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PAVEMENT DISTRESS IMAGES USING FRACTALS

Maaruf Ali, Michael A. Gennert333 and Trevor G. Clarkson

Abstract

The vast amount of data generated by automated surface distress

evaluation equipment far exceeds the storage capabilities of current digital

data storage systems. A study using fractals is being carried out to alleviate

the data storage problem, since fractal image compression offers the

largest compression ratio of the available image compression algorithms.

This paper discusses the use of fractals to analyse, compress and generate

pavement distress features, i.e., cracks in the road surface. Much of the

following is abridged from a paper by LeBlanc [LeBl91]. A method for

calculating the fractal dimension of cracks is presented and values for

pavement cracks reported. Several methods for fractal image compression

are explained, especially the midpoint displacement algorithm to generate

pavement distress images and iterated function system codes. The use of

fractal techniques to generate standard images for testing an automated

surface distress evaluation system is proposed.

Keywords: Fractal Compression, IFS, Pavement Distress Modelling, Fractal

Dimension.
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Introduction

The deterioration of transportation systems in the United States is a problem of major

concern to local, state and federal agencies and to the public. Highways in the United

States are deteriorating at an alarming rate due to the normal ageing processes, as well

as being subject to greater and more severe traffic loads. This problem is compounded

by decreases in available funding for restoration of this vital element of the

infrastructure. Improvements are not predicted as maintenance and construction costs

rise due to inflation in material and labour costs and as revenues decline. The need for

a pavement management system to provide accurate assessment of the condition of

various types of highway pavement is of critical importance in addressing highway

maintenance needs.

Pavement management systems require systematic monitoring of pavement

surface to determine preventive and corrective maintenance. The process involves

accumulation of large amounts of visual data, typically obtained from site visitation.

The pavement surface condition is then correlated to a pavement distress index that is

based on a scoring system previously established by the various state Departments of

Transportation (DOTs). The scoring system determines if the pavement section

requires maintenance, overlay or reconstruction.

A large amount of data is required to establish a pavement distress index. The

computation process is currently computerised. However, the raw data are still input

manually, a laborious and expensive task. This, coupled with the difficulty and

impracticality associated with field measurements of pavement surface cracks in areas
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with high traffic density, emphasises the need for an automated visual crack

measuring device.

The objective of this project is to develop a system for processing video

images of pavements and to identify, quantify, and classify pavement distress. The

basic strategy for automated acquisition and analysis of video images for evaluating

pavement distress is straightforward: a vehicle (see Figure 1) travels along the road

taking pictures of the pavement, which are analysed to evaluate the type, severity and

distribution of surface cracks and patches.

Computer

Frame Grabber Data Storage

Controls

MonitorGenerator

Camera

Lights
(optional)

Figure 1. Schematic drawing of a pavement data collection system [LeBl91].

Road images are taken by a moving vehicle where the data are analysed in real

time; only summary information about distress severity and extents is recorded (see

Table 1). This solves the data rate and storage problem, but since the raw data is

discarded many useful functions cannot be carried out by the pavement maintenance

engineer. These functions include, for example, evaluating the cause of distress and

comparison of records to determine pavement wear. The second approach retains the
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raw data by using commercial video cameras and recording equipment for data

analysis at a later time. But the major problem of using currently available recording

equipment is that its limited bandwidth is incapable of meeting the system

specifications, i.e., low resolution images.

A solution elaborated in this paper is to use a special purpose high resolution

image acquisition system with data compression to allow recording raw image data at

moderate road speeds (45 mph) using commercial equipment. The compressed images

are stored and reconstructed at a later time for evaluation by the pavement engineer or

can be input directly for image processing by automated machine vision systems.

Fractal coding is chosen because it satisfies the condition of image

equivalency and it offers a very high compression ratio. Human to computer

evaluation is not considered. Equivalency in terms of this project is defined to be:

the reconstructed image is equivalent to the original uncompressed image as

judged by humans;

machine vision image processing determines that both the uncompressed and

compressed images show the same distress, distress extent and severity.

