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Abstract

We present a solution to a functional equation by means of the
construction of a contractive operator on some functional space. This
solutions presents a kind of self-similarity and enables us to general-
ize the model introduced by Cabrelli et al. in [CFMV92] allowing a
much greater flexibility. In particular dilation equations of the type
f(z) =Y cx f(2z — k) fit into this model, and hence we can construct
a multiresolution analysis in the sense of Mallat and Meyer.

On the other hand, this “generalized self-similarity” notion provides
us with a method for the construction of an operator whose fixed point
is close to a given target.
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1 Introduction

Self-Similar objects are those that can be constructed out of smaller copies
of itself. When we deal with sets, this concept can be formulated using the
notion of Iterated Function Schemes (IFS) ([Hut81], [Bar88]): If (X,d) is a
metric space and ® = {wq,...,w,} (w; : X - X, {w;}iz1,.. v) is @ set of
maps, then A C X is self-similar with respect to ® if 4 = Uw;(\A). It can
be shown, that if X is complete, and the maps are contractive, then there
exists a unique compact self-similar set with respect to ®.

This concept can be extended in different ways to different kind of objects:
self-similar measures can also be defined using IFS (see [Hut81], [Bar88]) and
recently have been studied by Strichartz using Fourier and Wavelet analysis

([Str91], [Str94]).

Aiming to recover self-similarity parameters of physical signals, Hwang and
Mallat study the self-similarity of the wavelet transform ([HM94]).

One way to extend the notion of self-similarity to functions, is to require
that the graph of the function should be a self-similar set.

If the function is defined on a self-similar set, then we could require that the
function share the self-similarity of the domain, i.e.: if X = U, w;(X), then

(1.1) flwi(z)) = f(z), i=1,...,n.

For this definition we require the w; to be disjoint (i.e. w;(X) N w;(X) =

0,i#7)

From IFS-theory it can be shown that if f is a continuos function satisfying
the self-similarity condition (1.1), f has to be constant.

In order to consider more general solutions, we relax the condition of self-
similarity (1.1), introducing a set of functions ¢y, ..., ¥, and requiring that
f satisfy

(1.2) oi(flwy'(z)))=f(z) zew(X) i=1,...,n

Finally, to allow overlapping maps in the IFS, we introduce a function O
that combines the values of ¢; o f o w; *(z) for i = 1,...,n for the same z.

In this paper we will study the existence of self-similar functions in different



contexts and relax even more the self-similarity condition (1.2) allowing
space-dependent ;’s and O.

The problem of finding a function u that satisfies a self-similarity equation
of the type:

(1.3) u(z) = O(z,(uocgi)(z),...,(uog)(z)),

has been studied by Bajraktarevic in 1957 ([Baj57]). In the same year, a
similar equation was considered by de Rahm ([dR57]), and conditions for
continuous solutions were found.

In [Hut81] Hutchinson, extending the concept of self-similarity to parametric
curves, considered a particular case of this equation.

More recently, related functional equations were studied in fractal interpo-
lation, in order to show the existence and construction of continuous fractal

functions ([Bar86], [BH89], [Dub85], [Dub86], [DE90]|, [Hat85], [Hat86]) .

In this paper we study a slightly more general equation

(14)  u(e) = Oz, pu(z, (w0 g:)(2)), .., o:(z, (w0 g,)(=))).

that encloses most of the cases mentioned before and generalizes the concept
of self-similar function (1.1). We find conditions on the components in order
to assure the existence of solutions.

We construct an operator on a suitable function space and the solution of our
equation will be a fixed point of this operator. This not only yields a solution
of the equation, but also shows that this solution can be computationally
efficiently calculated: we obtain it by iterating the operator.

Cabrelli et al. in [CFMV92] constructed an operator of the type (1.4), but
neither @ nor the functions ¢; were allowed to depend on z. In addition,
the ¢;’s had to satisfy some pretty restrictive conditions.

In the present approach, we were able to remove most of these conditions
making this model much more versatile and therefore more suitable for ap-
plications. For example we can use it to model two situations which are of
general interest: the construction of wavelets and image or signal analysis.

