Active Mining of Cell Assay Images An active learning approach with cluster analysis

Nicolas Cebron

GK Spring Workshop

March 16, 2005

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

-1

 Cohn, David: Improving Generalization with Active Learning, 1992

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

-1

Sac

 Warmuth et. al.: Active Learning with Support Vector Machines in the Drug Discovery Process, 2002

Active Learning

Introduction Region of uncertainty Selective sampling

Cluster Analysis Introduction Fuzzy c-means

Practical example

Cell Assay Images Workflow Results Future Directions

◆□▶ ◆□▶ ◆注▶ ◆注▶

æ

Active Mining of Cell Assay Images
Active Learning
Introduction

What is Active Learning ?

- Large dataset with unlabeled data
- Normally, training examples are choosen at random.
- Active Learning: algorithm has control over the input it trains on.
- ► Learner queries a point in the input domain → teacher/oracle returns classification of this point.

A D > A D > A D > A D >

-

SQA

-Active Learning

Region of uncertainty

Region of uncertainty

Figure: $R(S^m)$ shaded

- ► Concept c : subset of points in the domain (e.g. rectangle)
- Set S^m of m examples
- Areas not determined by available information: R(S^m) = {x : ∃c₁, c₂ ∈ C, c₁, c₂ are consistent with all s ∈ S^m and c₁(x) ≠ c₂(x).

Active Learning

Region of uncertainty

Region of uncertainty (cont.)

Figure: $R(S^m)$ shaded

- Draw at random over the whole domain
- ► Most examples we draw (outside R(S^m)) will not provide us with information about the concept we are trying to learn
- Points outside R(S^m) leave R(S^m) unchanged, points inside will further restrict the region.
- ► Any disagreement between concepts must lie within $R(S^m)$.

-Active Learning

Selective sampling

Selective sampling

- Draw samples only from within $R(S^m)$.
- Draw an unclassified example, query the classification.
- Recalculate $R(S^m)$ after each new example.
- ► Recalculating R(S^m) may be computationally expensive → perform selective sampling in batches.

A D > A D > A D > A D >

3

Active Mining of Cell Assay Images
Cluster Analysis
Introduction

Introduction

Goal of cluster analysis:

• Group a set of objects into homogenous groups.

◆□▶ ◆□▶ ◆注▶ ◆注▶

æ

- find dense and sparse regions in the dataset.
- find patterns in the underlying data.

Active Mining of Cell Assay Images
Cluster Analysis
Fuzzy c-means

Fuzzy c-means

Given:

- Data record $\{x_1, \ldots, x_n\} \in \Re$
- ► Fixed number of clusters (prototypes) *c*

Objective function:

$$f = \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^{m} d_{ij}$$

SQA

- ► u_{ij} = degree of membership of record x_j to cluster i $u_{ij} \in [0, 1]$ and $\sum_{i=1}^{c} = 1, \forall j = 1, \dots, n$
- d_{ij} = distance of object x_j to cluster i
- Fuzzifier m indicates how much clusters can overlap

Active Mining of Cell Assay Images Cluster Analysis Fuzzy c-means

Fuzzy c-means (cont.)

Non-linear optimisation problem, therefore partial optimisation:

Cluster as centroid of his member-datarows:

$$v_i = \frac{\sum_{j=1}^n u_{ij}^m x_j}{\sum_{j=1}^n u_{ij}^m}$$

New memberships:

$$u_{ij} = \frac{1}{\sum_{k=1}^{c} \left(\frac{d_{ij}}{d_{kj}}\right)^{\frac{2}{m-1}}}$$

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ

Cell Assay Images

- Images obtained by a fluorescence microscope camera.
- Cells are treated with an agent.

Before

Cell Assay Images

- Images obtained by a fluorescence microscope camera.
- Cells are treated with an agent.

After

・ロト ・日下・ ・ ヨア・

∃) _ ∃

Cell Assay Images

- Images obtained by a fluorescence microscope camera.
- Cells are treated with an agent.

Before

・ロト ・日下・ ・ ヨア・

3 × 3

Cell Assay Images

- Images obtained by a fluorescence microscope camera.
- Cells are treated with an agent.