This paper reports ongoing research being conducted by Worcester

Polytechnic Institute, Massachusetts, USA, and King’s College London, University of

London, England, in using fractals to compress images. Initially, simple distress

features are being modelled, namely simple longitudinal, transverse and diagonal

cracks. Complete image reconstruction accuracy is not the objective of the work.

Sufficient data must be retained to allow accurate assessment of severity and extent of

pavement distress by both humans and computers.
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Data Reduction

THE NEED FOR DATA REDUCTION

The volume of data to be processed is enormous. If P is the number of points per

square inch to be analysed and assuming a 14-foot lane width, 10,644,000 × P points

per mile of highway are needed. If 10,000 miles of highway per year are to be covered

(not unreasonable for many states) at a resolution of 1/16 inch (to guarantee detection

of cracks 1/16 inch wide) with P = 256, 27.1 trillion [1012] points per year need to be

processed. To acquire this data at 45 miles per hour would need 222 hours of road

time; thus, data acquisition can be safely restricted to periods of favourable weather.

Data would need to be acquired at a rate of 33.9 million points per second. This can

be processed off-line at a much lower rate, as computers can run 365 days a year, 24

hours per day. Thus, 8760 hours are available to process data that required 222 hours

to acquire, for an effective rate of 0.86 million points per second.

Table 1. Simplified Inspection System Technical Specifications

Maximum Inspection speed: 45mph (72km/h)

Inspection width: 14 feet (4.3m)

Road coverage: continuous (100% inspected within a lane)

Minimum crack width: 1/16 inch (1.6mm)

Maximum joint width: 1 inch (25mm)

Pavement Surface: bituminous or portland cement concrete

Pavement condition: new to severely worn

Aggregate: any material, not worn shiny-smooth

Lighting conditions: any natural combination of sun and skylight
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DATA REDUCTION METHODS

Ignoring Other Than Pavement Distress Features

One type of information that does not contribute to pavement distress evaluation is

image texture due to aggregate. Aggregate has a signature that is easy to characterise:

it has a roughly circular texture at a regular frequency. Methods for detecting and

eliminating most, if not all, of the signal directly attributable to aggregate are

explored. This enables information storage requirements to be reduced to four bits per

pixel or less, thus halving storage requirements at the cost of some decoding prior to

processing.

Further compression of the aggregate-free images is possible using the simple

but powerful method of image encoding known as Run Length Encoding. In Run

Length Encoding, consecutive runs of pixels with identical values are efficiently

represented by storing the intensity value only once, with a repetition count telling

how many times the given value is to be repeated. On a typical image this results in a

compression ratio of 10 to 100 over the original image, and with filtering provides

even greater compression. 

Image Compression

Image compression is reducing the number of bits required to represent an image in

such a way that either an exact replica of the image (lossless compression) or an

approximate replica (lossy compression) of the image can be retrieved.
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Fractals

COMPUTER DESCRIPTION OF NATURAL OBJECTS

The natural graphics system encodes pictures by assigning an address and colour

attribute for each point of the object, resulting in a long list of addresses and

attributes. The problem is alleviated by using a newer class of geometrical shapes that

are both flexible and controllable. These geometrical shapes can be made to conform

to clouds, feathers, leaves and other natural objects and are found in the domain of

fractal geometry.

ADVANTAGES OF USING FRACTAL TRANSFORMS

A Fractals is described as “. . . a highly complex structure . . . generated from a simple

concise kernel of data which is easy to produce. (Such large database amplification is

a primary advantage of fractal techniques in general.)” [Oppe86]

FRACTALS — A BRIEF INTRODUCTION

Coastlines, mountains and clouds are not easily described by traditional Euclidean

geometry. We use Mandelbrot’s fractal geometry to describe and mathematically

model the natural objects. This is another reason image compression using fractal

transforms is studied. Mandelbrot first coined the word fractal in 1975 [Mand75].

PROPERTIES OF FRACTALS

The property of self-similarity, or scaling, is one of the central concepts of fractal

geometry. Also, a fractal has a fractional dimension, from which the word fractal is

derived; Euclidean shapes have integer dimensions only.
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Self-similarity

The property of objects whereby magnified subsets appears similar or identical to the

whole and to each other is known as self-similarity. It sets fractals apart from

Euclidean shapes which generally become smoother. Thus, fractal shapes are

self-similar, independent of scale or scaling and possess no characteristic size. This

describes a pavement distress image: a magnified segment of a crack appears the same

as the unmagnified segment. Thus cracks are effectively represented by fractals.

