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ABSTRACT

The compression performance of fractal image coding is
considered using the wavelet-based fractal coder with no
search or classification of the domain blocks. A new parti-
tioning scheme is introduced as a variant of earlier schemes
which further improves the compression performance. The
Wavelet- Based Fractal Transform (WBFT) links the theory
of multiresolution analysis (MRA) with iterated function
systems (IFS). This not only provides a local time-frequency
analysis on (the partitions of ) the image using multiresolu-
tion representation but also an iterative construction of the
same (partitions of the) image using IFS and fized point
theory. A set of experiments and simulations show the po-
tentials of using the WBF'T for image coding after uniform
quantization and entropy coding of the coefficients of the
transform. Possibilities for further improvements are dis-
cussed.
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1. Introduction

The basic idea in data compression is to reduce the number
of bits required to represent stored data, by choosing an en-
coding scheme that can remove redundancy while keeping
the useful information intact. There must also be a robust
decoding scheme to reconstruct the original data. Many
approaches have been suggested for image compression in-
cluding JPEG, fractal techniques (see [4], [7], and [9]), and
wavelet based compression (see [8]). This paper proposes
a technique that incorporates many of the best features of
both the fractal and the wavelet based approaches. The
method of fractal image compression identifies an image as
the unique fixed point of a finite collection of contractive
maps on the space of fractals which is often referred to as
Hyperbolic Iterated Function System (IFS) [4]. The at-
tractor of an IFS is the “fixed point” of the collection of
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contractive maps whose important characterizing property
is its self-similarity.

The objective is that by subdividing the image into non-
overlapping partitions, referred to as range blocks, and big-
ger (overlapping) partitions, refered to as domain blocks,
and searching for the best set of (affine) contractive trans-
formations among all possible domain block candidates that
match the selected range block (in mean square sense). The
domain blocks are taken from a decimated version of the
same image. Information will inevitably be lost since the
fixed point or the attractor of the IFS is only an approx-
imation to the original image. The closer the Collage (or
union) of obtained maps to the original image the better
the approximation [4].

Although one can rarely come up with a perfect recon-
struction system using fractal image compression, very high
compression ratios can often be achieved using IFS tech-
niques such that the decoded image is reconstructed with
little loss in resolution and fidelity [6]. This suggests very
promising potential applications for fractal image compres-
sion using IFS.

The Wavelet-Based Fractal Transform (WBFT) as in-
troduced in [1] and [3] links the theory of multiresolution
analysis (MRA) with Iterated Function System (IFS). It
is shown in [1] that the WBFT may be used as a (near)
perfect reconstruction system where the standard (affine)
fractal transforms (used by others), in general, may not.
The hope is that by using nonlinear (rather than affine)
operators, together with the theory of multiresolution anal-
ysis, better image fidelity can be achieved while retaining
significant compression. Since the mathematical foundation
of IF'S theory is based on the Contraction Mapping Theo-
rem on the space of fractals, the non-linear maps must be
contractive. These non-linear contractive maps will then be
used in place of the affine contractive maps (used by others)
as building blocks for an IFS image compression scheme.

The paper is organized as follows. The wavelet-based
fractal transform is introduced and its properties are dis-
cussed in section 2. Experimental results and future exten-
sions are described in section 3.



2. Wavelet-Based Fractal Transforms

The WBFT is introduced in [1] where its properties and
condition for (strict) contractivity are investigated. In the
paper, even though only the 2D case is considered, the the-
ory holds true for the 1D case as well. Define F = £2(I?)
to be the space of all images (i.e. functions) f : I — R
where I? is the unit square and £2(I%) = {f : f(z,y)eﬂ |
f |2 dvdy < oc}. The definition above assumes infinite res-
olution for a given image where in fact the “pixels” of a
digitized image, p(f), can be regarded as the samples of an
image (or a function) f € F. Any given image f € F is
assumed to have a range in the unit interval. Therefore,
the range of the image is first mapped to the interval [0, 1]
using an affine transformation. The transformation has to
be invertible so that the image can be mapped to its orig-
inal range after the image is reconstructed at the decoder
(see [1] for more detail).

Define the saturation function h(z) to be

r fo<z<1,
h(z) = 1 ifl<w
0 otherwise.

The saturation function may be used (at the decoder) to
make sure that the range of the image belongs to the in-
terval [0,1] where f(z,y) = O corresponds to black and
f(z,y) = 1 to white. Any given image f € F is as-
sumed to have a range in the unit interval. Therefore, the
image is clipped if necessary. Moreover, define the drms
metric between two images f and g to be drms(f,g) =

(fA(f — g)ZdL)% where L is the Lebesgue measure on R2.
It is shown [1] that the saturation function h is a contrac-
tive function with contractivity factor of one under the drms
metric.