In the first case, one wants to find solutions to a dilation equation of the



type

(1.5) o(z) = 3 ci 9(22 — k),

keZ

in order to then construct a wavelet basis in £2(R). Suitably defining ¢;,
g; and O in (1.4) will yield (1.5) We will expand on this idea later in the
paper. Naturally these functions will depend on the coefficients c;, hence the
existence of a solution will be translated into a condition on the coefficients
c;. Considering the attention that has been given to this equation lately,
we think that it is interesting to observe how natural it fits into this model,
and how the conditions on the coefficients appear in a very simple manner.

In addition, the higher dimensional parallel of (1.5) can be addressed in the
same way; in the particular case that all the ¢; are equal, we obtain the
equation studied by Gréchenig and Madych in [GM92] and Strichartz in
[Str93]. Currently there is a growing interest in “multiwavelets”, which can
be constructed using dilation equations in which the coefficients are matrices
and the solutions vector-valued functions ((GHM94], [HC94]). Solutions to
these matrix dilation equations using the concept of generalized self-similar
functions are studied in a joined work with C. Heil ([CCM94]).

In the second case, in signal processing, in particular in image representation,
a well known problem is the design of an adaptive code for a given target.
This has been studied in particular using fractals and self-similar models (see
[AT89], [BEHL85], [BS88], [CFMV92], [CM91], [DGS94], [HM90]). Some of
the advantages of this approach are the compression rates achieved, and the
complexity of the images that can be represented. Qur strategy consists
in finding an operator 7', whose fixed point is the given target. Together
with a least-square-approximation argument we are able to propose a basic
method for the construction of such an operator. The functional equation
considered, represents a generalization of the concept of selfsimilar function
extending the applicability of the model to a wider class of images and
allowing more flexibility in the choice of the parameters.

The outline of the paper is as follows: we first study in section 2 conditions
for the existence of solutions to the functional equation. In section 3 we
will show the application to the dilation equation in £'(R) and finally, in
section 4 we outline the construction of an operator whose fixed point is a
predetermined target.



2 The self-similarity equation

We will consider the functional equation (1.4)on two different settings:

2.1 B(X,E)-case

Let (X, d) be a compact metric space and (F,£) a metric space where E is
a closed subset of R™ (in particular (E could be R™) and £ a distance in
FE induced by some norm of R™. Let us also consider a point ¢, € E that
will remain fixed throughout the whole section.

We consider the functional space
B(X,FE) ={u: X — E, u bounded},
with

(2.1) D(u,v) =sup £(u(z),v(z)), Vu,v,e B(X,E).

zeX

It is well-known that (B(X, E), D) is a complete metric space.

Let us now define the functions O, w;, ;,2 = 1,...,r in order to construct
an operator 7 on B(X, E).

Let O: XX E" — E be non-expansive for each z € X ,ie.:

— — — —
(2.2) L(O(z,k"),0(z,k?)) < sup £(k},k}) VE',k* € E".
1<i<r
Let w;: X —» X, 1=1,...,r be r injective maps, which are not necessarily

contractive, and let ¢; : XX E — E, ¢ = 1,...7r be r functions that for each
z € X satisfy the Lipschitz condition:

(23) Z((pi(makl)a‘pi(makl’)) < CZ(kl,kz), v]‘;lak2 € E: 1= 17 cees T

where ¢ > 0 does not depend on z.



In order to be able to define an operator on B(X, E) , we need some stability
conditions. We define a function f to be stable, if f(A) is bounded, whenever
A is a bounded set. Hence we shall assume that O and ¢;,2 = 1,...,r are
stable.

Now we define an operator 7 on B(X, F) in the following way:
(2.4) (Tu)(e) = O (2, pu(3, x(a), . .., ¢u(3, i (a));

(2.5)  where u,(z)=

{u(w[l(m) if z € Img(w;) L<i<y

to otherwise

_—
We shall use O (z,p;(z,0;(z))) for the right hand side of (2.4). We can

prove the following

Theorem 2.1.1 With the above notation, if ¢ > 0 is the Lipschitz constant
for the v;’s, then
T :B(X,E) — B(X,E), and
D(Twu,Tv) <cD(u,v).