Fractal Dimension

The classic example of a self-similar curve is that of a coastline, the length of which

increases as the dimension of the ruler used to measure it decreases. Thus, unlike a

straight line a fractal’s measured length depends on the ruler’s length. This

dependence is described by the fractal dimension, D. Other fractal dimension

measures exist, such as the similarity dimension. A detailed discussion of fractal

dimension is beyond the scope of this paper. For pavement analysis purposes, a

method for calculating the fractal dimension of cracks is required and presented, and

conversely, the generation of cracks given a fractal dimension.

The distance or the number of rulers, N, obtained by measuring a straight line,

L,  using a ruler of length K is

N = L
K

When the curve is not straight but convoluted, N, the number of rulers needed to fit

the curve, grows by an exponential factor, D, as

N = 


L
K




D

For a straight line, D = 1. D must be less than 2, otherwise the line has space and

contradict the Euclidean definition of a line.
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Measuring the Fractal Dimension of a Crack

We measure the fractal dimension of a crack using a modified Calliper method, which

has produced the most consistent results and is most suitable for measuring the fractal

dimension of linear structures.

First, segment the distress features from the pavement image. An example of a

Portland Cement Concrete (PCC) pavement image is shown in Figure 2. Figure 3

shows the segmented image of the distress. Here the pavement’s grey level is altered

to white, whilst those pixels associated with the distress itself are black. Segmentation

is a major problem in itself; ongoing research is being conducted at Worcester

Polytechnic Institute to segment an image more efficiently.

Figure 2. Image of a distressed PCC pavement [LeBl91].

Next, skeletonize the segmented image, that is, reduce the width of the pixels

to a single pixel. This is carried out in order to determine the morphology of the

distress.
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Figure 4a shows a segmented transverse crack taken from Figure 3, Figure 4b show

the same crack after skeletonization.

Figure 3. Segmented image of the distress in Figure 2 [LeBl91].

Figure 4. Transverse cracks (a) from Figure 3; (b) same crack skeletonized [LeBl91].

Then, the measured length, M, in pixels of the skeletonized crack is

determined using a variety of ruler lengths, K, also in pixels. Following Smith

[Smit89], a log-log plot of M (log curve length) as a function of K (log ruler length) is

plotted, as shown in Figure 5.
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Finally, the slope S is computed, to give the fractal dimension D, from the

expression

D = 1 − S

The value obtained for this example is D = 1.08.

Figure 5. Log-log plot of curve length versus ruler length from Figure 4b [LeBl91].

For small K values, the discreteness of the digital image means the left portion

of the curve is generally flat, since pixels are larger than points and self-similarity

breaks down at the pixel level. For large values of K the behaviour of the curve is

explained by quantization error because the length is not an integral number of ruler

lengths.
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Point selection for determining the slope was arbitrary; ruler lengths of 10 to

100 pixels give the most repeatability. A more rigorous slope measurement method

must be developed to fully automate fractal dimension measurements.

From the study of both PCC and asphalt cement (AC) pavements, the fractal

dimension was found to lie in the range

D = 1.10 ± 0.05

Joints in PCC pavements have fractal dimensions below this range. Curves with

fractal dimensions above this range are too convoluted. See Figure 6. 

      D = 1.0 D = 1.3

Figure 6. Curves with fractal dimensions outside the range D = 1.1 ±0.05 [LeBl91].

Due to the difficulty of segmenting distress features in digitised pavement images

(about 20), the population of the data is not large enough to derive statistical

information concerning the fractal dimension, such as the standard deviation, nor to

claim that the fractal dimension range is universal. No theories for this observation

have yet been formulated.

The Simulation of Pavement Surface Distress Using Fractals

The first technique to be described generates fractals by iterative applications of

‘generator’ functions to Euclidean objects. In the case for the simulation of pavement

distress, a straight line, the Euclidean object, is dissected into smaller line segments
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by the generator. The resulting line segments are further dissected by the same

generator, until the dissections are smaller than the screen or output device resolution.

