Local Fractal Compression:

an Approach for making Real Fractal Compression

Jacques Blanc-Talon
CTME-GIP/PRO,
16bis, av. Prieur de la Cote d’Or,
94114, Arcueil, France
blanc@etca.fr

Abstract A preprocessing for giving fractal com-
pression algorithms their full power is proposed.
Assuming that IFSs should work much better on
self-affine images, it consists in segmenting an im-
age according to the fractal dimension in order to
compress subimages showing a constant dimension.
First, a dimension map of the image is computed by
using a Fast Dimension Transform algorithm. Reg-
ular polygons approximate the computed regions.
Secondly, the polygons are mapped to square bozes
by using conformal mappings which preserve angles.
Thirdly, the boxes may be compressed by using a
classical fractal technique. Results are shown in the

conclusion.

Keywords: fractal techniques, collage theorem,

fractal dimension, conformal map

1 Introduction

Three essential concurrent problems have to be
solved at the same time to turn a possible ap-
proach into an effective compression technique:
namely compressing within a reasonable time
(according to the application) an image with
a ralio as great as possible while keeping the
tmage quality of the uncompressed file as close
as possible to the original one.

Fractal Image Compression, as introduced
by Barnsley et al [1], made use of some ba-
sic properties of fractal geometry which for-
cast better compression ratios than any other
technique. These theoretical possibilities of the
fractal way look very promising and it is clear

that they have been understood as a promise.
Yet, up to now, this promise has not been re-
ally kept and, to call a spade a spade, fractal
techniques do not offer ratios and qualities as
good as those yielded by other techniques. For
instance, we tested a software product based
on wavelet functions whose current color im-
age compression ratio reach 1,000 with a good
quality; such a ratio is still far from fractal al-
gorithms capabilities. Moreover, if the decom-
pression time of the fractal code is good since
it only involves linear algebra, it is indecent
to talk about the compression time which may
be up to 5,000 greater (depending on the ap-
proach).

There might be a couple of reasons to that.
About the compression time, the parameter
space to explore is huge and the possibility
tree is enormous, especially when Vrscay’s al-
gorithm ([2, 3]) is used. It seems rather difficult
to prune the tree significantly even if recent ad-
vances have been made (for instance [4],[5],[6]).

About the compression ratio, one has to ad-
mit that block-coding compression scheme [7]
for instance does not take into account any
geometrical property of the original image at
all. In other words, real images are rarely frac-
tal in the block-coding scheme sense whenever
simple transformations are used. The converse
could also be true: nature seems to reject the
same kind of patterns at both macroscopic and
microscopic levels. Thus, the introduction of
Generalized Square [sometries [8] seemed to be
a good step in the direction of a deeper under-

standing of the kind of transforms to be used
in fractal compression.

Our conclusion is that real images are not
fractal enough. If it was possible to fractal-
tze an image without loosing its content, the
moment approach should work much better.
The approach described in this paper consists
in compressing homogeneous regions (accord-
ing to the fractal dimension) separately in or-
der to justify the use of IFSs. In a first step,
the image is segmented into regions (polygons)
whose self-similarity dimension is assumed to
be constant. These polygons are mapped into
the unit square by using a conformal map. The
compression algorithm is then applied to the
collection of squares. Decompressing an image
consists in reversing the process and gluing the
puzzle.

2 Self-Affine Fractal Segmen-
tation of Images

The fractal segmentation of an image consists
here in splitting the image into regions whose
respective fractal dimension is as constant as
possible. For practical reasons, several as-
sumptions are made; as a result, the regions
are replaced by triangles whose edges approx-
imate the region boundaries. The whole seg-
mentation is achieved in 4 steps.

First, the dimension of every pixel within the
image is computed. In a recent study, Soille
and Rivest [9] showed how dependent a mea-
sure of the dimension D is with respect to the
content of the image. However, an accurate
estimate of D is not needed here since i) re-
gions must be approximated by polygons and
ii) the spatial derivative of the dimension is the
only information being used. Instead of using a
sophisticated algorithm, we used the following
one called Fast Dimension Transform.

