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Abstract

This paper describes how Fractal Coding Theory may be applied to compress video

images using an image resampling sequencer (IRS) in a video compression system on

a modular image processing system. The first part of the paper describes the

background theory of image coding using a form of fractal equation known as Iterated

Function System (IFS) codes. The second part deals with the modular image

processing system on which to implement these operations. The third part briefly

covers how IFS codes may be calculated. Finally, how the IRS and 2nd order

geometric transformations may be used to describe inter-frame changes to compress

motion video.
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Introduction

IFS encoding offers a very high compression ratio (CR) but is computationally

intensive and thus requires specialised hardware or a lot of time (in the order of a

second) for real-time image processing to be realised. To use IFS encoding’s ability of

high compressibility of images for video compression, one must either use specialised

hardware to speed up the IFS encoding stage or adopt a new coding strategy where

less time is spent on the IFS encoding of individual frames. The former method can be

expensive for the transfer of technology to everyday applications and thus the second

method is pursued. The technique described uses motion estimation to geometrically

transform the IFS decoded image of the previous frame to generate the new frame. If

no change occurs for a succession of frames then no new data need be transmitted

since the image will be held in the framestore and thus theoretically an infinite video

CR will be attained momentarily. This technique makes it possible to use IFS

encoding in real-time video compression since not all the frames require to be IFS

encoded. The two major benefits to be obtained by the use of Fractal Coding are:

i) the attainment of a very high CR - most necessary in today’s crowded

electromagnetic spectrum,

ii) the resolution independence property of the decoding of an IFS encoded image.

This means that the image may be generated and displayed to any resolution and

thus solves the compatibility problems of displaying images for HDTV on

conventional TV.

The difficult inverse problem of finding a suitable IFS code whose fractal image is to

represent the real image and hence achieve compression is investigated through the

use of: 
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i) a library of IFS codes and complex moments,

ii) the method of simulated annealing, for solving many parameter non-linear

equations.

I)  IMAGE CODING USING FRACTALS

Coastlines, mountains and clouds are not easily described by traditional Euclidean

geometry. Objects in nature may be described and mathematically modelled by

Mandelbrot’s fractal geometry. The two properties of fractals are that:

i) the fractal dimension need not be an integer, it may have fractional values, unlike

the Euclidean dimension, from which the word fractal is derived,

ii) the property of self-similarity or scaling - central concept of fractal geometry.

The self-similarity of an objects is the property whereby magnified subsets appear

similar or identical to the whole and to each other. It is a characteristic of fractals and

sets them apart from Euclidean shapes which generally become smoother. Thus fractal

shapes are self-similar and independent of scale or scaling and possess no

characteristic size. Euclidean shapes may be described by a simple Algebraic formula

whereas fractals are generally constructed using a recursive algorithm suited to

computers. [1]

IFS and their use in Image Compression

Using fractals to simulate natural effects is not new. The innovation is to start with an

actual image and find the fractals that will imitate it to the required degree of

accuracy. Since these fractals are represented in a compact way, the whole image will

be represented by a highly compressed data set, thus data compression is achieved.
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IFS codes are used to represent the fractal transforms. An IFS is a collection of

contractive affine transformations which express relations between parts of an image.

The relations are able to define and convey intricate details of a picture. In general, an

IFS consists of m affine transformations, W1, W2, ... Wm, with an associated probability

each. The probabilities affect the rate of filling-in of the various regions and attributes

of the image. Fractal compression is a lossy compression technique. The high CR may

be increased further by applying the best lossless compression algorithm currently

available to the IFS codes itself,

Affine Transformations are combinations of rotations, scalings and translations of

the co-ordinate axes in n-dimensional space. Figure 1 shows an example of an affine

transformation, W, operated on a smiling face, F, lying on the xy plane, moving it to a

new face, W(F). W always moves points closer together - W has to be contractive to

satisfy fractal theory.

Figure 1. An affine transformation, W, operated on a smiling face, F. [1]

The general form for an affine transformation is:

W
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If the translations, rotations, and scalings that make up W are known in advance, then

the coefficients may be calculated by:

a = r cos θ, b = - s sin φ, c = r sin θ, d = s cos φ,

where: r = scaling factor on x, s = scaling factor on y

θ = angle of rotation on x, φ = angle of rotation on y

e = translation on x, f = translation on y

The affine transformations can be implemented by the hardware that we have

developed using the IRS(TMC2301). This chip performs image transformations

according to the equations, [2]:

The Geometric Transformation Equations:x(u,v) = Au2  + Bu + Cuv + Dv2 + Ev + F

y(u,v) = Gu2 + Hu + Kuv + Lv2 + Mv + N

where: the coefficients A to N define the transformation,

x,y = source image co-ordinates,     u,v = destination image coordinates.