After

◆□▶ ◆□▶ ◆注▶ ◆注▶

æ

Practical example

Workflow

Workflow

Workflow - PictureChooser

۵ 🖒	iew - Tabl	e (76 x 1)									
<u>F</u> ile	Highlight	Navigation	⊻iew								
	Key	💽 Image							_		
Pictu	re_32										
Pictu	re_33	•		1	•.•,		•\$	84	٠, •	•	
Pictu	re_34	•			•		•	40	•••	. •	
Pictu	re_35	•		5	•	2	•		•••	•	

Figure: Pictures obtained from PictureChooser

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ

Practical example

Workflow

Workflow - FeatureExtraction

& View - Table (101+ x 16)															
File Highlight	File Highlight Navigation View														
Key	S Identifier . Before	D Mean	D StdDev	D Mode	D Max	After Atter	D Mean_a	D StdDev_a	D Mode_a	D Max_a	D Diff_Me	D Diff_Std	D Diff_Mo	D Diff_Max	I Preclas
11012001_0.	11012001	295.838	128.885	31	511	0	4673.25	1841.719	124	7471	4377.412	1712.834	93	6960	2
11012001_0.	11012001	202.475	84.079	244	336		3118.083	1298.606	130	5208	2915.608	1214.527	-114	4872	2
11012001_0.	11012001	294.933	131.676	139	497	00	3844	1357.207	250	5394	3549.067	1225.531	111	4897	2
11012001_0.	11012001	269.412	97.804	161	420	0	3875.388	1278.196	140	5549	3605.975	1180.392	-21	5129	2
11012001_0.	11012001	185.811	101.093	75	364		3832.289	1522.508	125	6045	3646.478	1421.416	50	5681	2
11012001_0.	11012001	237.222	109.178	22	434	10	3966.747	1369.875	248	5394	3729.525	1260.697	226	4960	2
11012001_0.	11012001	198.475	83.578	62	329	0	4547.606	1519.552	254	6417	4349.131	1435.973	192	6088	2
11012001_0.	. 11012001	226.227	103.022	86	413		3616.573	1433.9	252	5332	3390.345	1330.877	166	4919	2
11012001_0.	11012001	204.488	74.654	141	315	10 10	4529.875	1488.265	253	6355	4325.388	1413.611	112	6040	2
11012001_0.	11012001	144.285	85.821	29	301		3473.691	1566.842	249	5146	3329.406	1481.021	220	4845	2
11012001_0.	11012001	175.622	74.108	134	294	8	4025.867	1545.627	105	6355	3850.244	1471.519	-29	6061	2
11012001_0.	11012001	166.091	73.864	134	294	0	2886.758	1328.145	211	5208	2720.667	1254.282	77	4914	2
11012001_0.	11012001	102.667	51.849	105	210		2439.442	1222.242	172	4588	2336.775	1170.393	67	4378	2
11012001_0.	11012001	151.693	58.508	90	245	0	2706.511	1105.812	87	4650	2554.818	1047.306	-3	4485	2
11012001_0.	11012001	179.978	76.2	243	287	0	3014.922	1378.767	228	4960	2834.944	1302.567	-15	4673	2
11012001_0.	11012001	74.136	46.585	0	154	1	3614.788	1717.916	95	6665	3540.652	1671.331	95	6511	2

Figure: Features based on histogram

Practical example

Workflow

Workflow - FeatureExtraction

w Visw - Table (101 + x 14)													
File Highlight	Navigation View												
Key	S Identifier a Before	D bol01	D bp[1]	D bp(2)	D bol3	D bp[4]	a Ater	D ap101	D ap(1)	D ap121	D ap[3]	D sp(4)	I Preclas
19005001_0	19006001	9	108	432	486	324		70	2695	5285	5250	4445	2
19005001_0	19006001	18	63	171	216	225		840	2695	5705	5845	4025	2
19006001_0		9	117	306	333	198		350	2065	4200	4235	2030	2
19006001 0	19006001	45	513	684	522	180		525	3605	4375	2520	805	2
19006001 0	19006001	171	261	378	504	495		4025	4970	5250	5250	5215	2
19006001 0	19006001	128	207	378	540	540	0	3045	4095	5810	6650	6650	2
19006001 0	19006001	18	144	441	576	558		840	3115	5460	5670	5390	2
19006001_0	19006001	90	297	468	459	225		350	4900	5040	6005	2555	2
19006001_0	19006001	90	315	585	675	549	10	2520	4970	5460	6390	5215	2
19006001_0	19006001	18	153	360	414	342		105	2170	4935	4935	4830	2
19006001_0	19006001	54	270	441	531	432		2380	5740	7140	7245	5180	2
19005001_0	19006001	18	126	378	414	180	53	840	3990	6055	5985	2380	2
19005001_0	19006001	297	333	450	423	225		1960	5285	5460	5495	2940	2
19005001_0	19006001	27	117	297	369	324		245	2870	5355	5320	5180	2
19005001_0	19006001	72	108	324	378	351		1645	1960	4270	4620	3395	2
19005001 0	19006001	0	108	369	558	351		175	2590	5845	6055	3115	2
19006001 0	19006001	0	117	342	378	297		210	3255	4830	4865	4690	2
19006001 0	19006001	45	225	423	423	207		490	4480	5530	5495	3500	2
19006001 0	19006001	63	162	234	306	297		1050	3850	5810	7350	7140	2
19006001 0	19006001	234	261	414	441	369		3605	5110	6825	6685	5145	2
10008001 0	19006001	46	242	414	469	261		885	2116	4855	4795	2500	2