No general theory exists in designing or selecting the required optimal fractal

generator to simulate pavement distress. The approach undertaken was to search for

the generator and build up a library of generators that produce the different types of

distress by subjective comparison of the results with the real distress.

A technique described later in this paper attempts to find the appropriate

iterated function system (IFS) code to generate the distress by the moment matching

method.

Fractal Generating Functions

DETERMINISTIC FRACTAL GENERATING FUNCTIONS

A Koch snowflake is a classic example of a fractal produced by deterministic fractal

generating functions. The fractal is brought into existence by applying the generator

shown in Figure 7b at each iteration. The generator trisects a line segment, as shown

in Figure 7a, replacing the central segment with two segments of equal length after the

application of the generator G times. The curve produced for G = 3 is shown in Figure

7c. The resulting curve has 3G segments. The curve is only a fractal as G approaches

infinity. For practical purposes G must be larger than the logarithm, base 2, of the

image size in pixels. If the image size is 28 pixels wide, then G need only be equal to

or greater than 9.

What most people do not understand is that the human eye is incapable of ever

seeing a fractal. It cannot resolve the infinite detail present in a fractal, only an

approximation of the fractal is sensed.
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The Koch snowflake does not resemble a pavement distress in any way. Two

reasons for this observation are:

The fractal dimension of the Koch snowflake is greater than the measured range

of pavement distress dimensions and is given as (see [Voss88])

D = log[N]
log 

1
R



where N is the number of segments into which the line is dissected, and R is the

ratio of the new line segment length to the original line length. For the Koch

snowflake N = 4, R = 1/3 when D = 1.262 (3 d.p.), which is outside the distress

dimension range.

The Koch snowflake is too regular.

(a)

60°

(b)

(c)

Figure 7. An example of a deterministic fractal generating function. (a) Line segment

used for generating a fractal; (b) Koch snowflake generator; (c) curve after three

iterations of the generator [LeBl91].
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From these observations we deduce that control of the fractal dimension is required in

order to produce more irregular fractals and fractals whose fractal dimension lies in

the range where distress fractals exist.

STOCHASTIC FRACTAL GENERATING FUNCTIONS — STOCHASTIC

MIDPOINT DISPLACEMENT ALGORITHM

Irregular fractals are produced by randomly varying the lengths and orientations of the

basic generator function at each iteration. In the deterministic case, the generator

bisects the line segment by displacing the midpoint to produce two new line segments.

The displacement is always the same, as shown in Figure 8a. This generator function

displaces the midpoint in an orthogonal direction by a quarter of the original line

length. Figure 8b shows the case for the stochastic midpoint displacement generator,

where both the magnitude, r, and the direction, θ, of the displacement are selected

randomly. The midpoint is only displaced uniformly within the closed circle of radius

p. The displacement angle, θ, is therefore uniformly distributed within the circle with

the probability density of the angle, θ, given by

Pθ(θθ) = 1
2π

To obtain a uniform distribution, the probability density of any displacement

magnitude, r, is

Pr(r) = 2r
p2

The equation used to calculate the Koch snowflake is still used to calculate the

fractal dimension. In this case, where N = 2 and R = E{ l1} the average or expected

value of l1. l1 is the length of the line P1M', the line connecting an endpoint to the
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displaced midpoint in Figure 8b. The other line segment, P2M', obeys the same

statistics; the expected lengths are equal, and this is given by

E{l 1} = E{l2} = ∫0

P

∫0

2π
Pr(r)Pθ(θ)l 1(r,θ) dr dθ

From the geometry of Figure 8b l1 is

l 1(r,θ) = 0.25 + r 2 + r cosθ

0.25

M

M'

l=1

M

P
1 P

21l 2l

p M'

r
θ

(a)

(b)

Figure 8. Midpoint displacement generators: (a) Deterministic, (b) stochastic [LeBl91]

A plot of the fractal dimension, D, against the parameter p is given in Figure 9.

