Distance Degree Sequences for Network Analysis

Christian Pich

Universität Konstanz Computer & Information Science Algorithmics Group

15 Mar 2005

based on

Palmer, Gibbons, and Faloutsos: ANF – A Fast and Scalable Tool for Data Mining in Massive Graphs, SIGKDD 02.

Intro

Motivation Foundations Applications

ANF Algorithm

Exact Algorithm Approximation Algorithm Benefits

Applications

Web Mining Graph Similarity Internet Router Data

Summary

Motivation Foundations Applications

Graphs

Problems modeled as graphs appear in various ares, including:

- social networks
- streets
- academic citations
- biology and chemistry
- the Internet
- ▶ ...

Motivation Foundations Applications

Questions

Some related questions in network analysis:

- How robust is a network to failures?
- Are two given networks similar?
- Given two actors in a network, which one is more influential?

Typical networks to be analyzed are LARGE

Key issue: Extract a small set of features that describe much of the character of particular actors or the overall network

Motivation Foundations Applications

Definitions I – Basics

- ▶ Graph G = (V, E), $E \subseteq V \times V$ (or $\binom{V}{2}$ if G is undirected)
- ▶ n = |V|, m = |E|
- ▶ v, w adjacent $\Leftrightarrow (v, w) \in E$ (or $\{v, w\} \in E$)
- ▶ Neighborhood Neigh $(v) = \{w \in V : (v, w) \in E\}$
- Degree deg(v) = |Neigh(v)|
- Distance d(v, w) = length of shortest path from v to w
- ▶ Diameter diam(G) = longest distance in a graph (over all v, w ∈ E)

Motivation Foundations Applications

Definitions II – Neighborhoods

- ▶ *h*-neighborhood Neigh_{*h*}(v) = { $w \in V : d(v, w) \le h$ }
- ▶ Neigh₀(v) = {v}, Neigh₁(v) = Neigh(v) \cup {v},
- distance degrees $N(v, h) = |\text{Neigh}_h(v)|$
- ▶ distance degree sequence N(v, 0), N(v, 1), N(v, 2), ...
- ► Hop plot $P(h) = |\{(v, w) : d(v, w) \le h\}| = \sum_{v \in V} N(v, h)$ (also called distance distribution)

Motivation Foundations Applications

Applications

What can we do with those N(v, h)?

- Compare nodes (their distance degree sequence)
- Rank nodes (which are the "important ones"?)
- Compare graphs (their hop plots)

Exact Algorithm Approximation Algorithm Benefits

Exact Algorithm

- ► How can we compute the N(v, h) efficiently for each v ∈ V and h = 1,..., diam(G) (even for very large instances)?
- BFS from every vertex?
- No! (random access to edge file)
- Idea: Sequentially scan edge file, grow the set of already reached nodes for each node accordingly
- ANF (Approximate Neighborhood Function) algorithm, Palmer et. al (2002)

Exact Algorithm Approximation Algorithm Benefits

Exact Algorithm

Input: Graph G = (V, E)Output: *h*-neighborhood sizes for all $h \in \mathbb{N}, v \in V$ foreach $v \in V$ do \lfloor Neigh₀(v) $\leftarrow \{v\}$ for h = 1, ..., diam(G) do foreach $v \in V$ do \lfloor Neigh_h(v) \leftarrow Neigh_{h-1}(v) foreach (v, w) $\in E$ do \lfloor Neigh_h(v) \leftarrow Neigh_h(v) \cup Neigh_{h-1}(w)

Exact Algorithm Approximation Algorithm Benefits

Exact Algorithm

Exact Algorithm Approximation Algorithm Benefits

Exact Algorithm

- ► Maintaining for each node v ∈ V a bitstring that represents the set of already reached nodes
- Give each node w its own bit in v's bitstring?
- No, needs quadratic space!
- Solution: Approximation to the N(v, h)'s by using shorter bit strings

Exact Algorithm Approximation Algorithm Benefits

Probabilistic Counting

Probabilistic Counting: Flajolet and Martin (1985)

- Originally designed for data base applications
- Maintain for each node $v \in V$ a bitstring of length $\mathcal{O}(\log n)$
- Throw a node to bit j with probability $\left(\frac{1}{2}\right)^{j+1}$

	j	0	1	2	3	4	
	probability	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	

 union of two sets: bitwise OR of the two corresponding bitstrings

Exact Algorithm Approximation Algorithm Benefits

Probabilistic Counting, cont'd

ľ

How can we estimate the number of elements which are represented by a given bitstring?

look for the leftmost zero bit (say b)

	bit	0	1	2	3	4	5	6	
	value	1	1	<u>0</u>	1	0	0	0	

- ▶ the number of elements is proportional to 2^b
- proportionality factor = 0.77351
- improved accuracy by maintaining k bitstrings and averaging over the resulting b's
- estimation has good provable error bounds!

