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Abstract

Fractal coding of digital images offers many promising qualities. However the
coding process suffers from the long search time of the domain block pool. In this
paper, we obtain mathematical results on the distance measure used in the search.
Then we derive an incremental procedure to bound the domain block pixels. We
arrange the domain blocks in a tree structure, and utilise the procedure to direct
the search. We show that this method speeds up the coding process by upto 50
times, without noticeable loss of image quality. Our procedure works in conjunction
with other methods, such as block classification.
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1 Introduction

Recently fractal compression of digital images has attracted much attention. It is based
on the mathematical theory of iterated function systems (IFS) developed by Hutchinson
[1] and Barnsley [2]. Its use for image compression was proposed by Jacquin in [3],
[4] and Barnsley. Other variants of the IFS compression method have been reported
in the literature, eg [5]. For a comprehensive survey of the literature on the fractal
image compression, we refer the reader to [6]. The fractal theory and some important
contributions are explained in a recent book [7] edited by Y. Fisher.

The basic idea of the TFS method is as follows. The image is partitioned into non-
overlapping range blocks. For every block a similar but larger domain block is found.
The data for the transformation mapping the larger block to the range block is recorded.
The compressed image consists of all the transformation data. Decoding proceeds as
follows. The transformations are applied to an arbitrary initial image, and the process is
repeated. Provided the transformations are contracting, the images converge to a stable
image, resembling the original picture.

The fractal method offers high compression ratio, good image quality, and resolution
independence of the decoded image. Its disadvantage lies in the long search time for
domain blocks. A review paper by Jacquin [8] summarises some recent work to speed
up the search. Two types of methods have been investigated. The methods in the first
category classify image blocks in some way. A range block is compared against the domain
blocks of the same class. Originally, Jacquin [4] classified blocks on their edge content.
Later, Jacobs et al. [9] used block brightness orientation. The other methods, eg [5],
search a smaller pool of domain blocks, but rely on a richer set of transformations, eg
polynomial translation terms.

In this paper, we present a novel scheme for speeding up the search. We arrange the
domain block pool in a tree structure to direct the search. We show that it leads to upto
50 times improvement in the search time. Our scheme can be used in conjunction with
the block classification methods to get a greater speed-up.

2 Iterated Function Systems

In this section, we explain our fractal compression scheme. Self similarity is the key to
the fractal idea. We use the Jacquin method [3], but allow a linear offset term as in [10].
The Jacquin method is investigated further by Jacobs et al. [9].

The image is a digital grey level picture. We cover it by non-overlapping square range
blocks of size n x n, where normally n = 4. The first block is aligned with the bottom
left corner of the picture. If the blocks do not reach upto the right or the top edge, then
the margin can be covered by rectangular blocks. We assume that the blocks cover the
image exactly. Next, for every range block, a similar but larger domain block is found.
the domain blocks are of size 2n x 2n, and located anywhere on the image. The z,y
coordinates of the lower left corner of the domain block determine its location. This can
be on each pixel. However, some authors suggest that the blocks be aligned on a grid
size of n or n/2. The more domain blocks, the better the decoded image quality, but the
longer the compression takes.

The compression process is as follows. For every range block R, we search the domain



pool to find a block D and a transformation 7' such that 7'(D) is the best match for
R. The closeness is measured by a distance metric. The distance of blocks A = (a;) to
B = (b;) 0 <1i< mis the root mean squared (RMS) difference:-

dyms(A, B) = ¢% > (a; — b;)?

The transformation 7' is composed from a contracting map followed by a geometric map
followed by a massic map. The contracting map shrinks the domain block to half the size,
replacing 2 x 2 pixel areas by their average. The geometric map is one of the eight flips
(or symmetries) of the square. We consider the blocks independently of the image. Some
authors consider them in the image plane, so their geometric map involves a translation.
For the sake of simplicity, we call the flipped contracted block a domain block. It will be
clear from the context which kind of domain block is meant.