Figure 9. Fractal dimension as a function of the generator parameter [LeBl91].
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The values of p, found to lie in the range: 0.25 ≤ p ≤ 0.425, produce cracks whose

fractal dimensions lie in the range of pavement distress. For p values greater than 0.5,

the curves are too convoluted to resemble pavement distress; above 0.85, the fractal

dimension exceeds two, and the curves are area-filling in nature. Conversely, for p

values less than 0.25, the curves are too straight. Some curves obtained by using this

algorithm are given in Figure 10.

(a)     (b)

Fig. 10. Fractals produced by a stochastic midpoint displacement generator [LeBl91].

Crack Width Algorithm

The fractal curve produced above had no width. To render the curve it was necessary

to assign a pixel width of one or two. With this the curve had constant width, which is

contrary to real pavement distress. To obtain a more realistic distress, a crack width

algorithm is implemented. The input parameters for this are the width at one end of

the crack and the minimum and maximum widths. Points are constructed at both

segment ends a constant perpendicular distance from the segment by defining a

constant width box around the segment. The width of the box is randomly generated

and is constrained by the upper and lower width boundaries. Too, it cannot vary by

more than a pixel from the previous line segment of the fractal curve. To make the

curve appear continuous and with no abrupt width changes, the box endpoints are
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connected end to end by shaped polygons. The final stage consists of replacing the

line segments by the boxes and polygons to render the final crack. Figure 11 shows

the crack of Figure 10b after application of the crack width algorithm. No theoretical

foundation exists for this algorithm; its use is purely for the purpose of generating

realistically looking cracks.

Figure 11. A fractal curve with algorithmically produced width [LeBl91].

Generating Pavement Images and Image Compression

Real distress features not only have a nonconstant width but also a nonconstant grey

level with colour variation as well. The grey level of the pavement depends upon, for

example, the material, lighting conditions and the geometry of the distress. To

simulate new pavement images to reflect lighting or material, other pavement images

can be combined and processed with the application of computer models to compute

the correct grey levels. To construct an image this way (see Figure 12) we first use the

segmented image of Figure 3 as a mask to remove the distress from the image of

Figure 2. Then we superimpose the computed distress of Figure 11 onto Figure 2,

adjusting the grey levels. Only 13 parameters are required to achieve this: 

the crack endpoint co-ordinates (xstart, ystart, xstop, ystop — four values);

the fractal dimension;

the minimum crack width;
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the maximum crack width;

initial crack width;

the assumed crack depth;

the average pavement surface reflectivity;

two illumination angles;

the ratio of directed to ambient illumination.

Figure 12. Simulated image of a distressed PCC pavement [LeBl91].

Note that the last six parameters are only needed for synthesising crack images and

might not be needed for crack analysis (and might be very difficult to recover). Thus

one normally only need the first seven parameters for analysis. This holds only for

simple cracks. For more complicated cracking patterns consisting of N crack

segments, less than 7N parameters are needed, since crack endpoints are necessarily

shared among multiple cracks. The data used is 1/500th of the data in the original

image, thus an effective compression ratio of 500:1 is achieved.
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Iterated Function Systems (IFS)

IFS: THEIR USE IN IMAGE COMPRESSION

Using fractals to simulate natural effects is not new. The innovation is to start with an

actual image and find the fractals that imitate it to the required degree of accuracy (see

[Barn88; Zorp88]). Since these fractals are represented in a compact way, the whole

image is represented by a highly compressed data set. Thus, data compression is

achieved. Iterated Function System (IFS) codes are used to represent the fractal

transforms. IFS codes use affine transformations which express relations between

parts of an image. They define and convey intricate details of a picture.

Fractal compression is a lossy compression technique. The high compression

ratio is increased further by applying the best lossless compression algorithm

currently available to the IFS codes itself.

AFFINE TRANSFORMATIONS

Affine transformations are combinations of rotations, scalings and translations of the

co-ordinate axes in n-dimensional space. Figure 13 shows an example of a contractive

affine transformation, W, operated on a smiling face, F, lying in the xy plane and

moving it to a new face, W(F). W always moves points closer together — it is

contractive. The general form of an affine transformation is

W



x
y




=



a b
c d







x
y




+



e
f




=



ax+ by + e
cx+ dy + f




If the translations, rotations, and scalings that make up W are known in advance, then

the coefficients are calculated by:

a = r cos θ b = - s sin φ

c = r sin θ d =   s cos φ
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where r = scaling factor on x s = scaling factor on y

θ = angle of rotation on x φ = angle of rotation on y

e = translation on x f = translation on y

y

x

F

W(F)

W

Figure 13. An example of a contractive affine transformation, W.