The 2nd order terms are ignored since affine transformations are only first order

transformations, thus the geometric equations simplify to:

x = a(x') + b(y') + e,          y = c(x') + d(y') + f

where: B = a, E = b, F = e, H = c, M = d, N = f.
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Calculation of Transformation Coefficients

There are six unknown coefficients to be solved for the Geometric Transformation

equations. Therefore, by selecting six points in the destination image (x', y'), the

‘Control Points’, and finding their corresponding coordinates in the source image (x,

y), two systems of linear simultaneous equations can be set up with six equations in

each system and six unknowns. These two systems may be solved by Gaussian

Elimination to obtain the required coefficients values. The selection of the six control

points for calculating the coefficients is critical because, they must be:

uniquely identifiable - they must be traceable in the source image,

evenly spread in the cell - they must reflect changes all over the cell’s area.

If the points are chosen to be on a cell’s boundaries, then the advantages are:

each point can be used for calculating the coefficients of two adjacent cells,

reduction by half the number of points traceable from the destination to source

image,

smooth transition transformations from one cell to the next may be obtained.

Figure 2a shows an example of nine adjacent cells in the new (Destination) frame

with the six control points for each cell, Figure 2b shows how these points may map

into the Previous (Source) frame. For each cell three Points are selected, one on the

right hand border and two on the bottom border. In order to calculate the coefficients

of cell “E”, for example, control points “E1, E2, E3, B1, B2, D3” would be utilised.

To enable the edges of objects in the image whose points are most likely to be

uniquely identifiable to be found - edge detection operation is performed using

convolution with Sobel operators, in order to select the control points. Using this

technique, the intercept points in each cell where the edges in the image intercept the
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right hand border which is nearest to the border’s centre, and the two points nearest to

the border’s “one third intervals” for the bottom border of the cell, are found and

selected.

Figure 2. Control Points

A motion detection algorithm is then applied to establish where those points were in

the source frame, by Search Block Matching using a Mean Absolute Error algorithm.

II)  HARDWARE IMPLEMENTATION

To perform the image processing operations a Modular Image Processing System [3]

is being developed, whose architecture will offer both high speed processing and

hardware flexibility. The system consists of a central processing module responsible

for the overall system management, and a number of parallel dedicated hardware

modules for performing specific image processing operations. Figure 3 shows a block

diagram of the overall architecture of the system. One of the parallel modules is the

IRS used to implement the affine transformations.
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Figure 3. System Outline of a Modular Parallel Digital Image Processor

The system central controller is a TMS34010 Graphics System Processor (GSP) [4] -

a graphics orientated microprocessor that offers a rich general purpose and graphics

instruction set. The GSP’s Address, Data and Control busses expand out of the central

processing module to provide an interface for the parallel modules. The Frame Buffer

is capable of storing and displaying up to 512x512 pixel images with 8 bits per pixel

depth (256 grey levels). 

IMAGE Resampling Module performs 1st and 2nd order geometric transformations,

bilinear interpolation or convolution filtering using two TMC2301 IRSs as local

processors. Convolver Module performs convolution in real-time with kernels of up

to 8×8 size using the PDSP16488 convolver (Plessey) as the local processor. IMAGE

Compression Module - The Fractal Compression Module to perform encoding is

under development. A Discrete Cosine Transform (DCT) module to compress image

data: can perform both Forward and Inverse DCT and also low pass filtering has

already been built. It uses the IMS A121 DCT chip as the local processor. A number

of Motion Estimation Modules performs search block matching using mean absolute
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error. These modules use STI3220 Motion Estimation Processors as the local

processors: used for finding in the source image, the coordinates of the control points,

which were selected in the destination image, IMAGE Difference Module  -

calculates mean absolute error between corresponding cells, in the new and previous

frames, and also in the new and reconstructed frames. At the transmitter the data

compression system will require all the above modules in order to perform all the

operations necessary for encoding the sequence. At the receiver, however, much less

processing is required for decoding. The receiver will only need to have the Image

Resampling Module for performing the geometric transformations according to the

parameters that it receives, decoding of IFS code can be achieved in software alone at

the receiver, this can be stored as ROM.