The massic map changes the contrast and brightness by a scale factor ag and an offset
gij- The domain block (d;;) is mapped to (aod;; + gi;). The map T is contracting if
ap < 1. However, Jacobs et al. [9] show that it is not necessary to enforce this condition
for all the maps. The offset g;; is a constant in the original paper of Jacquin [4]. Later
researchers used more general forms. For instance, [10] suggests a linear term in the
indices 1, j:-

gij = a1 + agt + asj
Our method works with either form of g. Monro and Dudbridge [5] set g;; to a third
degree polynomial in z, 7, but used a very restricted set of domain blocks.

The constants in the massic map are chosen to minimise the distance from the (con-
tracted flipped) domain block D to the range block R = (r;;). This amounts to minimising
the positive definite quadratic form F' = Y (aod;; + ¢;; — ri;)*. Thus a; are the solutions
of the equations:-

aF/aClZ =0

Let us call F,,;, the minimum F obtained from the solutions. The compression
algorithm runs as follows. Given a range block, the minimum difference F,,;, with every
domain block is calculated. The transformation parameters with the smallest £,;, are
stored as the IFS code. This process is repeated for all the range blocks.

For every range block,
For every domain block,
Shrink and flip in 8 ways.
Determine the best ag, g, and F,;,.
Choose the block giving the smallest F,,;,,
Store the transformation.

The complexity of this scheme lies in the search for the best domain blocks.

2.1 The Massic Map

We split the computation of the massic map into two steps, the computation of ag, then
the computation of ¢g. Effectively, we decouple the computation of the scale from that of
the offset.



We state the problem in terms of a vector space with an inner product (or distance
measure). This idea was proposed originally by Oien et al. in [10]. Let V be the n?
dimensional space of all n x n square blocks (with real coefficients). This is a vector
space with the usual inner product. Namely, for two blocks A = (a;;) and B = (b;;), 0 <
1,7 < n-

Ao B = Zaijbij, |A|2 =AoA
ij
The problem of minimising F' amounts to finding the minimum distance of R to the
subspace generated by D and the offsets. Let G be the subspace generated by the
offsets. Define the blocks Ay, Ay, A3 with the following entries:-

Al(lvj) = 17 AQ(%]) = ia AS(Zaj) :]

If the offsets are constant, then A; is a basis of G. If they are linear, then A;, A, A3 are
a basis of G. The problem is to choose ag and an offset vector G € G such that

F = |agD + G — R|?

is minimised. Now, take the orthogonal complement of G in V| and let D’ and R’ be the
orthogonal projections of D and R onto this subspace. That is, let

D:D/—|—G1, R:RI+G2, l)IO(}:O7 R/OGZO.
D" and R' are computed explicitly below. Putting G' = G + aoG; — G, we have :-
F=laD + G — R

Now D', R" are orthogonal to . Thus F' is minimised by G' = 0 and ag = D' o R'/|D'|?,
provided D' # 0. So G = Gy — apGh, and

Frin = |R'|* = D" o R'/|D'[?

If D' =0, then ag can be anything and F,,;, = |R'|*>. To carry out the F,;, computa-
tion, the blocks are projected and stored. Then |R'|* and |D’|* are computed and stored.
A comparison of D against R requires D' o R'. We call it the full distance computa-
tion. The compression algorithm requires the distance computation for every domain
and range block, a time-consuming operation. Qur improvement drastically cuts down
on the distance computations, at the additional cost of a tree navigation.

Here are the explicit formulas. In the constant case, we have D' = D — dy A, where

1
In the linear case, we have D' = D — dyA; — dy Ay — d3As, where
n2(n + 1)d1 = (7n — 5) Z dij — GZZCZ” — GZ]dU

n2(n2 — 1)d2 = 122@d2] — 6(n — 1) Edu
n’(n? —1)ds = 12 jd;; —6(n—1)>_d;

Similarly for R'.



