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Graphs

Problems modeled as graphs appear in various ares, including:

I social networks

I streets

I academic citations

I biology and chemistry

I the Internet

I . . .
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Questions

Some related questions in network analysis:

I How robust is a network to failures?

I Are two given networks similar?

I Given two actors in a network, which one is more influential?

Typical networks to be analyzed are LARGE

Key issue: Extract a small set of features that describe much of
the character of particular actors or the overall network
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Definitions I – Basics

I Graph G = (V ,E ), E ⊆ V × V (or
(V

2

)
if G is undirected)

I n = |V |,m = |E |
I v ,w adjacent ⇔ (v ,w) ∈ E (or {v ,w} ∈ E )

I Neighborhood Neigh(v) = {w ∈ V : (v ,w) ∈ E}
I Degree deg(v) = |Neigh(v)|
I Distance d(v ,w) = length of shortest path from v to w

I Diameter diam(G ) = longest distance in a graph (over all
v ,w ∈ E )

Christian Pich Distance Degree Sequences for Network Analysis



Intro
ANF Algorithm

Applications
Summary

Motivation
Foundations
Applications

Definitions II – Neighborhoods

I h-neighborhood Neighh(v) = {w ∈ V : d(v ,w) ≤ h}
I Neigh0(v) = {v},Neigh1(v) = Neigh(v) ∪ {v},
I distance degrees N(v , h) = |Neighh(v)|
I distance degree sequence N(v , 0),N(v , 1),N(v , 2), . . .

I Hop plot P(h) = |{(v ,w) : d(v ,w) ≤ h}| =
∑

v∈V N(v , h)
(also called distance distribution)
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Applications

What can we do with those N(v , h)?

I Compare nodes (their distance degree sequence)

I Rank nodes (which are the “important ones”?)

I Compare graphs (their hop plots)
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Exact Algorithm

I How can we compute the N(v , h) efficiently for each v ∈ V
and h = 1, . . . , diam(G ) (even for very large instances)?

I BFS from every vertex?

I No! (random access to edge file)

I Idea: Sequentially scan edge file, grow the set of already
reached nodes for each node accordingly

I ANF (Approximate Neighborhood Function) algorithm,
Palmer et. al (2002)
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Exact Algorithm

Input: Graph G = (V ,E )
Output: h-neighborhood sizes for all h ∈ N, v ∈ V

foreach v ∈ V do
Neigh0(v)← {v}

for h = 1, . . . , diam(G ) do
foreach v ∈ V do

Neighh(v)← Neighh−1(v)

foreach (v ,w) ∈ E do
Neighh(v)← Neighh(v) ∪ Neighh−1(w)
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Exact Algorithm

I Crucial: Computing the number of distinct elements in

foreach (v ,w) ∈ E do
Neighh(v)← Neighh(v) ∪ Neighh−1(w)

I Maintaining for each node v ∈ V a bitstring that represents
the set of already reached nodes

I Give each node w its own bit in v ’s bitstring?

I No, needs quadratic space!

I Solution: Approximation to the N(v , h)’s by using shorter bit
strings
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Probabilistic Counting

Probabilistic Counting: Flajolet and Martin (1985)

I Originally designed for data base applications

I Maintain for each node v ∈ V a bitstring of length O(log n)

I Throw a node to bit j with probability
(

1
2

)j+1

I
j 0 1 2 3 4 . . .

probability 1
2

1
4

1
8

1
16

1
32 . . .

I union of two sets: bitwise OR of the two corresponding
bitstrings
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Probabilistic Counting, cont’d

How can we estimate the number of elements which are
represented by a given bitstring?

I look for the leftmost zero bit (say b)

I
bit 0 1 2 3 4 5 6 . . .

value 1 1 0 1 0 0 0 . . .

I the number of elements is proportional to 2b

I proportionality factor = 0.77351

I improved accuracy by maintaining k bitstrings and averaging
over the resulting b’s

I estimation has good provable error bounds!
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Basic ANF Algorithm

foreach v ∈ V do
M(v , 0)← concatenation of k bitstrings, each with 1
bit set (P(i) = 1

2i+1 )

for h = 1, . . . , diam(G ) do
foreach v ∈ V do

M(v , h)← M(v , h − 1)

foreach (v ,w) ∈ E do
M(v , h)← M(v , h) ∨M(w , h − 1)

foreach v ∈ V do
b ← average position of leftmost zero bits in the
k partial bitstrings in M(v , h)

N̂(v , h)← 2b

0.77351
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Example

Input: a cycle with 5 nodes
k = 3
v M(v , 0) M(v , 1) N̂(v , 1) M(v , 2) N̂(v , 2)

0 100 100 001 110 110 101 4.1 110 111 101 5.2
1 010 100 100 110 101 101 3.25 110 111 101 5.2
2 100 001 100 110 101 100 3.25 110 111 101 5.2
3 100 100 100 100 111 100 4.1 110 111 101 5.2
4 100 010 100 100 110 101 3.25 110 111 101 5.2

Example: N̂(2, 1) = 2(2+1+1)/3

0.77351 = 24/3

0.77351 = 3.25
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Benefits

Why use the ANF algorithm?

I Input (edge file) can stay on disk (sequential access, no
random access)

I Scalability, O(diam(G ) ·m) time

I Linear memory usage, O(m + n)

I Can be parallelized

I Good, accurate results (better than sampling etc.)
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Web Mining

“The Web as a graph”

I Increasing amount of research on graph structure in the
WWW

I Objective: get a more global view to the WWW structure

I Typical statistics: average path length, distance distribution,
. . .
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Web Mining

Example: Compute for each node v ∈ V the minimum distance h
such that N(v , h) ≥ n

2
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Graph Similarity

Given two graphs, how can we determine their similarity?

I One approach: use the hop plot
P(h) = |{(v ,w) : d(v ,w) ≤ h}

I Many real-world graphs seem to have a P(·) following a power
law

I P(h) ∼ ha, where a is called hop exponent

I Examples: Cycle: a = 1, Grid: a = 2

I “intrinsic dimensionality” of the graph
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Internet Router Data

I Fault-tolerance and connectivity of the internet topology

I Data: Collection of tracert results (285k nodes, 430k edges),
pulicly available at www.isi.edu

I Experiments: Successively delete nodes and compute
neighborhood information again
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Internet Router Data
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I The h-neighborhoods and the hop plots can be useful to
reveal structural properties of the networks

I ANF algorithm yields good approximation to the required
information

I Algorithm scales even to very large instances (> 50m nodes)

I Other applications: analysis, clustering, visualization,. . .
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