WHAT IS AN IFS ?

An IFS is a collection of contractive affine transformations that express relations

between parts of an image. The relations define and convey intricate details of a

picture. An IFS code for the generation of a fractal fern leaf consisting of four affine

transformations in matrix form is

W a b c d e f p

1 0 0 0 0.16 0 0 0.01

2 0.2 - 0.26 0.23 0.22 0 1.6 0.07

3 - 0.15 0.28 0.26 0.24 0 0.44 0.07

4 0.85 0.04 - 0.04 0.85 0 1.6 0.85

An IFS consists of m affine transformations, W1, W2, . . ., Wm, each with an

associated probability. The probabilities affect the rate of filling-in of the various

regions and attributes of the image.
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THE COMPLEX FORM OF IFS s

The points (x, y) in the real 2D space can be seen as points z in the complex plane.

Then the affine transformation, ωi, expressed in the complex form ωi(z) is

z = x + iy

ωi (z) = ci z + (di z)* + bi  i = 1, . . ., N

where z* = x -  iy

Comparing this with the polar form of the affine transformation, the complex

variables of the affine transform are

ci
r = ½ (r cos θ +  s cos φ) r2 = (ci

r + di
r )2 + (ci

c - di
c )2

ci
c = ½ (r sin θ +  s sin φ) tan θ =  (ci

c - di
c)/ (ci

r + di
r )

di
r = ½ (r cos θ -  s cos φ) s2 = (ci

r - di
r)2 + (ci

c + di
c )2

di
c = ½ (-r sin θ +  s sin φ) tan φ =  (ci

c + di
c)/ (ci

r - di
r )

bi
r  = e

bi
c  = f

The probabilities stay the same in either case.

RELATIONSHIP BETWEEN THE COMPLEX MOMENT AND THE

COMPLEX FORM OF IFS

The moment of an IFS is defined as [Barn86]

Mn = ∫k
zn dµ(z) : n = 0,1,2…

where z represents the points generated by the affine transformation ωi.

Consider our fractal image to be made up of m points zk. Then the moment,

Mn, is

Mn = Σ
k=1

m

(zk)
n
m

Appendix D Analysis, Generation and Compression of Pavement Distress Images Using Fractals249



For an IFS with r = s and θ = φ (for example, of the form ωi(z) = ai z + bi, i = 1,...,N)

then Mn = Σ
i=1

N

pi∫k
(aiz+ bi )n dµ(z)

Expanding using the binomial theorem yields

Mn = Σ
i =1

N

pi Σ
j =0

n

(nCj )∫k
(aiz) jbi

n−j
dµ(z)

    = Σ
i =1

N

pi Σ
j =0

n

(nCj )ai
j
bi

n−j∫k
z j dµ(z)

where nCj = n(n−1),…,(n−j+1)
j!

and j! = j(j − 1)(j − 2)…1

Since  is simplified to∫k zjdµ(z) = M j , Mn

Mn = Σ
i =1

N

pi Σ
j =0

n

(nCj )ai
j
bi

n−j
M j = Σ

i =1

N

pi Σ
j =0

n−1

(nCj )ai
j
bi

n−j
M j + Σ

i =1

N

piai
nMn

Taking Mn to the LHS and rearranging yields

Mn = 

1 − Σ

i =1

N

piai
n


−1

Σ
i =1

N

pi Σ
j =0

n−1

(nCj )ai
j
bi

n−j
M j

An equation is obtained giving Mn with the previous moments Mj, j = 0, . . ., n - 1, and

the form of the affine transformation, ai, bi, and pi, i = 1, . . ., N. Since M0 = 1, the rest

of the moments are calculated without the need to generate the points zk. Valuable

computation time where 10,000 or more points need to be generated to obtain accurate

moments is thus saved.