III)  HOW TO FIND AND DECODE IFS CODES

The complex representation of an IFS code is required to calculate its moment and

match it with the moment of the image segment it is to represent. The points (x, y) in

the real 2D space may be thought of as points z in the complex plane C, then the

affine transformation wi can be expressed in the complex form wi(z) where:

     z = x + iy,

wi(z)= ci z + (di z)* + bi, i = 1,..., N. where: z* = x - iy.

Comparing this with the polar form of the affine transformation (the probabilities stay

the same in either case) the complex variables of the affine transform are found to be:

ci
r = ½(r cos θ + s cos φ) r2 = (ci

r + di
r)2 +(ci

c - di
c)2

ci
c = ½(r sin θ + s sin φ) tan θ = (ci

c- di
c)/ (ci

r + di
r)
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di
r = ½(r cos θ - s cos φ) s2 = (ci

r - di
r)2 + (ci

c + di
c)2 bi

r = e

di
c = ½(-r sin θ + s sin φ) tan φ = (ci

c + di
c)/(ci

r - di
r) bi

c = f

Relationship between Complex Moment and Complex form of IFS

The moment of an IFS is defined[5] by:

Mn = ∫k zndµ(z) : n = 0,1,2,…

where z = points generated by affine transformation wi.

Consider our fractal image to be made up of m points zk, then the moment Mn is:

Mn = Σ
k=1

m
(zk)

n
m

For an IFS with r = s and θ = φ (e.g. of the form wi(z) = ai z + bi, i = 1, ... N) then:

Mn = Σ
i=1

N
pi ∫k (aiz+ bi )ndµ(z)

Mn can be simplified to:

Mn = 
1 − Σ

i=1

N
piai

n


−1

Σ
i=1

N
pi Σ

j=0

n−1
(nCj )ai

j
bi

n−j
M j

The equation for Mn is obtained given in terms of the previous moments Mj, j = 0, ...,

n-1 and the form of the affine transformation ai, bi, and pi, i = 1, ..., N. Since M0 = 1.0,

the rest of the moments may be calculated, without the need for points zk generation.

Thus saving valuable computation time where 10,000 or more points may need to be

generated to obtain accurate moments. Thus an IFS that describes an image may be

found by attempting to make the moments of the IFS as close to the moments of the

image. This only holds for the case r = s and θ = φ. For the more general case, the

general moment definition has to be used:

M jk = ∫k zjz∗kdµ(z) : j,k = 0,1,2,…

In this case a matrix equation for the moments Mjk with j+k = n has to be solved [6],

this is in the form of:             - [C] = ([A] - [I]) [Marray]

Appendix E The Use of Fractal Theory in a Video Compression System270



where: [Marray] = vector (M0n, M1(n-1), M2(n-2), ..., Mn0)
T,

           [A] = matrix, size = (n+l) × (n+l), elements are IFS parameter

dependant,

           [I] = Identity matrix, Iii = 1, Iij = 0 if i ≠ j,

           [C] = IFS parameters and moments Mjk (where j+k < n) dependant

vector.

Thus using M00 = 1 and the IFS code, the moment Mjk can be solved.

1) The moment library search method

The moments have to be normalised so that fractal images that are the same except for

a global scaling may be compared. By having a large database of IFS codes and its

associated normalised moments, this library may be used to search for an IFS code

whose moment is closest to the normalised moment of an image to be encoded. This

IFS code may then be retained and passed as the fractal transform of that image

segment to use directly to compress that segment or instead the IFS code obtained

may be used as a starting point to some non-linear solution method to find a closer

IFS code.

2) Newton’s Method to find an IFS code close to an image

Newton’s method can be used to solve an equation of the form: . Thef 

→
x 

 = 0

problem is essentially: f 

→
x 

 = f1


→
x 

 − f1


→
x image segment




where:  normalised moments function of an IFS codef1


→
x 

 =

 normalised moments of an image calculatedf1


→
x image segment


 =

explicitly from the points of the image.

When , then the vector form of the IFS code, , has been found.f 

→
x 

 = 0
→
x
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3) Simulated Annealing method to find an IFS code close to an image [6] [7] [8]

This is a better method of minimising functions of many variables as it will not go

immediately to the local minima of a function - a problem inherent with Newton’s

Method. The problem concerns the thermodynamics of metal cooling and annealing

given by the equation:

Prob(E) ≈ exp 


−E
kT




where: E = energy of system, T = temperature (Kelvin), B = Boltzmann’s

constant.

