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Abstract
The basics of a block oriented fractal image coder, are described. The output of the coder is an IFS
(Iterated Function System) code, which describes the image as a fized-point of a contractive transforma-
tion. A new hierarchical interpretation of the IF'S code, which relates different scales of the fixed-point
to the code, is presented and proved. The proof is based on finding a function of a continuous variable,
from which different scales of the signal can be derived. Its application to a fast decoding algorithm is
then described, leading typically to an order of magnitude reduction of computation time.

I Introduction

The use of fractal shapes to describe real world scenes has been shown to result in very realistic images [1].
This is due to the self-similarity property of fractal shapes, a property which is frequently encountered in
real world scenes [2]. One way of creating a fractal shape is by considering it as a fixed-point of a contractive
Iterated Function System (IFS) [3]. The result is that a complex image can be described by a rather small
number of IFS parameters. Thus, the IFS provides an efficient representation of a fractal image. Two issues
are involved in coding an image by an IFS :

encoding - Given an image, find a contractive IFS such that its fixed point is sufficiently ’close’ to the
image. The parameters of this IFS are then called the IFS code of the image. Throughout, the terms
'TFS’ and ’TFS code’ will be used interchangeably. This problem is known as the ’inverse problem’.

decoding - Given a contractive IF'S, find its fixed point.

The problem of encoding has been widely addressed [3] - [6]. Since general images are not necessarily self
similar, a way to find the IFS code is to partition the image into blocks, and to restrict the functions forming
the IFS to a set of transformations on these blocks. Given the set of allowed transformations and the image
partition, the task is to find an IFS such that its fixed point is as ’close’ to the original image as possible.
The problem of decoding can be solved by applying the contractive-mapping theorem [7]. Namely, iterate
repeatedly the IFS on any starting image, and the resulting image will converge to the desired fixed-point.

The main drawback with this decoding scheme is its computational cost. This cost is high because the
iterations are done on a full size image. In this paper we suggest a new hierarchical interpretation of the IFS
code, and propose a fast decoding algorithm which is based on this interpretation.

II Mathematical background
Let X be a metric space with metric d. The transformation T7: X — X is contractive if

Ise[0,1)] VayeX d(T(z),T(y) < sd(x,y) (1)



If X is a complete metric space, the contraction mapping theorem [7] ensures the following :
e There exists a unique fixed-point z;€X , such that T(z;) = z;.

e For any point z€X the sequence {T™(z) :n=0,1,...} converges to z;. That is,
lim, oo T"(2) = ¢y YzeX.

Thus, the point z; is uniquely specified by 7', and can be approached to by iterations. In a typical application,
the space X is the space of images, z; is an image which should be as close as possible to the image being
encoded, and T is actually a system of functions, namely the IFS itself.

III IFS coding

The method to be described is mainly attributed to Barnsley and Jacquin [3], and is performed block-wise.
In order to make the development more lucid, it will be described in terms of coding a 1-dimensional signal
(vector), instead of an image (matrix). The results are fully applicable and easily extendible to 2-dimensional
signals (images), as exemplified in section VI.

Let Uy denote the vector to be encoded. For convenience, the length of the vector, N, is assumed to be

an integer power of 2. Partition Uy into Mg = % sub-vectors R;, of length B each, such that

{Ri}%F are called the range-blocks of Uy, with ¢ denoting the range-block index. Note that the range-blocks

are tiling the vector Upy. From Uy create Mp 2 (% + 1) sub-vectors of length D such that

{Di}i]\le are called the domain-blocks of Uy, and their ensemble is named the domain-pool. Dy is the shift
between two adjacent domain-blocks. Note that if Dy < D the domain-blocks are overlapping.
Now, let the set of allowed transformations be of the form :

T(D) = acp(D) + blp (4)
e a - Scalar scaling factor, |a| < 1. e b - Scalar offset value, b € R ; 15 - A vector of size B of all 1’s.
e ¢ - Spatial contraction function, defined here to be:

2 (DEj-1)+D2j) , j=1,2,---,B (3)

N | —

#(D)(4)

i.e., ¢ contracts blocks of size D = 2B into blocks of size B, by averaging pairs of adjacent elements in D.
To simplify the development, we assume here that B is also an integer power of 2, B = 2', hence D = 2/+1,
We also assume that the shift is D, = B.
The encoding/decoding process is as follows:

encoding - For each range-block R, , find the domain-block and the parameters (a;, b;), for which d(R;, f{l)
is minimized, where R; is the best approximation (in terms of the metric d(-,-)) to R; achievable by
the allowed transformations. In equation form

R; = a;p(Dpm,)+ bl , i=1,2--- Mg (6)

where m; is the index of the domain-block which best matches the i’th range-block. The parameters
(ai, b;, m;) are called the transformation parameters . The IFS code of the image is the ensemble
of these Mg transformations, which relate domain-blocks to range-blocks, and thus consists of 3Mg
transformations parameters.



decoding - Start from any vector of length N, V.. Set n = 0, choose € > 0, and do the following:

1. Create from the vector V% a pool of domain-blocks of length D each, using a shift of Dj.

2. Compute from the IFS and the set of domain-blocks a set of range-blocks, according to (6).
3. Form a new vector of length N, VR,‘H, by concatenating the last computed range-blocks.
4

. Check the termination-condition: d(VK{H, V%) < e. If not satisfied, set n < n+ 1 and goto step
1.

