juuub): (5)

The singleton clique potential function is defined as follows:

V c
d (dddf(~xi)) = �0(1� 2�[dddf(~xi)]ccc[~xi]) (6)

1057–7149/01$10.00 © 2000 IEEE


