Distance Degree Sequences for Network Analysis

Christian Pich
Universität Konstanz
Computer \& Information Science
Algorithmics Group

15 Mar 2005

based on

Palmer, Gibbons, and Faloutsos: ANF - A Fast and Scalable Tool for Data Mining in Massive Graphs, SIGKDD 02.

Intro
Motivation
Foundations
Applications
ANF Algorithm
Exact Algorithm
Approximation Algorithm
Benefits
Applications
Web Mining
Graph Similarity
Internet Router Data
Summary

Graphs

Problems modeled as graphs appear in various ares, including:

- social networks
- streets
- academic citations
- biology and chemistry
- the Internet

Questions

Some related questions in network analysis:

- How robust is a network to failures?
- Are two given networks similar?
- Given two actors in a network, which one is more influential?

Typical networks to be analyzed are LARGE
Key issue: Extract a small set of features that describe much of the character of particular actors or the overall network

Definitions I - Basics

- Graph $G=(V, E), E \subseteq V \times V$ (or $\binom{V}{2}$ if G is undirected)
- $n=|V|, m=|E|$
- v, w adjacent $\Leftrightarrow(v, w) \in E($ or $\{v, w\} \in E)$
- Neighborhood Neigh $(v)=\{w \in V:(v, w) \in E\}$
- Degree $\operatorname{deg}(v)=|\operatorname{Neigh}(v)|$
- Distance $d(v, w)=$ length of shortest path from v to w
- Diameter $\operatorname{diam}(G)=$ longest distance in a graph (over all $v, w \in E)$

Definitions II - Neighborhoods

- h-neighborhood $\operatorname{Neigh}_{h}(v)=\{w \in V: d(v, w) \leq h\}$
- $\operatorname{Neigh}_{0}(v)=\{v\}, \operatorname{Neigh}_{1}(v)=\operatorname{Neigh}(v) \cup\{v\}$,
- distance degrees $N(v, h)=\left|\operatorname{Neigh}_{h}(v)\right|$
- distance degree sequence $N(v, 0), N(v, 1), N(v, 2), \ldots$
- Hop plot $P(h)=|\{(v, w): d(v, w) \leq h\}|=\sum_{v \in V} N(v, h)$ (also called distance distribution)

Applications

What can we do with those $N(v, h)$?

- Compare nodes (their distance degree sequence)
- Rank nodes (which are the "important ones" ?)
- Compare graphs (their hop plots)

Exact Algorithm

- How can we compute the $N(v, h)$ efficiently for each $v \in V$ and $h=1, \ldots, \operatorname{diam}(G)$ (even for very large instances)?
- BFS from every vertex?
- No! (random access to edge file)
- Idea: Sequentially scan edge file, grow the set of already reached nodes for each node accordingly
- ANF (Approximate Neighborhood Function) algorithm, Palmer et. al (2002)

Exact Algorithm

Input: Graph $G=(V, E)$
Output: h-neighborhood sizes for all $h \in \mathbb{N}, v \in V$
foreach $v \in V$ do
$L \operatorname{Neigh}_{0}(v) \leftarrow\{v\}$
for $h=1, \ldots, \operatorname{diam}(G)$ do
foreach $v \in V$ do
$\operatorname{Neigh}_{h}(v) \leftarrow \operatorname{Neigh}_{h-1}(v)$
foreach $(v, w) \in E$ do
$\operatorname{Neigh}_{h}(v) \leftarrow \operatorname{Neigh}_{h}(v) \cup \operatorname{Neigh}_{h-1}(w)$

Intro

Exact Algorithm

Exact Algorithm

- Crucial: Computing the number of distinct elements in foreach $(v, w) \in E$ do $\operatorname{Neigh}_{h}(v) \leftarrow \operatorname{Neigh}_{h}(v) \cup \operatorname{Neigh}_{h-1}(w)$
- Maintaining for each node $v \in V$ a bitstring that represents the set of already reached nodes
- Give each node w its own bit in v's bitstring?
- No, needs quadratic space!
- Solution: Approximation to the $N(v, h)$'s by using shorter bit strings

Probabilistic Counting

Probabilistic Counting: Flajolet and Martin (1985)

- Originally designed for data base applications
- Maintain for each node $v \in V$ a bitstring of length $\mathcal{O}(\log n)$
- Throw a node to bit j with probability $\left(\frac{1}{2}\right)^{j+1}$

j	0	1	2	3	4	\ldots
probability	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	\ldots

- union of two sets: bitwise OR of the two corresponding bitstrings

Probabilistic Counting, cont'd

How can we estimate the number of elements which are represented by a given bitstring?