5. VK,H 1s the decoded vector.

For demonstration, we show in Fig. 1(a) an IFS representation, and in Fig. 1(b) its fixed point. In this
case N = 16, B =4, Dy = 4, and there are therefore Mg = 4 range-blocks and Mp = 3 domain-blocks.
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Fig. 1: (a) IFS code , (b) decoding with B=4 , (c) B=2 (d) B=1

IV IFS and Resolution

As previously explained, the IFS describes relations between different parts of the IFS fixed-point vector
which we denote as V. These parts were referred to as domain-blocks and range-blocks. The IFS determines
directly the number of range-blocks, Mg, but it does not, however, imply any specific size of these blocks
(only the ratio % must be set according to the definition of the spatial-contraction function ¢; in (5) this
ratio is 2). Hence, decoding an IFS code results in a vector of length N if the value of B is chosen to be
B = N/Mg, or it can result in a vector of a different length, e.g., N/2, by using B = N/(2Mg). An example
is shown in Fig. 1(b)-(d), where the decoding is done with B =4, B = 2, and B = 1, respectively. The fact
that for each value of B a different fixed-point is obtained is by no means contradictive to the contraction
mapping theorem! Since although the IFS has a unique fixed point in a complete metric space, each of the
decodings in Fig. 1(b)-(d) is actually done in a different space, namely in £!6 %% and R*, respectively. A
relation among all the achievable vectors, related to a given IFS, will now be established.

Definition 1 Let f € L™ [0,1] . Define f-(i), i=1,---,r, by

La [T
LG Sr / f(x) da (7)
(i-1)%
fr(i) denotes the function f(z) at resolution r . We say that f,(4) is finer (i.e., with higher resolution) than
fro(7) (which is coarser) if ry > rq .

Theorem 1 Given an IFS code, there exists a unique function f(z) € L [0, 1] such that a vector Vy is a
fized point of the IFS iff it is equal to the function f(x) at resolution r = N, i.e.,

Vn(G) =InG) o i=12 N (8)

The function f(x) will be called the IFS embedded function .



The proof is provided in [8].
From Theorem 1 the following corollary is obtained:

Corollary 1 Let Vy be a fized-point in RV of a given IFS, then V% is a fized-point (in %%) of the same
IFS iff :

N
2

V(i) = S (Va(i— D+ Va(i) . =12 ©)

The proof follows immediately from the Theorem.

V  Hierarchical representation

After establishing a relation between V% and Vy, as described by Corollary 1, we further investigate this
relation, and extend it.
Given an IFS code and N, it can be decoded using B = B(%) = N/(2MEg) to get the vector V. The

domain-blocks of V% are created on the basis of (3), with size D) = 2B(%) and Dh(%) = B(%), by

N

Dgi)(j)zv%((i_l)ph(%)_}_j) . i=1,2, Mp jzl,Q,...’D(%) (10)

N
where we use the superscript in DZ(» 7) to indicate that the domain-blocks are retrieved from a vector of length
%. Comparing equations (3),(5),(9), and (10) we get :

¢(D{") = D(*) (11)
Hence, (6) can be written as
RV = aiDgn%;) +bl1lp , =12, Mg (12)

Now, if V% is a fixed point of the IF'S | then the vectors go(DgN)) obtained from (11) and (10) are equal to
those computed directly from Vy via equations (3) and (5) (replacing Uy by V), if Vy is a fixed point.
Thus, the IA{Z(-N) computed in (12) are the range-blocks of the fixed-point vector V.

In summary, if V% is a fixed-point of the IFS, we have shown a direct way for computing Vy from it, by
using (12), without the need to perform iterations!

Using the same reasoning once more, we start by assuming that VN is given as a fixed-point of the IFS,
then Vy can be computed by transforming twice: once from VN to VN and then from VN to V. The
algorithm for transforming VN to VN and then VN to Vi, is the same , and is derived from the IFS code,
as described by (12). The reason the algorlthm is the same is that by Corollary 1, VN VN and Vy, are
all fixed-points of the same IFS in the appropriate spaces. An example of a hlerarchlcal structure is given
in Fig. 1(b)-(d). This structure is a pyramid of the IFS fixed-points, with Vo comprising the p’th level in
the pyramid. The level with the coarsest resolution (Fig. 1(d)) is called the ?fop-level. Such an hierarchical
structure is natural to fractals, which have the property of self-similarity at different resolutions.