Since the domain of the image (I?) is partitioned into
rectangular tile cells, the geometric maps, w, (which take
a parent cell to its k’th tile cell) are represented with affine
transformations, i.e., wi(z,y) = wi(x) = A.x + Bx. The
wi s for Kk = 1,..., N are assumed to be invertible (i.e.
det (Kk) # 0 and det stands for determinant) where N is
the number of nonoverlapping tile cells. Let Ax = Wk(IQ)
for Kk = 1,..., N be the support of each tile cell then it is

N
assumed that U A = I? and A; ﬂA]‘ =A;;foralli#jy

where A; ; is ktflle set whose elements are the edge of the
intersection between A; and A;. Observe that A; ; are sets
of (Lesbegue) measure zero for all 1 # j.

The Multiresolution Analysis (MRA) suggests a new op-
erator in the space of all images, F, which is no longer an
affine transformation. This operator will be used in place of
the affine “massic” map of Jacquin [7] and others, and is a
generalization of the Monro’s operator [9]. Using separable
scaling functions (see [8] and [5]) and given any g € F, the
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Figure 1. The mapping 77 o w; in action.

(piecewise) wavelet-based fractal operator, Tk, has the form
M
Te(o)(m,y) =27 > cho(2M g(z,y) +n)+

223 b (22 + D)6 (2M2y + m) (1)

l,m

forall kK =1,..., N. The transformation T} is a (piecewise)
nonaffine transformation on F. Observe that given the co-
efficients cX and bfm, gr(z,y) = Ti(g9)(z,y) = vr(z,y,9) is
a fractal function approximation to tile &k, g(wx(z,y)), for
all (z,y) € I and k = 1,...,N. The parameters M; and
M, are integers (> 1) representing the number of resolu-
tion levels needed, ¢(.) is the (orthonormal) scaling func-
tion (e.g. of Battle-Lemarie kind), and the coefficients ck
and bfm are the inner product coefficients in the sense that
is explained in [8] and [5]. Observe that by the resolution
levels M; and M; we actually mean the resolutions oM

and 2M2. The index n runs from —K; — Li,.... K1 — Ly
M
where K1 = 21_%"'1 and L; = 2M1—1, Similarly, m and {
M.
run from —K; — L;,..., Ki — L; where K; = 22_%“ and

L; = 2M27! for ; = 2,3. The coefficients p; fori=1,...,3
are integers (> 1) which act as safeguard parameters anal-
ogous to the ones used in the wavelet network of [11]. Fig-
ure 1 shows a parent cell along with its four tile cells and
the operator T o w1 in action.

Now let 14(z,y) = 1if (z,y) € A and zero otherwise be
the indicator function associated with the set .A. Further-
more, let gr(z,y) = g(wk_l(x,y))lAk(x,y) and the image
(or function) gk (z,y) = g(z,y)14, (z,y) = g(wk(z,y)) for
all (z,y) € I? and k = 1,...,N. Then the operator T
defined as T' = Zi\;l Ty or more precisely

N

T(g)(z,y) = v(z,9,9) = §(,9) = Y Tr(ge)(=,y) (2)

k=1

is a self-transformation which maps F to itself for all
(#,y) € I? where §(z,y) is a fractal function approximation



Figure 2. a). The partitioning method 1 and b).
The partitioning method 2.

to a given parent cell g € F (for a given set of coeflicients
of the contractive operator Tk).

The coefficients of the operator Ty can be found by
minimizing d(gx, Tx(gx)) with respect to the correspond-
ing parameters under the constraint that the operator 7} is
(strictly) contractive where d is some suitable metric such
as the drms metric. The conditions for (strict) contractiv-
ity of the operator Ty and the WBFT, 7', under the drms
metric are derived in [1]. Observe that the same conditions
hold for the operators Ty o h and T o h since h has contrac-
tivity factor one under the drms metric. Furthermore, it
is shown in [1] that this constrained optimization problem
can be solved via any interior point method of optimiza-
tion such as the LMI toolbox of MATLAB. Since solving
the constrained optimization problem may slow the coder
down, one can first find the least square solution without
considering the constraints for (strict) contractivity of the
WBFT. If the constraints are satisfied save the coefficients
or else force the coefficients c¥ to zero and solve for the least
square solution again where in this case the contractivity
factor of the operator Ty is known to be zero.