In particular, if ¢ < 1, T s contractive and therefore there exists a unique
u* in B(X, E) such that Tu* = u*.

Proof: If u € B(X, E) then it is easy to verify that Tu € B(X, F). Now
if u,v € B(X, E) then

£((Tu)(z),(Tv)(z)) = £(O(z, pi(z, 1())), O (2, pi(2, V:(z))) )
< sup £( @iz, 0i(z)), pi(, Vi(z)) )

1<i<r

< sup c£(w(z), vi(z))

1<i<r

<ec zlelgﬁ (u(y),v(y))

=c¢ D(u,v).

Therefore
D(Tu,7Tv)<c D(u,v).

We then have the following



Corollary 2.1.1 If ¢ < 1, the functional equation

(2.6) u=0(z, pi(z, w(z)), ... , o (2, U (2)) )

where the ; are as in (2.5), has a unique solution in B(X, E).

Proof :
The fixed point of the operator Zis the solution of the equation. [ |

Note that (2.6) is a generalization of the original functional equation given
in (1.3).

In what follows, we will study the operator (2.4) in the £LPspaces.

2.2 LP-case

Let now X C R™ compact, with g the n-dimensional Lebesgue measure
and let £ = R™ with some norm ||.||. (Note: E could be chosen to be
any Banach space.) If we consider the functions u : X — E such that the
real-valued function ||u(.)|| is Lebesgue-measurable, and, as usual, functions
that are equal almost everywhere are identified.

Ifl1<p< 4o, let
(X, B) = {u: X = B [ [u(@)|Pdu(e) < +oo}
with [[ull, = (fx lu(e)|Pdu(z))"’?; and
LP(X,E)={u:X— E: ||u(.)|| essentially bounded}
with ||ul|e = ess.sup.||u(.)||.
It is well known, that £P(X, E), 1 < p < 400 is a Banach space.
For measurable u : X — E we define as before the operator (2.4),

(Tu)(z) = O(z, ¢u(z, i(2)), -, pu(z, B (2)),

where the wis, pls and O are as in the previous section, with the following
additional conditions:



1. The maps {w;} satisfy a Lipschitz condition, i.e. there exists s >
0, such that d(w;(z), w;(y)) < sd(z,y) where d is the Euclidean dis-
tance in R”.

2. The functions ¢;, 2 =1,...,r and O are Borel measurable.

These additional conditions are required in order to guarantee the measur-

ability of 7 u.

We have the following

Proposition 2.2.1 Let 7 be defined as above, then Tu : X — E is measur-
able for each measurable function u : X — E and also if u, v are measurable
and u= v a.e. then Tu="Tv a.e.

Proof: The measurability of 7 u for measurable u is a consequence of the
stability and the Borel-measurability of O and the ¢;’s and the fact that
the w;’s are Lipschitz. Now if Z = {z : u(z) # v(z)} then {z : Tu(z) #
Tv(z)} C U_jw;(Z). The Lipschitz condition of the w;’s implies that
w(w;(Z)) = 0if u(Z) = 0 and therefore the result follows. [ |

Now we consider first the space £ defined before. The case LF 1< p <
4+ oo will be treated later.

Theorem 2.2.1 Let T be the operator of proposition 2.2.1. Then, T :
L* — L% and

[[Tu— T < cl]|u— V||, Vu,veL™.
Proof: If u € £% then let Z C X, u(Z) = 0 and u bounded in X — Z. If
we define v: X - E by v= uXx_z, then v = u a.e. and v is bounded.

Then 7 v is bounded and using the preceding proposition, Zu = 7v a.e.
and therefore 7u € £%.

From the proof of Theorem 2.1.1 we see that for u and v € £ we have
|(Tu)(s) - (TV)(@)] < cllu — Ve 2. on X,
which implies that

[[Tu—TV|ew < c||lu— V|- [ |



We will now analyze the case LP 1 < p < co. We have the following

Theorem 2.2.2 Let T be the operator of proposition 2.2.1. Then, if u,v €
LP(X,E), then (Tu— Tv) € LY(X,E) and

1T~ Tol, < (rs)"cllu- v, ,

where s and c are the Lipschitz constants of w; and @; respectively.
Furthermore the finiteness of u(X) yields

T : LP(X,E) - L£P(X, E).