Let I be a square image of size M = 2" and
I(z,y) its grey values (in the general case of
a rectangular image, the greatest square one
within is selected). D(p) denotes the local self-
affine dimension of pixel p = (z,y) and D([)
the dimension transform of the image, i.e. the

collection of all local values. D(p) is com-
puted in a square neighborhood of size m = 27
around p (and so is D([/) in the greatest square
image included in I) by means of the log-log fit
formula:

7E(e5) — X(g)X(S)
det R (1)

Dip) =2~

with in particular X(u) = Y.;—; logu; and
det R = vX(e?) — (X(€))? is the determinant of
the regression matrix R. In this notation, € is
the sequence of grid sizes 28(k = 0,1,---,y—1)
and S the one of related surface estimations
of the image whose supports are ((z,y), (z +
2k y), (x4 25,y + 2%), (z, y + 2%)).

Starting from a computed value of D in p,
it is thus possible to interpolate D’ in p + Ap
by using the following Taylor’s expansion:

o 9% (eS) o%(S)
—detR(’V o ‘”WW)AP@

Both X(5) and X(eS) differ in p+ Ap of the
previous values in p from only functions of the
bound values of I(p); these values are available
from (1). One must notice that det R does not
depend on p provided that the image support
is always mapped to the domain [0, 2%[x[0, 2%[
whatever the position of p is. Taking all these
remarks into account, the fast algorithm for
computing the dimension transform is twofold.
It consists in computing the local dimensions
of I at nodes {(m/24+im,m/2+jm),0< ¢, 5 <
I' — ~ first, then in interpolating the values be-
tween nodes by using recurrence formula 2. In
our experiment, ¥ = 4 which yields 4 points for
the log-log fit.

The next step consists in segmenting I in
homogeneous regions (or, equally, in edges)
with respect to the dimension, i.e. finding re-
gions with D as constant as possible. This
is very simply performed by applying a well-
known Canny-Deriche operator to the image
D(I) (whose values D(z,y) have been normal-
ized to [0,255]) so as to get connected edges.
The resulting image is called Ft(I).

The last step consists in finding simple
polygons, and more precisely triangles, which
roughly approximate the segmented regions.
Polygon edges are recursively replaced by
straight lines; their intersections determine tri-
angles. The triangles must not be too small
and they must not be too numerous. The
first criterion is equivalent to stopping the al-
gorithm under a minimum surface s,;, and the
second one over a maximum region number n,,;
we chose s,, = 64 and n,, = 16 but any other
values may be as convenient. The following re-
cursive algorithm is thus performed on Ft(I).

Let C'(M;M;) be an edge within F¢(I). The
error between the edge and the segment line
My Ms is given by

E(My,My) = >
MeC (M Ms)

| M — projsrsz |

where proj is the orthogonal projection onto
My M;. Whenever both stopping criteria are
false, the edge is replaced by two sub-edges
C(MyM3),C(My2M3) which yields a couple
of new triangles; My, is the point maximizing
the distance to its projection. This algorithm
is called recursively until it stops and the inte-
rior of the region is split into 2 triangles.

The result of this algorithm is a kind of bi-
nary triangulation of the image I. This image
is used as a logical mask for extracting the gray
levels of the regions from the original image I.

3 Conformal Mapping and
Local Image Compression

A conformal map is a one-to-one map acting
in the complex plane C and whose main fea-
ture is to preserve angles, i.e. if two curves are
perpendicular at a given point, they will re-
main perpendicular after conformal mapping.
An important consequence is that the mapping
of a connected set is still a connected set. Ac-
cording to these properties, we conjecture that
the mapping of a self-affine fractal is still a self-
affine fractal. Thus, the purpose of mapping
homogeneous regions to square blocks is to feed

a classical fractal compression algorithm with
mere fractal regions.

Let us briefly expose the main results needed
to understand the method.
transformation ¢ of a triangle into a square
may decomposed as the transformation ¢ of
a triangle into the higher semiplane (Jz > 0),
followed by the transformation £ of the semi-
plane into the unit square. The inverse of the
first conformal map is the Schwarz-Christoffel
transformation given by:

The conformal

oa"H(2) = A/O 71— tdt + B

where the curvilinear integral is taken over the
line segment joining the origin and z. The
triplet {a17m, azm, (1 — oy — ay)7w} is the set
of the angles of the triangle; A, B are complex
values determined by the vertices and the loca-
tion of the triangle. The inverse of the second
conformal map is:

i
€

=

zdt
V1-—tt

where zg = 0.5 + 0.57 and C' is the real value
% (I" is the Euler function).