Figure: Features based on feature vector

Practical example

Workflow

Workflow - Fuzzy c-means

Køy	S Identifier Before	D bp[0]	D bp[1]	D bp[2]	D bp[3]	D bp[4]	a Affar	D ap[0]	D ap[1]	D ap[2]	D ap[3]	D ap[4]	I Preclas	D Cluster0	D Clusteri	D Cluster2	D Cluster3	D Cluster4
2121.0	20014001	62	324	432	611	492		604	2492	4690	4690	4715	2	71.96	21.96	6 %	28	135
2123.0	20014001	128	205	511	518	462		1116	4140	4924	4700	4752	2	71%	14%	10%	2%	1%
3659.0	17012001	49	238	399	448	185		578	3570	4964	4964	4998	2	73%	16%	10%	2%	1%
2106.0	20014001	35	238	371	399	427		864	3924	5148	5148	4968	2	77%	11%	14%	2%	1%
3235.0	14004001	72	288	414	432	396	6	783	3596	4582	4611	4611	2	72%	20%	5%	2%	1%
2816 D	21013001	169	312	415	428	273		1554	3910	5134	5168	4555	2	77%	17%	13%	2%	1%
1498.0	17003001	132	450	636	582	264	6	1120	3968	4832	4832	3840	2	72%	18%	6%	3%	1%
629.0	13007001	70	270	390	420	38D	ũ.	928	3200	4704	480D	4320	2	72%	23%	3%	2%	0%
3616.0	17012001	91	231	343	343	315	10	986	3196	5100	5134	4896	2	72%	16%	9%	2%	1%
2027.0	20014001	56	287	420	469	448		540	3528	5004	4968	4932	2	73%	16%	9%	2%	1%
113.0	17013001	63	153	305	378	342		507	3744	4680	4641	4485	2	73%	19%	5%	2%	1%
559.0	13007001	40	160	310	310	310		1376	3616	5184	5152	4832	2	73%	12%	12%	2%	1%
3244.0	14004001	90	234	305	324	198		464	3799	4930	5046	3799	2	73%	18%	5%	3%	1%
104.0	17013001	63	207	360	378	333	10	1385	3627	4641	4680	4583	2	73%	18%	6%	3%	1%
3567.0	17012001	42	203	322	329	301	10	612	3264	4964	4998	4828	2	73%	18%	6%	2%	0%
216.0	17013001	18	190	324	342	234		585	3978	5304	5421	3939	2	73%	14%	10%	3%	1%
2373.0	11013001	0	203	348	290	232		884	4284	4760	4794	4522	2	73%	14%	9%	3%	1%
633.0	13007001	80	250	340	380	28D		1248	3808	5055	5216	3680	2	74%	16%	7%	3%	1%
3669.0	17012001	7	140	343	364	238	10	340	3502	4998	5032	4692	2	74%	16%	7%	2%	1%
571.0	13007001	70	220	340	350	330	10	736	3648	464D	4608	4608	2	74%	18%	5%	2%	1%
2662.0	21013001	39	169	260	312	260		1326	3774	5066	5508	4590	2	74%	11%	12%	2%	1%
1617.0	17003001	84	312	522	600	552	0	800	3552	5408	5440	4064	2	75%	13%	9%	2%	1%
2655.0	21013001	39	285	442	377	143		510	4148	4895	4828	4250	2	75%	15%	7%	3%	1%
779.0	7014001_0	28	203	322	350	329		884	4046	4726	4692	4692	2	75%	14%	7%	3%	1%