Proof : If u,v € £LP?, then by Proposition 2.2.1, Tu — 7 v is measurable
and

ITu- Tl = [ I(Tu)e) - (T¥)@)" du(e)
= [ 1106, oz, w(2))) - Oz, ¢1(a, %(2))) [Pdi(z)

< [ sup lleie,8(2)) - ile, (o)) [P du(e)  ( by 2.2)

1<i<r

<o [ sup |[ie) - W(a) [Fdu(e) (by23)

1<i<r

O B [ 107D ~ vl (@) P dute)
<se Y [ llu) - v IP dut)

1<i<r

=srcf (Dp(u,v))r.
From this inequality we see that if u,v € £F, then
1Tl < TV~ Tull, + | Tull, < (s7)/7cllu— vl + | Tul,;

what says that if there exists a function u € £P such that Zu € LP then
T sends L£P into £LP, 1 < p < 400. Now, since u(X) < +oo then L® C
LP,1 < p and since, by Theorem 2.2.1 7 : L* — L%, we get the desired
result. [ |



Corollary 2.2.1 If, with the above notation, (s7)*/Pc < 1 we have that T is
a contraction map on L” 1 < p < oo and the functional equation given by
2.6:

U= O(III, (P1($, ﬁl(m)): ce :‘107'(337 ﬂ,((c)) )’

has a unique solution in L”.

Note that the solution to the functional equation 2.6 presented here can
be obtained as the limit of the iteration of the operator 7 at any starting
function.

3 Dilation equations and wavelets

Families of functions
z—b

a

(3.1) V() = |a| 7 9( ) a,beR

obtained through translations and dilation of a single function ¥ are called
wavelets (following Grossman and Morlet [GM84]). If in 3.1 we restrict the
choice of a,b to a discrete lattice, we obtain

(3.2) U,y (z) = |ao| 39 (ag’z — kby) j k€ Z.

Here we fixed a dilation step ap > 1 and a translation step by # 0. For
particular selections of ¥, aq and by (usually ag = 2,b9 = 1), ¥, constitute
an orthonormal basis. The classical example is the Haar basis, where

1 ifo<z<1/2,
U(z)=¢ -1 if1/2<z<1, and ay=2,by=1.
0 otherwise.

V;(z) =279/2¥(279z k) j,k € Z form an unconditional basis for L2(R)
and also an unconditional basis for all LP(R),1 < p < co. There are many

other examples of orthonormal bases (see for example Daubechies [Dau88]
and Meyer [Mey88] ).

In the case that one restricts the choice of ag to 2, Mallat and Meyer showed
that wavelet basis constructions can be realized by a ‘multiresolution analy-
sis’. A multiresolution analysis for £2(R) is defined as a sequence {V,}nez
of subspaces of £2(R) and a function ¢; such that

10



<

n C Vny,MEZ

L, Vn=10

.U, V. =L23(R)

f(t) € V<= f(2t) € Vypys;

D)

W N =

- ¢ € Vo is such that {¢(t — k) }rcz form an orthonormal basis for V.

Note that, since ¢ € Vo C V1, and {v/2¢(2t — k)}4ez form an orthonormal
basis of V;, then there must exist a unique set of coefficients {c; }zcz, such
that
(3.3) $(z) =) i p(2z — k).
kez

This equation (for arbitrary {c; }) is called a dilation equation, and ¢ is called
the scaling function. On the other hand, not every solution of (3.3) generates
a multiresolution analysis. It is of great interest to establish conditions
on the coefficients ¢; in order to obtain smooth solutions that generate
multiresolution analysis (see for example [Dau88], [DL91], [DL92], [Hei91],
[CH94]). If the {ct}rez satisfy the desired conditions, then the existence of
a solution of 3.3 implies the existence of an orthonormal wavelet basis in
L?*(R), namely, define
(3.4) U(z)=> (~1)ces10(2z + k).

kez
Then ¥;4(z) = 279/2¥(2 9z — k), j,k € Z will form an orthonormal basis
of L?*(R) (see Mallat [Mal89]). Being able to solve (3.3) will then provide
us with methods of generating wavelets.