3 Tree search

The purpose of this section is to use the F,,;, formula above to speed up the search. It
turns out that the domain blocks can be arranged in a tree structure so that those with
bounded F),;, can be identified efficiently. In this section only, we consider a block as a
one dimensional indexed set of numbers A = {a;; ¢ € I} where I is any finite set, and a;
is a positive or negative integer. In our application, I = {(¢,7);0 <¢,7 < n} is the pixel
positions. The blocks are the projections of the domain and the range blocks as above,
where the pixels are rounded to the nearest integer.

For two blocks A = (a;) and B = (b;), we define
Ao B = Zaibi, AP = Za?, d(A,B) = msinZ(sai — b))’

The minimum is achieved by s = Ao B/|A|* and d(A, B) = |B|* — (Ao B)?/|A|*, unless
A = 0. In that case, d(A, B) = |B|*. Note that d(A, B) <|B|* and F,.;, = d(D', R).

3.1 Mathematical Results

Let there be a collection of domain blocks { A}, a fixed range block B and a error e < |B|%.
This section presents results to identify the A such that d(A, B) < e. The proofs of the
results are easy and so are omitted.

In lemma 1, for a subset .J of I, we define a corresponding sub-block A" = {a;; j € J}.

We define B’ similarly.
Lemma 1 Let A', B" be sub-blocks of A, B. Then d(A’, B') < d(A, B).

Lemma 2 bounds the A pixels incrementally.

Lemma 2 Let A = (A',a), B = (B',b), and d(A",B') = €'. Suppose that A # 0 and
e <e<|B|: Ife#|B)?, then define

_ AoB AWUBE = e)(e @)

CBPE-e |B'[* — el

We have d(A, B) < e if and only if a salisfies one of the following conditions:-
1. If e < |B'], then |a — | < d.

[

2. If e > |B'|?, then |a — ¢| > d.
3. If e = |B'|?, then 2ab(A’ o B') > b*|A’)* — (A" o B')?.

Given a partition of the pixels I into disjoint subsets, we construct a new block A from
A. Tt has a pixel for each subset, and the pixel value is the average of the A pixels in
the subset. We say A is averaged from A. Lemma 3 transfers a bound to the averaged

blocks.
Lemma 3 Let A, B be averaged from blocks A, B. Let k be the minimum size of the

partition subsets. Then

d(A,B) < ~d(A, B)

!
k



3.2 Tree structure

Recall that we have a collection of domain blocks {A}. As several blocks may have
identical pixel values, so we assume that they are identified by a unique tag. We want to
arrange the domain blocks in such a way that, given a range block B and an error e, we
can enumerate the block tags with d(A, B) < e quickly.

The idea is based on the results of the previous section. Lemma 1 says that the bound
holds for any sub-block A’. If A’ = (A”,a), then Lemma 2 limits the range of a. We order
the pixel positions in some arbitrary way, so that the blocks are A = (ag, a1, -+, @m_1).
We string them into a tree as follows. Each node (except the root) is labelled by a pixel
value. The root has a distinct child for every value of the first pixel ag. Considering a
general node, let the pixel values on the path from the root to it be ag,ay, -+, ap_1. We
construct the subset of domain blocks which have these values for the first & pixels, and
then look at the k& + 1 pixel of these blocks. The node has a child for each such value,
and the child is labelled by it. The tree may be grown in this way, to the depth of m.
Each node of the tree defines a sub-block, its pixels are the the values on the path from
the root. Finally, a leaf node stores the tags of the blocks it defines.

In our implementation, the tree is grown by inserting the blocks one by one, each
as an ordered string of pixels. In the full tree, a node can have as many children as
there are pixel values (—255,---,255 in the constant offset case). The branching degree
is too great to allocate storage for the pointers to all the children. However, the search
algorithm below requires to move from a parent to only one child and then steps to its
siblings. So it is sufficient to keep the children in an ordered linked list, and the parent
stores a pointer to the head of the list.

