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Abstract

A new recursive algorithm based on Jacquin’s gen-
eral scheme is proposed in which a predicate is used for
checking whether a domain block may match a given
range block. Histograms comparison is used and dra-
matic accelerations of the encoding process have been
measured. This technique s totally compatible with
other acceleration techniques. Results on generic im-
ages are shown.

1 Introduction

Whatever the technological improvements in terms
of memory size and transmission time will be, it is not
risky to say that compression tools will always be if
not necessary, at least useful.

Storing images in less memory cuts storage cost,
and transmitting compressed codes instead of full
video frames allows transmitting more. Numerous
techniques competing in this technological race may
be classified according to a simple criterion. They may
be lossless (for instance, Huffman’s encoding and run
length encodings, Lempel/Ziv coding are lossless tech-
niques), in which case it is still possible to compute the
initial image from the compressed one; they may be
lossy (DCT, wavelet transform, vector quantisation,
spline-based methods, cellular automata and fractal
techniques: IFS, PIFS, RIFS, IFSM, etc, are lossy)
and then the original image is lost, replaced by an
approximate one. Lossless techniques have to be pre-
ferred when acccuracy is needed but their compression
ratio is theoretically bounded and remains generally
quite small. On the converse, lossy techniques may
reach any ratio provided that the human eye is misled
by the approximate images they yield.

Before putting an algorithm in the public domain,
a couple of key issues have to be won. The first one
aims at achieving the highest possible compression ra-
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tio (in fact, a higher one than any other of any existing
algorithm) while keeping the best possible quality of
the image after decompression. The second one aims
at encoding any image in a reasonable time. Thus,
the main part of the research effort concerns the en-
coding step whose running time and quality determine
the validity of the whole technique: the decoding pro-
cess consists most of the time in iterating a simple
algorithm.

Fractal Image Compression, as introduced by M.
Barnsley et al [1], makes use of some basic proper-
ties of fractal geometry which forecast better ratios
than any other technique. Today, the performances
are promising but still have to be improved. About
the compression time, it seems rather difficult in the
case of Jacquin’s algorithm[6] to prune the possibili-
ties tree significantly even if recent advances have been
made[9, 14]. About the compression ratio, one has to
admit that the block-coding compression scheme does
not take into account any geometrical property of the
original image at all. Modifications either of the trans-
form maps [11] or of the initial scheme [2, 3, 10, 15, 16]
have been proposed in order to improve (significantly)
the quality of the images. Let us mention a couple of
pessimistic studies [5, 13] which help in keeping en-
thusiastic papers at a healthier level!

There are two types of accelerating techniques:
those which are lossless, 1.e. which do not sacrifice
any image quality for the sake of the speedup, as in
[4, 9, 14]; those which are not, such as [7, 12] or the
present one. Since fractal compression is already a
lossy technique, it is not very grave, after all, to lightly
alter the final image quality!

According to Jacquin’s scheme, the image is divided
into range blocks. For each range block, we find in the
image a domain block twice as large that best matches
the range block after size reduction (averaging), isom-
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Figure 1: From domain to range block

etry and luminance affine transformation (see fig. 1).
The Contraction Mapping and Collage theorems state
that applying these transforms to any image will lead
to the IFS attractor, which is close to the image in the
Hausdorff metric. Thus, the IFS code ¢s the image.
In our implementation, the search is made on the
whole reduced image and not only around the range
block. We use non-overlapping domain blocks, but
nothing forbids doing the opposite. The decoding pro-
cess is a simple sequence of iterations: starting from
any image, the previous transformations are applied
until convergence is reached, which is fast and easy.

2  Quick-Search Algorithm

Let us consider the whole reduced image and and
ask:

Can the range block belong to it ?

If yes, we split the box into four parts, each one cor-
responding to the possible top left corner positions of
the range block (see figure 2).
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Figure 3: Blocks and histograms inclusion

As we allow the luminance of the block to be trans-
formed affinely, we have to normalize the grey values
of a block before we compute its histogram.

The predicate is thus the following: a range block
belongs to a part of the reduced image if its histogram
is ”included” in the histogram of the part. In this case
we subdivide the search space of the top left corner.
This is of course valid since we consider only Jacquin’s
isometries to transform the block: there is neither fil-
tering nor approximation on the grey values between
range and domain blocks once the downsizing of the
image has been made.

In practice we first precompute the quadtree of do-
main blocks histograms, for a given block size: the
root is the entire image, whereas the leaves are the ac-
tual domain blocks. The histogram of each range block
is computed in the main loop and we compare it re-
cursively to the nodes of the domain blocks quadtree.
dhis,yields a few possible solutions and we evaluate
their scores by the usual rms method. The Quick-
Search algorithm being compatible with [8] and [14],
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Please note that there is nothing to prevent our
using overlapping domain blocks. This option is cur-
rently not included in our results, but we envision to
add it to improve the image quality.

The method would be totally lossless if the matches
were almost perfect. In practice only very small
squares (3 x 3) respect this condition, imperfection
being the rule for bigger ones: we have to minimize
errors (rms for instance).

That i1s why we have to introduce some flexibility
in histograms comparisons. Among all possibilities,
overlapping intervals seem to be the most efficient. If
we allow too much flexibility, we have indeed to face
a lot of useless direct comparisons between blocks, as
in the full search process.

What we call ”overlapping intervals” are special
histograms for domain blocks only. If a grey value is
near another square, then it belongs to both of them.

3 Results

All computations were done on a hyper-sparc Sun-
station with a single processor. Results express the
CPU time needed to achieve the compression of the
image.

In this version, domain blocks are not overlapping
so the quality of the decoded images is not the highest
we can expect, as already mentioned. Our only pur-
pose here is to show the speed gain factor between the
full search method and the Quick-Search algorithm.
The full search program has been fully optimized to
measure the real improvement.

Good matches remain as good as they were. How-
ever bad matches tend to become worse : this explains
the difference occurring with large range blocks be-
tween the SNR of the full search and the SNR of the
Quick-Search Algorithm. A 3 x 3 filter (weighed av-
erage) has been applied after decompression to make
blockiness artifacts disappear (when blocksize > 4).

CPU time was measured with the Unix time com-
mand. See table 1.

4 Conclusion

This new technique has shown sharp cuts in the
encoding time, without significant loss of the global
image quality. With an average speedup factor of §,
we are convinced that this kind of techniques could
help a lot in putting compression times at a realistic
level. We are currently focusing on the definition of
new predicates as well as the algebras they generate.

Attempts for parallelizing the encoding process
have shown that it could take less than one minute
for processing very big images. The combination of

Figure 4: Australian trees (353 x 599)

Figure 5: Normalized error image: max error = 59,
16 x 16 blocks, PSNR = 33.9 dB



our algorithm with other acceleration methods seems
very promising for personal computer applications.
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Table 1: CPU encoding time and PSNR

Block Australian trees 353 x 599
size Quick-Search | Full search | Speedup
4 x4 31min20s 118min 4.1
38.35 dB 38.35 dB
8 x 8 5min59ss 31lmin 28s 5.7
37.5 dB 37.9 dB
16 x 16 47s 7min 3s 9
32.6 dB 33.9 dB
Block Lena 512 x 512
size Quick-Search | Full search | Speedup
4 x4 36min 19s 261min 7.2
34.5 dB 34.5 dB
8 x8 13min 16s 102min 23s 7.7
28.6 dB 29.5 dB
16 x 16 2min 04s 18min 46s 9.1
23.2 dB 24.6 dB
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