In the case that one is interested in compactly supported solutions, only
finitely many c; are non-zero. Our aim is to find solutions to the dilation
equation defined in (3.3), in precisely that case, i.e:

(3.5) d(z) = 2_: ce 92z — k).

Let us first describe the particular choice of the functional space and the
resulting contractive operator, and then relate it to the dilation equation.

Let us remark that equations of the type of (3.3) were studied in other con-
texts and represent a particular case of refinement equations (see [CDM91]).

11



3.1 Self-Similarity Equation for the dilation equation

We are interested in finding compactly supported solutions, and since every
compactly supported solution ¢ of (3.5) satisfies supp(¢) C [0, N], then we
can restrict ourselves to functions f : [0, N] —» R. If in addition we are
looking for continuous solutions of (3.5), we have to require that f(0) =

F(N) = 0.

It is convenient to establish the following correspondence: To each f :
[0, N] - R we can associate a function u; : [0,1] - RY,

(3.6)
us(z) = (wi(z),...,uy(z)) where wui(z)=f(z+(¢:-1)), i=1,...,N.

Note that w;(1) = u;441(0),2=1,..., N—1. On the other hand, if u: [0,1] —
RY is a function that satisfies that u;(1) = u;41(0),2=1,...,N — 1, then
we can associate to u a function f, : [0, N] —» R in the following way:

(3.7) ful®) = 3 Hsgr, gz — (i - 1)

It is straightforward to see, that if ¢ : [0, N] — R satisfies the dilation
equation (3.5), then uy satisfies

(3.8) uy(z) = { j:z:gz)_ 1)

where A; and A; are the N x N matrices associated to (3.5) defined by

N= O

<z
<z

ININ
[ Ll

[A1]; = caimja 1<%4,3<N

(3'9) [A2]ij = C2i—j 1<1,7<N,

where the cs are the coefficients of the dilation equation.
Reciprocally, if u satisfies (3.8) and u;(1) = u;41(0),2=1,..., N — 1 then
¢y satisfies (3.5) i.e:

du(z) = 2_: cr Pu(2z — k).

12



We will now apply the results of section 2 to our problem. Let X = [0, 1] and
E = RY with some norm || ||. We consider » = 2, and define the functions
w1, Wa, P1, P2 as follows:

w; 1 [0,1] — [0,1] i=1,2
1

1 1
wy(z) = 3% wy(z) = % + 9
i [0,1]x RY — RN i=1,2
(pi(iﬂ,{\) = AZ'I? 1= 1,2
In addition, we define the following map O:
O:[0,1]xRY x RY — RY,

—

L. [ & 0<ec<l
0($,t1,t2): R 1 .

O can also be written as follows:

Clearly O , ¢; and ¢, are stable and Borel-measurable, w; both satisfy
Lipschitz conditions with Lipschitz constant s = %, and since O satisfies:

RN e t_)_t_/’\H 0<$0<l
O(wo, 11, 85) — O, 8,8 = 4 I~ 4l 0<@osy
|| ( 05 %1, 2) ( 0, %1, 2)” { ||t2_t,2|| %<$0S1 )
O is non-expansive.

(1, s satisfy a Lipschitz condition with constant ¢ = ¢*, where

¢* = max{ sup || 4:]], sup || As]}.

<1 <1

We are therefore in the setting of the previous section and considering 7 as
n (2.4), will yield

(Tu)(z) = X, 1(z)Aru(wi () + A1, y(2) Ayu(w; ().

13



Now we can apply theorems 2.1.1 and 2.2.2 to obtain:

(3.10) D(7u,7Tv)
(3.11) || Tu—Tv|,

¢*D(u,v), VYu,v € B(X, F) and

<
< cflu = v, Vu,ve LP, 1<p<oo.