This paper considers two different partitioning schemes
to study compression performance which requires no search
for the best match beteen a given tile cell and a parent
cell candidate. In each case, for a given tile cell, the parent
cell will be the larger (square) block which contains it (refer
to Figure 1). The first partitioning scheme is a modification
of level zero search of Monro [9]. We call this partitioning
method 1. The performance of fractal image coding based
on partitioning method 1 is shown in [3] without entropy
coding of the coeflicients of the blockwise transforms. The
second partitioning scheme is analogous to quadtree parti-
tioning of Fisher et al. [6] et al. with the modification that
a search is not performed over the whole image. First, we
begin with a large sized parent cell. Only the tiles that
do not match (in mean square sense) with the parent cell
will be broken to smaller tile cells and this is iterated un-
til a match is found. We call this partitioning method 2.
Each parent cell is assumed to be, a square, partitioned
into (four) nonoverlapping tile cells with equal sizes [9] (re-
fer to Figure 1). Figure 2a-b compares the two partitioning
methods.
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Figure 3. The reconstruction of Lenna.

3. Experimental Results and Conclusion

This section discribes the results of applying the WBFT
for image coding. For compression, we first evaluate the
WBFT by using either partitioning scheme 1 or 2 applied
on the components of a given test image (e.g. Lenna). Next,
we scan the coefficients of each block transformation inde-
pendently at each resolution M5 in different block sequences
and subtract their mean. This will give rise to zero mean
block coefficients at each resolution level. We then assess
the decrease in the rms error of approximation which oc-
cur by uniformly quantizing each zero mean block with a
different stepsize at each resolution. Finally, Huffman cod-
ing with runlength is applied to the quantized (zero mean)
block sequences to achieve further compression without loss.
Figure 3 shows the reconstructed image for a 256 x 256
Lenna starting with a black initial image after three itera-
tions of the IF'S algorithm. Further iterations did not result
in much improvement. The unquantized reconstructed im-
age has a rms error of 3.204 or a PSNR of 38 dB with respect
to the original image. The reconstructed image after quan-
tization and entropy coding has a compression ratio of 4.6:1
and PSNR of 35.33 dB.

From these results we select combinations to achieve high,
meduim, low and poor fidelity images. Observe that image
coding via WBF'T does not require either search or parent
block classifications. Moreover, it has the power of a (near)
perfect reconstruction system and most of the other fractal
approaches, in general, do not.

Table 1 summarizes the simulation results using the parti-
tioning method 2 and Figure 4 compares the wavelet-based
coder with other fractal methods sited in UWaterloo Brag-
Zone public domain (at http://links.uwaterloo.ca) tested on



Table 1. Compression of Lenna at various bit rate
using no search.

Fidelity High Medium | Low Poor
PSNR in dB 35.58 31.18 28 25.06
(quantized)
rms (quantized) 4.24 7.04 10.2 14.24
rms (unquantized) | 3.204 | 6.4 9.703 | 13.49
Max Error 42 47 80 104
(quantized)
CR (unquantized) | 2.92:1 | 4.3:1 7.6:1 | 16:1
CR (entropy) 4.6:1 8:4 15:1 32:1
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Figure 4. PSNR vs. Compression ratio.

a 256 x 256 standard Lenna image.

The other fractal methods used for comparison are
TRNA (Fisher, 3-level quadtree) marked with ‘4+’, TRNB
(Fisher, 4-level quadtree) marked with ‘o’, FIFC (Images
Incorporated) marked with ‘+’, FIFA (Images Incorporated,
version 3.1) marked with ‘x’, and finally FIFB (Images In-
corporated, version 4.0) marked with the dashed line in Fig-
ure 4. The result of simulations for the proposed wavelet-
based coder is marked with the solid line in the same graph.

As the results show, the performance of the wavelet-based
coder is very comparable to the best fractal method sited in
UWaterloo BragZone which is by Fisher et. al (i.e. TRNA
and TRNB).

Future studies are in progress to further improve the cur-
rent wavelet-based fractal coder. One consideration is to
incorporate search into the proposed algorithms. Although
the encoding time will incearse, it is easy to see that per-

forming a search can only improve the coder/decoder. Also
different choice of the scaling functions and in general basis
functions for the blockwise image (function) approximation
and representation can be investigated. Another important
future extension of this work is to look into better ways of
entropy coding the wavelet-based fractal coder which opti-
mally takes advantage of the existing correlation among the
obtained coefficients of the fractal transform. To this end,
one immediate approach may be to incorporate the use of
Shapiro’s zerotree embedded scheme [10] into the current
proposed entropy coder. Therefore, look for a parent/child
relationship and further exploit redundancy due to inher-
ent self-similarity in the coefficient space between the par-
ents and their associated childs. Furthermore, the notion of
bit plane mapping used in Shapiro [10] zerotree algorithm,
which relies on the fact that larger coefficients correspond
to the areas with the most energy concentration and hence
important to be encoded with more accuracy, holds true in
this case as well and for the same reason.
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