Thus, an IFS that describes an image is found by attempting to make the

moments of the IFS as close to the moments of the image as possible. This only holds

for the case r = s and θ = φ. For the more general case, the general moment definition

is M jk = ∫k
zjz∗k dµ(z) j,k = 0,1,2…

Here, a matrix equation for the moments Mjk with j + k = n, must be solved in the form

(see [Wils88]) - [C] = ([A] - [I]) [M]

where [M] = vector [M0n, M1(n - 1), M2(n - 2), . . ., Mn0]
T;
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[A] = matrix of dimension (n + 1) × (n + 1) whose elements are IFS

parameter dependant;

[I] = Identity matrix, I ii = 1, I ij = 0 if i ≠ j;

[C] = vector whose elements depend upon the IFS parameters and 

          moments Mjk (where j + k < n).

Thus, using the IFS code and M00 = 1, the moment Mjk can be solved.

The Moment Library Search Method

The moments must be normalised so that fractal images which are the same except for

a global scaling can be compared. By having a large database of IFS codes and its

associated normalised moments, this library is used to search for an IFS code whose

moment is closest to the normalised moment of an image to be encoded. This IFS

code is then retained and passed as the fractal transform of that image segment to

directly compress that segment; otherwise, the IFS code obtained is used as a starting

point to a non-linear solution method to find a closer IFS code for that segment.

Newton’s Method to Find an IFS Code Close to an Image

Newton’s method is used to solve an equation of the form . The problem isf 

→
x 

 = 0

essentially

f 

→
x 

 = f1


→
x 

 − f1


→
x imagesegment




where = normalised moments function of an IFS code;f1


→
x 



= normalised moments of an image calculatedf1


→
x imagesegment




         explicitly from the points of the image.

When  the vector form of the IFS code, has been found.f 

→
x 

 = 0
→
x ,
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Simulated Annealing Method to Find an IFS Code Close to an Image

The simulated annealing method (see [Kirk83]) to find an IFS code close to an image

is a better method of minimising functions of many variables because it does not

immediately go to the local minimum of a function, a problem inherent with the

Newton method. The problem concerns the thermodynamics of metal cooling and

annealing given by

Prob(E) ≈ exp 


−E
kT




where E = the energy of the system;

T = temperature (Kelvin);

B = Boltzmann’s constant.

The method requires parameters that are analogues of T, whose value is decreased as

the method gets closer to the minimum, and energy, E, where E is the value of the

system to be minimised.

At initial higher Ts, changes to higher energy states are much more likely to be

accepted. It is this feature of the method that allows the algorithm to find the global

minimum of a function rather than one of many local minima. The method is used to

find an IFS whose moments are close to a given set of moments. The following

conditions are required:

description of the system — use the vector of size Nofx, where Nofx is the
→
x

number of points in the image segment

→
x = 

c1
r ,c1

c,d1,
r d1

c,b1
r ,b1

c,…,dNAffine

r ,dNAffine

c ,bNAffine

r ,bNAffine

c 


T

a random system change generator — this is accomplished by the random vector,

, a variable of length randomly chosen between 0 and the given length, δl. δl

→
dx

and T were decreased simultaneously, creating a new vector, 
→
x new
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→
x new = →

x old +
→
dx

The vector was checked for valid IFS code production. If the code obtained was

invalid, then a new  was generated;
→
dx

the energy of the system, E, whose minimisation is required, is

E = f (→x )
2

= Σ
i=1

Nofx

f i (
→
x )2

where . Unnormalised moments are used forf 

→
x 

 = f1


→
x 

 − f1



→
image



 and ;f1


→
x 

 f1



→
image



the parameter T and a method of decreasing T; T governs the changes in the

function E. The value of E should be considered carefully, since it affects the

energy changes, ∆E, which are acceptable.

HOW TO DECODE AN IFS CODE

The Random Iteration Algorithm

A summary of the random iteration algorithm (see [Barn88]) given in pseudo-code

form is:

1. initialise variables, x = 0, y = 0;

2. for n = 1 to Number_of_points_in_image, do steps (3) and (4);

3. choose k to be one of the numbers 1, 2, . . ., m, with probability Pk;

4. apply the transformation, Wk, to the point (x, y) to obtain (x’, y’);

5. set (x, y) equal to the new point, x = x', y = y';

6. If n > number_of_points_required_to_obtain_attractor, then plot (x', y');

7. loop.