3.3 Search Algorithm

Recall the purpose of the algorithm is to home in onto the A block tags with d(A, B) < e.
The blocks are arranged in a tree as above. The tree is traversed in a breadth first manner.
That is, at each level, a list of nodes is constructed. The list comprises exactly the nodes
whose sub-blocks A’ satisfy d(A’, B") < e. The first list consists of all the children of
the root (except the node labelled by 0 if 82 > €). Once a list at a particular level is
constructed, it is examined node by node to construct the next level list. Suppose the
node under examination corresponds to the sub-block A’. For convenience, we store the
values |A’|*, A’ o B’ with the node. We compute ¢’ = d(A’, B'). Lemma 2 specifies the
range of the next domain pixel a. We step to the node’s list of children and search it for
values in the specified range. We add the nodes falling in the range to the end of the
next list and we set their stored values to:-

|A]? = |A')* + a* AoB = A"o B' + ab.

This process is carried out until the list at the depth m is constructed. The block tags
stored in the nodes on this list are exactly those needed.

In the implementation , we tighten the search by reducing the error e according to
the level. That is, we adjust e to aje at the level [. Everythings else runs as before. In
the experiments we set the adjustment factor a; to ag = 0.3, a3 = 0.5, ay = 0.7, az = 1.



4 Speeding up Compression

In this section we discuss the application of our tree search to the compression process.
We project the domain and range blocks onto the orthogonal complement of the offset
space. Then we quantise the pixel values, say to integers. Let A or B refer to a domain or
a range block after these operations. Given B, we must find a block A with the minimum
d(A, B). We know that d(A, B) < |B|? for any block A. However, according to the
collage theorem [4], the compression fidelity relies on the fact that some A will give a
much smaller minimum difference. In fact, the distribution of the ratio |B|*/ min d(A, B)
relates to the fittness of the collage. We calculated the distribution for several standard
pictures, and found that, for over 90% of the range blocks, the ratio is greater than 3.
Thus we can write:-

1
mind(A, B) < —|B|?
A o

Where o = 3 works for most range blocks. We use this fact to reduce the number of
domain blocks for which the full distance computation is done. We arrange the domain
blocks in a tree as above. Then, given B, we set e = |B|*/a, and we traverse the tree to
construct the candidate domain list. The distance computations are carried out only for
the blocks on the list.

In practice it turns out that this method is still inefficient. The reason is revealed
when we examine any particular tree. We construct the tree for the Lena picture, figure
3. We use 4 x 4 contracted domain blocks, and insert them in the tree to a depth of 16.
Table 1 shows the average branching degrees, and the total memory used. The branching
degree is the number of children of the nodes on a particular level, on average. The first
row shows the degrees for the case where the blocks are flipped 8 ways. In the second
row, the blocks are not flipped. As can be seen, nearly all the branches are concentrated
on the first three levels. Then, most of the subtrees at level 4 are straight lines to the
leaves. These paths waste both memory cells and cpu cycles.

Further improvement requires a reduction of the tree depth. To achieve that, and to
keep the maximum pixel information, we average pixel subsets. We partition the pixel
positions into disjoint subsets, and then average them. Figure 1 shows the 4 x 4 partition
scheme, where the shading indicates the subsets. Let us call the resulting blocks A and
B. Note that every block is partitioned the same way. If A is the best match for B,
then lemma 3 and the above bound gives d(A, B) < |B|*/ka. We can set e to the right
hand side and proceed. However we found empirically that a multiple of |B|? is a better
bound. So we use,

1 _
e = —|BJ?
3

We found that a wide range of 3 values (from 20 to 100) gives a good image quality.
The larger 3 values narrow the search more sharply, thus speeding the compression, but
at some loss of the image quality. We found that g = 100 gives generally good results.
With a large 3, the search turns out an empty list occasionally. When this happens, we
adjust # down, and try again.