The method requires parameters that are analogues of T whose value is lowered as the

method gets closer to the minima, and energy E, where energy is the value of the

system to be minimised. At initial higher T’s, changes to higher energy states are

much more likely to be accepted and it is this feature of the method that allows the

algorithm to find the global minima of a function rather than one of many local

minima. The method may be used to find an IFS whose moments are close to a given

set of moments. The following are required:

1) Description of system - use vector , size Nofx = Number of points in image
→
x

segment:

→
x = 

c1
r ,c1

c,d1
r ,d1

c,b1
r ,b1,

c …,dNAffines

r ,dNAffines

c ,bNAffines

r ,bNAffines

c 


T

2) A random system change generator - accomplished by random vector  variable
→
dx

of length randomly chosen between 0 and given length δl. δl and T were lowered

simultaneously creating a new vector :
→
x new

→
x new = →

x old +
→
dx

Check vector for valid IFS code production, if invalid then a new was generated.
→
dx
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3) The energy of the system, E, whose minimisation was required, was substituted by:

E = f 

→
x 


2

= Σ
i=1

Nofx

f i


→
x 


2

where . Use unnormalised moments for andf 

→
x 

 = f1


→
x 

 − f1



→
image

 f1


→
x 



.f1



→
image



4) The parameter T and a method of lowering T. T governs the changes in the function

E. Consider E value carefully as it affects the energy change, ∆E, that can be

acceptable.

How to decode an IFS code - the Random Iteration Algorithm -a summary [6] [7]

1) Initialisation: x = 0, y = 0.

2) For n = 1 to Number_of_points_in_image, do steps (3) and (4).

3) Choose k to be one of the numbers 1,2, ..., m, with probability Pk.

4) Apply the transformation Wk to the point (x, y) to obtain (x', y').

5) Set (x, y) equal to the new point: x = x', y = y'.

6) If n > number_points_required_to_obtain_attractor, then plot (x', y').  

7) Loop.

More points are added to an image by increasing the variable

Number_of_points_in_image. This may be required to obtain an image with a greater

resolution, e.g. for HDTV. Zooming may also be achieved by using an increased scale

factor. The variables of (6) is around 100, but may be minimised by empirical

methods. The ability of the random iteration algorithm to produce the same image
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time and time again independent of the random sequence of events chosen has been

proven:

1) by carrying out computer-graphical math experiments;

2) by rigorous theoretical foundation of the mathematician John Elton of 

Georgia Institute of Technology, Georgia, USA.

IV)  MOTION VIDEO COMPRESSION USING GEOMETRIC TRANSFORMATIONS

The hardware may also be used to compress motion video. The initial frame of the

sequence will be sent in its IFS encoded form. The preceding frames may be

constructed using geometric transformations to describe inter-frame image changes,

whilst simultaneously IFS encoding of a new frame sequence may be occurring. If a

frame cannot be sent using geometric transformations then it will be sent as IFS

codes. Loss of channel link will not mean loss of image as the image will be stored in

a framestore. Infact the framestore may temporarily freeze the last frame whilst the

new frame is being encoded as IFS codes.

i) The 1st frame of the sequence is sent in its IFS encoded form, which is regenerated

using the Random Iteration Algorithm at the decoder, this can be performed in

real-time and entirely in software if necessary.

ii) The new frame to be sent is split-up into rectangular domain blocks, as shown in

Figure 4. Comparison between the domain block of the new frame and the previous

frame is made to determine which cells have altered using an Image Difference

operation on the cells and forming the Mean Absolute Error. If the error is below a

pre-set threshold then assume no change in the corresponding cell, otherwise, assume

that it has changed.
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Figure 4 Example of Consecutive Frames in a Sequence

iii) No new information is transmitted for unaltered cells Altered cell are constructed

by geometrically transforming parts of the previous frame. For example, cell “e2” in

the new frame of Figure 4 can be reconstructed by rotating and translating the

highlighted part in the previous frame.

iv) After the reconstruction of each cell, it is compared with the actual cell in the new

frame to determine whether the reconstruction was successful or not. The comparison

is again performed as in (ii) with an Image Difference operation on the cells, finding

Mean Absolute Error. If this reconstruction is successful, then only the transformation

coefficients need to be transmitted,

v) otherwise, the cell is sent in its IFS encoded form.