More points are added to an image by increasing the variable Number_of_points_

in_image. This can be required to obtain an image with a greater resolution. Zooming
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is also achieved by using an increased scale factor. The variable

number_of_points_required_to_obtain_attractor is around 100 but can be minimised

by empirical methods. The ability of the random iteration algorithm to produce the

same image independent of the random sequence of events chosen is proven in two

ways:

by carrying out computer graphic mathematical experiments;

by the rigorous theoretical foundation of the mathematician John Elton of

Georgia Institute of Technology, Atlanta, Georgia, USA (see [Elto87]).

Conclusions

The attempts to simulate pavement distress using fractal techniques illustrate the

problems of image equivalency. There is no objective test for image equivalency such

as there is for image accuracy. The project illustrates that the fractal dimension can be

used to assess image accuracy by using the fractal dimension to generate the fractal

curve and by comparing the calculated fractal dimension of the same curve.

The paper shows the suitability of using fractal techniques for image

compression and generation related to pavement distress, such as the variation of the

midpoint displacement algorithm and IFS coding techniques. Pavement test images

can also be generated and used for testing and developing automated pavement

evaluation systems. The advantage of test images is that their geometric and

photometric characteristics are known in advance. Further work is required to improve

and integrate this new technology into an operational automated pavement surface

distress evaluation system.
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A modified method of calculating the fractal dimension (Calliper method) of

linear structures has been explained. Table 2 shows the values of the generator, p, and

its associated fractal dimensions, theoretical and measured. The maximum

discrepancy between the measured and the calculated fractal dimension was 5.4%,

whereas the least was only 0.2%! This shows the reliability of the method. The major

discrepancy in the work can be attributed to the difficulty in determining the slope of

the log-log plots, such as seen in Figure 5. This requires further research and

development.

The major advantage of using fractal techniques is that they offer a very large

image compression ratio. The work being conducted using the fractal dimension has

given compression ratios of 500:1. This figure was obtained by comparing the

information required to generate the distress with the raw data of the pavement that

included the distress and the aggregate — most of the data is required to synthesise

the aggregate. Since only distress data is of concern to the pavement maintenance

engineer, a library of pavement surface images can be stored on a CD. When a

pavement image is reconstructed from the compressed data, the distress is

superimposed on the relevant aggregate image selected from the CD; hence, a large

compression ratio of 500:1 or even higher is easily attained. A fractal method for

synthesising the aggregate from the IFS code is being studied.

Table 2. Comparison Between Theoretical and Measured Fractal Dimension

Image Generator ‘p’ Generator ‘D’ Measured ‘D’ Percentage Error Between

Measured & Calculated D

Figure 10a 0.1 1.01 1.06 +5.4%

Figure 10b 0.4 1.13 1.11 -1.7%

Figure   7c 1.26 1.26 -0.2 %
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Using Iterated Function System codes — a type of fractal equation — to

compress image segments has been explained. The difficult inverse problem of

finding a suitable IFS code whose fractal image is to represent the real image and

hence achieve compression is being studied through the use of

a library of IFS codes and complex moments;

the method of simulated annealing for solving non-linear equations of many

parameters.

The application of simulated annealing is still under development. 

IFS codes are robust, thus they are ideal for transmission through noisy

distortion-inducing communication channels, since small deviation of the IFS codes

still produce recognisable images with minimal distortion. Figure 14 shows an

example of a pavement distress generated entirely from an ASCII file of IFS codes

whose size is only 926 bytes.

Figure 14. An example of an IFS-generated pavement distress.
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Segmentation probably plays the most significant part in fractal image

compression. The success of achieving a large compression ratio effectively rests on

an efficient segmentation algorithm. Work being conducted at Worcester Polytechnic

Institute on a fractal model-based segmentation technique is producing promising

results. A basis of the algorithm is to determine the fractal dimension of the segment

and compare it with the range of fractal dimensions of, for example, pavement distress

features, to see if the segment is that of the object of interest. Block-based coding is

also under investigation to avoid the problems associated with segmentation.
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