The last row in table 1 shows the branching degrees and the memory requirement
under the 4 x 4 averaging scheme of figure 1. We insert all the 8 way flips of the domain
blocks. The average number of block tags stored in a leaf is 2.5. Actually, we quantised



the first two pixels more coarsely, so as to reduce the branching degrees further. We used
x — 41(xz/4) + 1, where I(z) is the integer part of . This produced good match lists.

We also experimented with 6 x 6 blocks. We used the scheme in figure 2, which is
invariant under the 8 flips. It reduces the memory requirement, as only the unflipped
blocks need be inserted. Here is the final algorithm.

For every domain block
Contract, flip, project, average, quantise.
Insert into tree.
For every range block B
Project, average, quantise — B.
Set e = |B|*/B.
Search tree, produce list of domain blocks.
while list is empty
Adjust  down,
Search tree.
Search the list to find A with the minimum d(A, B),

Store its transformation parameters.

The tree algorithm can be modified to work naturally with the block classification
schemes. The domain blocks are divided into classes and organised into separate trees.
The range blocks are searched for in the trees of the same class.

5 Experimental Results

We have programmed our algorithm in the ‘C’ language, and tested it on standard images.
We show the results for the ‘Lena’ image, Figure 3, which is 256 x 256 pixels digitised
at 8 bits. We select 4 x 4 range blocks. The domain blocks are spaced on a 2 x 2 grid.
Figure 4 is decoded from the IFS code using complete search. Then we used the tree
technique with g = 20 and # = 100. Figures 5 and 6 show the decoded pictures. Table 2
compares the performance of the tree search against the full search method. The second
column 1is the average number of domain blocks used in the full difference computation.
The third column is the RMS difference between the original image and the reconstructed
image. The fourth column is the run-time of the algorithm in seconds, measured on a
SUN Sparcstation 10 model 30. the final column is the speed-up factor against full search.
Even with g = 100, there is no noticeable degradation in image quality, but the search
speeds up by a factor of 58. Table 3 shows the performance of the tree search for some
other images.

6 Conclusions

We have presented a novel technique of speeding up the fractal compression and showed
that it leads to an order of magnitude speedup gain against the full search method. Our
method can be used also in conjunction with other speed-up methods to lead to even
better gain in the compression time.
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Fig 1. 4 x 4 square

Fig 2. 6 x 6 square

Fig 3. Lena image Fig 4. Decoded Lena, full
256 x 256 x 8. search.

Fig 5. Decoded Lena, tree  Fig 6. Decoded Lena, tree
search g = 20. search 4 = 100.

10



Domain blocks | Average deg | Level | Level | Level | All other | Memory
flipped? Level 1 2 3 4 levels Used
Yes 314 50 3 1.5 1 16MB
No 215 20 2 1 1 2MB
Yes, Averaged 56 35 9 - 1.5MB

Table 2: The performance data for the full search and the tree search for Lena.

Table 1: The tree branching data for the Lena image.

Lena d-blocks | rms | time(sec) | speedup
full search 125000 | 6.7 8750 1
tree g = 20 1954 7.8 340 25

tree 3 = 100 306 8.7 150 58

picture d-blocks | rms | best rms | time(sec)
Ape B = 40 675 | 26 | 226 215
Ape =100 | 206 |27.8| - 207
Salad 8 = 20 2123 9.1 7.4 465
Salad = 100 295 11.1 - 128
Hayes 5 = 100 280 5.8 - 94
Tools 3 =100 118 4.2 - 52
Clown =100 580 8.5 - 187

Table 3: The tree search data for other images at 256 x 256 x 8.

Figure 1:
Figure 2:
Figure 3:
Figure 4:

4 x 4 square.

6 x 6 square.

Lena image 256 x 256 x 8.

Decoded Lena, full search.

Figure 5: Decoded Lena, tree search g = 20.

Figure 6: Decoded Lena, tree search g = 100.

Table 1: The tree branching data for the Lena image.

Table 2: The performance data for the full search and the tree search for Lena.
Table 3: The tree search data for other images at 256 x 256 x 8.
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