Figure: Cluster0 attracts positive cells

Practical example

Workflow

Workflow - Fuzzy c-means

Key	\$ Identifier an Before	D to[1]	D bg[1]	D bg[2]	D bp[3]	D hp(4]	an After	D ap[0]	D ap[1]	D ap[2]	D 32[7]	D 35[4]	I Precise.	D Cluster0	D Cluster1	D Cluster2	D Cluster3	D Cluster4
362.0	6007001_0	13	143	312	390	403		60	420	900	1140	1140	1	1%	2%	1%	6%	90%
1939.0	3003001_0	72	495	755	828	774		48	449	848	960	928	1	1%	2%	1%	6%	90%
2507.0	5012001_0	96	312	808	624	528		234	649	1116	1098	828	1	1%	2%	1%	6%	\$0%
1788.0	3003001_0	522	198	252	198	18		624	192	320	256	16	1	2%	2%	1%	5%	\$0%
1646.0	5011001_0	42	168	392	420	378		60	374	1088	1190	1158	1	2%	2%	19,	8%	87%
451.0	6007001_0	78	481	858	975	949		100	520	860	940	840	1	2%	3%	1%	7%	87%
2494.0	5012001_0	30	270	458	552	528		54	630	1044	1188	1170	1	2%	3%	1%	3%	85%
1622.0	5011001_0	518	406	490	574	560		935	765	442	629	629	1	2%	3%	1%	7%	87%
1820.0	3003001_0	18	306	648	920	954		80	528	912	1120	1040	1	2%	3%	1%	3%	85%
2585.0	5012001_0	180	348	60.0	636	510		1.26	468	1242	1278	1170	1	2%	3%	1%	11%	81%
2497.0	5012001_0	48	252	348	372	316		72	702	1152	1332	1350	1	3%	4%	2%	15%	77%
1663.0	5011001_0	70	224	462	420	462		85	459	1360	1479	1360	1	3%	5%	2%	18%	72%
1681.0	5011001_0	28	294	476	518	490		68	799	1428	1445	1326	1	4%	5%	2%	21%	68%
1779.0	5011001_0	42	322	560	560	518		119	952	1530	1615	1479	1	5%	7%	3%	29%	56%
3347.0	14004001	162	504	756	1152	1800		174	696	1044	1305	1015	1	5%	7%	3%	18%	67%
2483.0	5012001_0	72	240	462	498	456		198	738	1638	1800	1602	1	5%	8%	3%	36%	49%
300.0	6007001_0	52	1898	3316	3316	312		80	3100	4680	4260	80	1	22%	24%	14%	25%	15%
1925.0	3003001_0EI	190	1674	4590	4590	4482	0	336	1936	4080	4080	3744	1	22%	24%	18%	21%	15%
276.0	6007001_0	169	884	1326	1391	952		600	2890	4340	4240	2800	1	27%	40%	9%	20%	4%
521.0	13007001	190	220	230	190	170	1	3008	4384	5610	4320	3456	1	40%	25%	21%	11%	4%
1012.0	11010001	36	59	162	162	117		528	1655	2928	3216	2520	2	0%	1%	0%	99%	0%
3176.0	17010001	16	88	160	180	160		396	1584	2904	3145	2728	2	0%	1%	0%	99%	0%
2594.0	5012001_0	8	30	144	216	216		18	252	522	558	522	2	0%	0%	0%	1%	98%
1749.0	5011001_0	0	56	224	406	462		170	459	680	850	214	2	0%	1%	0%	1%	87%
1651.0	5011001_0	0	168	280	210	126		0	34	765	867	340	2	0%	1%	0%	2%	87%
1074.0	11010001	36	108	207	216	162		408	1392	2952	3024	2376	2	0%	1%	0%	30%	0%
\$31.0	11010001	27	72	153	144	99		480	1512	3036	3144	2616	2	1%	1%	0.9,	30%	0%
1639.0	5011001_0	0	28	238	224	196		0	34	629	850	782	2	1%	1%	0.9.	2%	16%
2867.0	9009001_0.	35	161	259	280	210	10	360	1760	3010	3260	2620	2	1%	1%	0.95	97%	0%
1042.0	11010201	9	\$0	144	144	126		192	1704	3024	3000	2616	2	1%	1%	0.96	97%	196
1065.0	11010201	27	126	189	207	207		240	1680	2856	3024	2760	2	1%	1%	0.96	97%	196
1056.0	11010001	9	61	126	162	162		264	1776	2664	3168	2472	2	1%	1%	0%	97%	1%

Figure: Outliers and false preclassifications

Practical example

Workflow

Workflow - Evaluation

・ロト ・ 一下・ ・ モト・

-2

Practical example

L_Results

Results

Pre- classification	SL	ire	unsure					
	darker (1)	brighter (2)	darker (1)	brighter (2)				
1	17.8 %	0.02 %	0%	0%				
2	4.01 %	74.9 %	14%	1.71 %				

Active Mining of Cell Assay Images
Practical example
Future Directions

Future Directions

Feature extraction (more sophisticated):

- DFT (Texture features)
- Shape
- Based on existing library of subroutines
- Selection of the most useful features (use subspace of original feature space)

Active Learning:

- Fit the clusters (not only to match the underlying data structure but also to match the classification task)
- Integrate Expert Risk Assessment (e.g. number of confidently classifed images vs. additional labelling work)

Practical example

-Future Directions

Thank you for your attention !