In our application, both functions ¢a(z),
W(z), ¢a~'(z) and W~1(z) are computed by
using Laurent expansions. Nevertheless, it is
difficult to summarize in a few lines the de-
tails; the interested reader may refer to [8].
These series yield discrete formulas involved in
the practical computation of the triangle-to-
square mappings, and conversely. Every pixel
(z,y) is written z = z 414y and its new location
computed; its gray level is interpolated from
the gray levels of the nearest neighbors, each
neighbor having a weight inverse proportional
with the square of the spatial distance.

Wl(z) =

P
2
0 CvV?2 Jo

The final step of the compression scheme is
now to encode the squares by using a classi-
cal algorithm. Given a square, the accuracy
of the encoding is a function of the relative
surface of the initial triangle within the whole
image. Thus, parameters of the encoding algo-
rithm may be set to practical values.

4 Decompressing an Image

The decompression procedure consists exactly
in the converse of the compression one. In
particular, every compressed square is fitted
with the coordinates of its ancestor so as to
be remapped to its right position. As exem-
plified above, the triangle-to-square maps in-
volved in this preprocessing are approximated
by discrete expansions for computability rea-
sons. Some oblique artefacts may appear along
the borders of contiguous regions.

In the present results, local interpolations
have been performed on the borders, which
slightly weakens the SNR (of about 1 dB).

5 Conclusion and Results

The main feature of our approach is that the
compression ratio is improved locally (for ev-
ery triangle) and seems to be improved in gen-
eral (of about 10 %). However, the global ra-
tio depends on the number of squares, their
respective compression ratios and the binary
code needed for encoding the set of parame-
ters of the compression algorithm. Actually,
there must be an optimum for every image.

Among other intrinsic limitations, it is hon-
est to recall that our method takes more time
to decompress an image since the algorithm
must be run on every box before putting them
together. The problem of oblique artefacts has
mainly to deal with the approximation of the
maps and will be solved in the next version.

The main drawback of the approach is that
it is totally useless in the case of images which
do not have any significant fractal zone (for
instance, the Rubik’s cube image). Such flat
images are a collection of regions poorly com-
pressed, and a lot of time is lost in the pre-
processing. However, it might be turned off by
a fractal switch and triggered when necessary,
bringing to a fractal compression algorithm the
percent needed to cross the finishing line.

I would like to thank Dan Popescu from
DIT, Canberra (Australia) for fruitful discus-
sions and encouragement.

References

[1] M. Barnsley. Fractals everywhere. Aca-
demic Press, 1988.

[2] E.R Vrscay. Moment and collage meth-
ods for the inverse problem of fractal con-
struction with iterated function systems.
In H-O. Peitgen, J.M. Henriques, and L.F.
Penedo, editors, Fractals in the Fundamen-
tal and Applied Sciences. Elsevier - North
Holland, 1991.

[3] Bruno Forte and Edward R. Vrscay. In-
verse problem methods for generalized frac-

tal transforms. Technical report, University
of Waterloo, Canada, March 1996.

[4] Dietmar Saupe and Hannes Hartenstein.
Lossless acceleration of fractal image com-
pression by fast convolution. In Inter-
national Conference on Image Processing,
Lausanne, September 1996.

[5] Eric Amram and Jacques Blanc-Talon.
Fractal image compression: an eflicient ac-
celeration technique. In CISST, Las Vegas,
NE, 1997.

[6] David John Nettleton and Roberto Gari
gliano. Reductions in the search space for
deriving a fractal set of an arbitrary shape.
Jour. of Mathematical Imaging and Vision,
1996.

[7] Arnaud E. Jacquin. A novel fractal block-
coding technique for digital images. In Int.
Conference on Acoustics, Speech and Signal
Processing, pages 2225-2228. IEEE, 1989.

[8] Dan Popescu, Alex Dimca, and Hong Yan.
Generalized square isometries - an improve-
ment for fractal image compression. In &th
Int. Image Conf. on Image Analysis and
Processing, San Remo (1t), 1995.

[9] Pierre Soille and Jean-F. Rivest. On the
validity of fractal dimension measurements
in image analysis. Visual Communication
and Image Representalion, pages 217—229,
September 1996.