Reasons for Cell Reconstruction Failure

Completely new information may have come into the image such as:

- hidden views of objects which are revealed by 3-dimensional rotations,

- movement of another object which was obscuring the camera’s field of view,

- higher than 2nd order terms being necessary to accurately describe intra-cell changes.

a b c d e f g h
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V) COMPRESSION RATIOS

The overall CR will depend on the nature of the frame sequence. In general there will

be three categories of cells, the average CR will depend on the percentage of cells that

fall into these, cells that have:

i) remained unaltered since the last frame,

ii) altered and can be described by 2nd order geometric transformations,

iii) altered and cannot be described by 2nd order geometric transformations.

Assuming an image of size of 512×512 pixels with 8 bits per pixel depth, and being

divided into 64 domain blocks, then the bitmap size of each cell will be 4096 bytes. If

this cell falls into the 2nd category above, then it can be described with a set of 16

programmable parameters, which can be used by a pair of IRS devices (TMC2301) to

reconstruct the cell. These parameters require 42 bytes of data giving a CR of 97.5:1.

The programmable parameters which need to be stored or transmitted are directly

related to the Geometric Transformation Equation coefficients. From the Table below,

the worst case IFS CR is ~76: 1, which is 3.8 times higher than that obtained by using

conventional DCT. The Fractal CR is variable and depends on the image and image

quality required. Large compression factors of 10,000: 1 may be obtained for some

images.

 Cell Category               Compression Ratios

Unchanged Cells                Infinite

Cells That Can Be Geometrically Reconstructed 97:1

Cells That Cannot Be Reconstructed - Compressed Using IFS codes~76: 1 to 10,000: 1

Cells That Cannot Be Reconstructed - Compressed Using DCT 20:1
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VI)  CONCLUSIONS

An Image Data Compression technique for frame sequences of digital images has

been described, which promises CRs well above those offered by conventional Data

Compression Methods.

The major advantage of using fractal techniques is that it offers very large image CRs

from 76:1 to 10,000:1. The work being conducted using just the geometric

transformation module has given CRs of 97.5:1. Using IFS codes - a type of fractal

equation - to compress image segments has been explained. The difficult inverse

problem of finding a suitable IFS code whose fractal image is to represent the real

image and hence achieve compression is being investigated through the use of: a

library of IFS codes and complex moment and the method of simulated annealing, for

solving non-linear equations of many parameters. The implementation of the fractal

encoder is still under development. The application of simulated annealing is being

investigated, IFS codes are robust - thus they are ideal for transmission through noisy

distortion inducing communication channels - since small deviation of the IFS codes

will still produce recognisable images with minimal distortion. The resolution

independence of the decoded image from the IFS code makes fractal coding the

compression technique for implementing HDTV and ensuring compatibility with

non-HDTV equipment.

A Modular Image Processing System has also been presented which can be used to

perform the operations required to implement the coding and decoding for this

technique. The hardware complexity of the system is concentrated in the coding end

of the system which means that it is well suited for applications where a single

encoder is used to provide coded information to many decoders, i.e. in broadcasting.

Appendix E The Use of Fractal Theory in a Video Compression System277



VII)  REFERENCES

1. H.-O. Peitgen, D. Saupe, editors, The Science of Fractal Images. Springer-Verlag,

New York, 1988. Adapted from Fig. 1.4, p.29.

2. J. Eldon R. Wegner, “Using the TMC2301 Image Resampling Sequencer”, TRW

Application Note TP-37.

3. C. Papadopoulos, T. Clarkson, “Parallel Processing of Digital Images Using a

Modular Architecture”. IEE Proc. 6th Int., Conf. on DSP in Communications, Sept.,

1991.

4. “TMS34010 User’s Guide”, Texas Instruments (1988).

5. M. F. Barnsley, V. Ervin, D. Hardin, J. Lancaster, “Solution of an inverse problem

for fractals and other sets”, Proc. Natl. Acad. Sci., USA, Vo1. 83, pp. 1975-77, April

1986.

6. D. Wilson, “Fractal Image Compression”, computer science MSc project report,

Sept., 1988, Imperial College of Science, Technology & Medicine, University of

London.

7. M. F. Barnsley, A. D. Sloan, “A better way to compress images”, BYTE, Jan 1988,

pp. 215-223.

8. S. Kirkpatrick, C. D. Gelatt Jr, M. P. Vecchi, “Optimisation by simulated

annealing”, Science, Vol. 220, No. 4598, pp. 671-679, 13 May, 1983.

Appendix E The Use of Fractal Theory in a Video Compression System278