We see that the Lipschitz constant is the same for both cases, since rs = 1.
Hence, if ¢* < 1 we have that 7 is a contractive operator in LP, 1 < p < oo
as well as in B(X, F), and has a unique fixed point u* in both spaces.

Note that up to this point we did not use any particular choice of || . || in R¥;
for our purposes it is enough that there exists one norm with the desired
properties.

However, even with that consideration, the requirement that ¢* < 1 seems
to be rather strong and uninteresting for most applications. (Note that in
this case 7 is linear, and hence if it is contractive the fixed point is the 0
function!).

Moreover, if the coefficients of the dilation equation satisfy the so called
“accuracy condition”

(3.12) Zczk = Zczk+1 =1,
k k

then both matrices A; and A, have 1 as an eigenvalue, and hence c* is always
> 1!

Clearly we want to rule out having the zero function as a fixed point, and
hence we will concentrate on the behavior of 7 on some adequate subset.
We will assume that condition (3.12) holds.

It can be seen, that any solution of equation (3.5) satisfies PO oz +
k) = c for some c. Following the correspondence (3.6), this means that the
associated function u, satisfies Y1, u;(z) = c. If we assume without loss
of generality that ¢ = 1, we can restrict our attention to functions:

u:[0,1] - M

N
where M:{:Z"E'RN:Zmizl}

i=1
Since the columns of A; and A; add up to 1, we have that M is invariant
under A; and A; which will imply that Zu:[0,1] —» M.

14



Let us therefore consider B(X, M) as in section 2.1. By the previous re-
marks we have:

T : B(X, M) — B(X, M).

We can therefore restrict our attention to the functions ¢; : M — M. In
order for them to satisfy a Lipschitz condition on M, we will have

() — (D < d |IE - 7|, VZ,5€ M.
Since
les(Z) — @s(9) = | 4:(Z - D),

it is clearly sufficient that there exists a norm ||.|| in R¥ such that ||4;/v|| <
1,2=1,2, where V is the hyperplane parallel to M through the origin, i.e.

N
V={zeR":) z;=0}
1=1
Hence, if there exists a norm ||.|| € RY, such that ||4;/V| <c' < 1,2=1,2,
then ¢; are contractive with contractivity factor ¢! on M, and therefore,

D(Tu,Tv) < Cle(u,V), Vu,v € B(X, M).

Hence, 7 turns out to be contractive, and there exists u* € B(X, M), such
that 7u*= u*.

On the other side, it is easy to check that if u is such that u;(1) = u;41(0), 1 <
1< N -1, u;(0) = uy(l) =0, then 7 u has the same properties. Hence, if

S={ueB(X,M) : w(1) =u;;1(0), 1<i<N-1, uy(0)=uy(l)=0},

then & is invariant under 7, i.e. 7S C 8. Therefore the fixed point u* of
7, lies in 8. In addition, by the definition of 7, if u € & is continuous ,
then 7 u will be continuous, and hence the solution u* will be continuous
as well, since 7"u — u* in the uniform metric.

Using the correspondence (3.6), we get the following

Proposition 3.1.1 If there ezists a norm ||.|| € RY, such that ||A;/V] <
1,7 = 1,2, then there ezists a continuous scaling function ¢ solution of the

dilation equation
N

#(z) = ch¢(2m — k)

k=0

15



obtained as the function associated to the fized point of the operator T :
S — 8. The solution can be obtained from any starting function in & by
iteration of the operator T .

We want to remark that the existence of a solution of the dilation equation
for the compactly supported case was obtained before by Daubechies (see
[DLI1]) but we included this proposition to show that the scaling function
can be seen as the “fixed point” of the operator 7.

3.2 Some remarks about the dilation equation

As we showed in the preceding section, in order to find a solution to our
dilation equation, it is enough for the operator 7 to have a fixed point on
the subspace &. The condition which we found is exactly the same than
the one given by Daubechies [DL91]. There they used the notion of joint
spectral radius of two matrices. This notion was introduced by Rota and
Strang in [RS60]. They proved that the joint spectral radius of 2 matrices
is less then 1, if and only if there exists a norm, such that both matrices
are contractive in that norm. Hence our condition is equivalent to requiring
that the joint spectral radius of A; and A, is less than 1 on the subspace V
which is the condition given by Daubechies.