The question arises, what is the smallest size of the top-level that will still enable us to use the same
technique for finding Vy 7  This is answered by the following theorem.

Theorem 2 Let Vi be a fized-point in R of a given IFS, and let B = BN) =2/ D = DWN) = 2B and
Dy = B, then the number of levels in the pyramid of IFS fized-points is

logy(B) +1= 141 (13)
leading to a top-level size of N/2' (= Mg).

PROOF : Ascending one level in the hierarchy, means halving the size of the range-block, B. Since this
size must be at least 1 in order that the IFS could be applied, the theorem follows. Q.E.D m



VI Fast decoding

A fast decoding method, which we call hierarchical decoding, follows directly from the above interpretation
of the IFS code. In this method, one begins by computing the top-level. This can be done by iterations
(using B = 1). Then, one follows with the deterministic algorithm (12) to advance to a higher resolution.
The process of advancing to a higher resolution is repeated, until the desired vector-size is achieved. This
method is compared below with the conventional iterative decoding, in which the iterations are done on a
full scale image. The computational savings obtained in using the hierarchical decoding method stems from
the fact that the iterations are done only in order to find the top-level, which is a small size vector.

Computational cost

Throughout, the following notations and definitions will be used:
e S - computation time of one summation. e M - computation time of one multiplication.
e t. - total computation time. e [ - number of iterations.

Furthermore, multiplications by % or % will not be counted (counting them will show even greater savings
using the hierarchical decoding, because they occur mainly in the iterative method, when performing the
computation ).

1. One dimensional case

With N the vector length and B the range-block size in the original vector, we have:

e Tterative decoding - Referring to (4) and (5). For a single iteration the computation time is:
N -[(14+1)S+1M]= N -[2S 4+ 1M]. Thus, the the total computation time is:

th=71.N-[25+1M] (14)

o Hierarchical decoding - Recall that at the top-level there are % = Mg elements (by Theorem 2).
Hence, according to the result in (14), we know the computation time needed to compute the top-
level. According to Theorem 2 there are log,(B) levels in the pyramid, excluding the top-level,
with 21’% elements in the p’th level (p = 0 at the top-level). Referring to (12), we can compute
the cost of transforming from the top-level to V:

1082(3)
Z (QPE)~[1S+1M]:(B—l)%?-[S—i—M]iN-[?S—F?M] (15)

p=1

The total computation time is therefore
H - I
tP=N- E[?S—I—?M]—I—[QS—}—?M] (16)

2. Two dimensional case

Note that in the 2D case, performing the contraction ¢ requires the computation of the mean of 4-
elements. With N? the number of elements in the original image (matrix) and B x B the range-block
size, we have:

e [terative decoding - For a single iteration, the computation time is: N? - [(341)S+ 1M] =
N?.[4S + 1M] Thus, the total computation time is:

tl =1.N?.[45 + 1M] (17)



e Hierarchical decoding - Here, there are (%)2 elements in the top-level. Hence, according to the
previous result, we know the computation time needed to compute the top-level. Similar to the
1-dimensional case, the cost of transforming from the top-level to the N x N image is:

1082(3)
,; (4?(%)2) 1S+ 1M] = %(32 - 1)(%)2 IS+ 1M] = N2§ 1S + 1M) (18)

Thus, the total computation time is:
1 4
tfiN2~{§~[4S+1M]+§~[1S+1M]} (19)

Usually B? is much larger than the number of iterations, I, ( typically B> = 64 and I < 8 ) so
that the first term can be neglected . Hence:

th = N2 % [1S + 1M] (20)

For example : Assuming M = k - S, we find that the ratio of computation times is :

St N2 1S4+ k] 3 I[44K]

(a) For a floating point processor, we can assume k = 1, leading to @ = % which shows an order of
magnitude savings if I > 6.

(b) For a fixed point processor, we can assume k = 8, leading to @ = %

It is seen that the larger the value of I, the more advantageous is the hierarchical decoding method.

VII Conclusion

A new hierarchical interpretation of the IFS code was presented and proved. Its application to fast decoding
was shown to reduce the computation time by more then an order of magnitude. The hierarchical interpreta-
tion provides an insight into the encoding/decoding procedure. This insight is natural to fractals, which have
a self-similarity characteristic under different scales. Other applications of the hierarchical interpretation,
such as applying it to obtain super-resolution of a given image, are currently being investigated.
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