Exact Algorithm Approximation Algorithm Benefits

Basic ANF Algorithm

foreach $v \in V$ do $M(v, 0) \leftarrow$ concatenation of k bitstrings, each with 1 bit set $(P(i) = \frac{1}{2i+1})$ for $h = 1, \ldots, \text{diam}(G)$ do foreach $v \in V$ do $| M(v, h) \leftarrow M(v, h-1)$ foreach $(v, w) \in E$ do $| M(v,h) \leftarrow M(v,h) \lor M(w,h-1)$ foreach $v \in V$ do $b \leftarrow$ average position of leftmost zero bits in the k partial bitstrings in M(v, h) $\widehat{N}(v, h) \leftarrow \frac{2^{b}}{0.77351}$

Exact Algorithm Approximation Algorithm Benefits

Example

Input: a cycle with 5 nodes 4 3								
v v	$\int M(v,0)$	M(v,1)	$\widehat{N}(v,1)$	M(v,2)	$\widehat{N}(v,2)$			
0	100 100 001	110 110 101	4.1	110 111 101	5.2			
1	010 100 100	110 101 101	3.25	110 111 101	5.2			
2	100 001 100	11 <u>0</u> 1 <u>0</u> 1 1 <u>0</u> 0	<u>3.25</u>	110 111 101	5.2			
3	100 100 100	100 111 100	4.1	110 111 101	5.2			
4	100 010 100	100 110 101	3.25	110 111 101	5.2			
Example: $\widehat{N}(2,1) = \frac{2^{(2+1+1)/3}}{0.77351} = \frac{2^{4/3}}{0.77351} = 3.25$								

Exact Algorithm Approximation Algorithm Benefits

Benefits

Why use the ANF algorithm?

- Input (edge file) can stay on disk (sequential access, no random access)
- ► Scalability, O(diam(G) · m) time
- Linear memory usage, $\mathcal{O}(m+n)$
- Can be parallelized
- Good, accurate results (better than sampling etc.)

Web Mining Graph Similarity Internet Router Data

Web Mining

. . .

"The Web as a graph"

- Increasing amount of research on graph structure in the WWW
- Objective: get a more global view to the WWW structure
- Typical statistics: average path length, distance distribution,

Web Mining Graph Similarity Internet Router Data

Web Mining

Example: Compute for each node $v \in V$ the minimum distance h such that $N(v,h) \geq \frac{n}{2}$

Web Mining Graph Similarity Internet Router Data

Graph Similarity

Given two graphs, how can we determine their similarity?

- One approach: use the hop plot $P(h) = |\{(v, w) : d(v, w) \le h\}$
- ► Many real-world graphs seem to have a P(·) following a power law
- $P(h) \sim h^a$, where *a* is called hop exponent
- Examples: Cycle: a = 1, Grid: a = 2
- "intrinsic dimensionality" of the graph

Web Mining Graph Similarity Internet Router Data

Graph Similarity

Christian Pich Distance Degree Sequences for Network Analysis

Web Mining Graph Similarity Internet Router Data

Internet Router Data

- Fault-tolerance and connectivity of the internet topology
- Data: Collection of tracert results (285k nodes, 430k edges), pulicly available at www.isi.edu
- Experiments: Successively delete nodes and compute neighborhood information again

Web Mining Graph Similarity Internet Router Data

Internet Router Data

Summary

Summary

- The *h*-neighborhoods and the hop plots can be useful to reveal structural properties of the networks
- ANF algorithm yields good approximation to the required information
- ► Algorithm scales even to very large instances (> 50m nodes)
- Other applications: analysis, clustering, visualization,...