There are many papers dealing with that question (see for example Heil
[Hei92] for a complete list of references), in particular, Berger and Wang
[BW] showed another equivalence for the joint spectral radius, which allows
a somewhat easier calculation.

Our aim in this particular case is to present a solution to the dilation equa-
tion as a consequence of the previously introduced model.

This model can be applied to higher dimensional dilation equations carefully
redefining the maps and subspaces. In particular, it generalizes the results
of Grochenig and Madych in [GM92] for the case that not all the coefficients
¢ of the two-dimensional dilation equation are equal.

The application of this model to matrix dilation equations is explored in a
joint work with C. Heil [CCM94].

16



4 Application to image reconstruction

In this section we want to outline how the previous results can be used to
attempt a solution to the inverse problem of fractals and other sets. The
details of this application will be developed in a forthcoming paper [CM94].

The idea is the following: given a target function - signal, image, etc. we
want to find two sets of maps {w;}i1<i<» and {¢;}1<i<, and a suitable con-
tractive operator, such that the fixed point of that operator is “close” to the
target. Let us be more precise:

Letw: X — [0, 1] be a function defined on X, where X will be an appropriate
space. u will represent our “target function” i.e: if we want to approximate
a l-dimensional function, or a signal, X will be an interval on the line, if
instead we want to approximate a 2-dimensional function, or an image, X
will be a subset of the plane (we can generalize this to higher dimensions).

Our task is to find an operator 7 of the type described in equation (2.4)
such that its fixed point u* is “close” to w. In order to accomplish this, we
have to find:

1. r the number of maps
2. {wy,...,w.}, w;:X — X one-to one.

3. {(pla c '7<IDT}7
@; : Xx[0,1] — [0,1] : such that for each fixed zo, ¥;(zo,.)is contractive.

For simplicity of the notation, we will describe the method in dimension 1,
and we take X = [0, 1]. We first arbitrarily fix a natural number r and let w;
be the affine maps that define the elementary partition of the unit interval
into r equal parts, i.e.:

1 — 1
w; : [0,1] — [0, 1], wi(m):—m—l—l 1<i< .
T T
We then want to find ¢;, 1 <12 < r,such that
1
pi(a,Tw () = Wa), Voe w(01)=[—,7] ie

(4.1)  wi(wi(2),u(2)) = u(wi(z)) Vz € [0,1].



This yields r equations in the unknowns ¢y, ..., ¢,. We now sample [0, 1] in
M points z,. .., z) and substitute these values into equation (4.1), obtain-
ing M points of the graph of each ¢;. We can now interpolate ¢; using some
known method. If we impose the condition that the ;s should be affine,
we can use the best linear approximation using for example a least square
approximation algorithm.

It can be seen, that the ¢s so obtained, are non-expansive, and hence a
slight modification of them will be contractive.

We now consider 7 as in (2.4),

Tu= sup g;(z,uow;(z)),
1<i<r

where u o w; ! is defined as in (2.5)

{u ow;H(z) z€w(X)
u(0) z & wi(X).

uow{l(:c) =

Note that in this case the operator O is the supreme which is non-expansive.
Hence it can be seen that we are under the hypothesis the theorems 2.1.1
and 2.2.2, and therefore there exists u* such that 7 u*= u”*.

Furthermore, it can be shown, that the distance between u* and ¥ is pro-
portional to the error committed by taking linear approximations. Hence
u* is as close to ¥ as good as the approximation of the ;s is.

We are aware that this method is a very coarse first approximation - with
yet surprisingly good results. Further studies would exploit different choices
for the base maps, and different methods for partitioning the interval. In
addition we might consider the possibility of allowing ¢ to be quadratic -
or even cubic splines, which would widen the possibilities immensely. The
only reason why we restricted ourselves to linear functions, is because of the
computation required in the other cases.
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