- look for the leftmost zero bit (say b)
- | bit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | \ldots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| value | 1 | 1 | $\underline{0}$ | 1 | 0 | 0 | 0 | \ldots |
- the number of elements is proportional to 2^{b}
- proportionality factor $=0.77351$
- improved accuracy by maintaining k bitstrings and averaging over the resulting b 's
- estimation has good provable error bounds!

Basic ANF Algorithm

foreach $v \in V$ do
$M(v, 0) \leftarrow$ concatenation of k bitstrings, each with 1 bit set $\left(P(i)=\frac{1}{2^{i+1}}\right)$
for $h=1, \ldots, \operatorname{diam}(G)$ do
foreach $v \in V$ do

$$
M(v, h) \leftarrow M(v, h-1)
$$

foreach $(v, w) \in E$ do
$\llcorner M(v, h) \leftarrow M(v, h) \vee M(w, h-1)$
foreach $v \in V$ do
$b \leftarrow$ average position of leftmost zero bits in the k partial bitstrings in $M(v, h)$

$$
\widehat{N}(v, h) \leftarrow \frac{2^{b}}{0.77351}
$$

Example

Input: a cycle with 5 nodes

$k=3$					
v	$M(v, 0)$	$M(v, 1)$	$\widehat{N}(v, 1)$	$M(v, 2)$	$\widehat{N}(v, 2)$
0	100100001	110110101	4.1	110111101	5.2
1	010100100	110101101	3.25	110111101	5.2
2	100001100	110	101100	3.25	110111101
3	100100100	100111100	4.1	110111101	5.2
4	100010100	100110101	3.25	110111101	5.2

Example: $\widehat{N}(2,1)=\frac{2^{(2+1+1) / 3}}{0.77351}=\frac{2^{4 / 3}}{0.77351}=3.25$

Benefits

Why use the ANF algorithm?

- Input (edge file) can stay on disk (sequential access, no random access)
- Scalability, $\mathcal{O}(\operatorname{diam}(G) \cdot m)$ time
- Linear memory usage, $\mathcal{O}(m+n)$
- Can be parallelized
- Good, accurate results (better than sampling etc.)

Web Mining

"The Web as a graph"

- Increasing amount of research on graph structure in the WWW
- Objective: get a more global view to the WWW structure
- Typical statistics: average path length, distance distribution,

Web Mining

Example: Compute for each node $v \in V$ the minimum distance h such that $N(v, h) \geq \frac{n}{2}$

Graph Similarity

Given two graphs, how can we determine their similarity?

- One approach: use the hop plot $P(h)=\mid\{(v, w): d(v, w) \leq h\}$
- Many real-world graphs seem to have a $P(\cdot)$ following a power law
- $P(h) \sim h^{a}$, where a is called hop exponent
- Examples: Cycle: $a=1$, Grid: $a=2$
- "intrinsic dimensionality" of the graph

Intro

Graph Similarity

Internet Router Data

- Fault-tolerance and connectivity of the internet topology
- Data: Collection of tracert results (285k nodes, 430k edges), pulicly available at www.isi.edu
- Experiments: Successively delete nodes and compute neighborhood information again

Internet Router Data

Summary

Summary

- The h-neighborhoods and the hop plots can be useful to reveal structural properties of the networks
- ANF algorithm yields good approximation to the required information
- Algorithm scales even to very large instances ($>50 \mathrm{~m}$ nodes)
- Other applications: analysis, clustering, visualization,...

