
Safety Analysis of an Airbag System using
Probabilistic FMEA and Probabilistic Counterexamples

H. Aljazzar1, M. Fischer2, L. Grunske3, M. Kuntz1, F. Leitner-Fischer1, S. Leue1
1 Univ. of Konstanz, Germany,2 TRW Automotive GmbH, Germany,3 Swinburne Univ., Australia

Abstract—Failure mode and effects analysis (FMEA) is
a technique to reason about possible system hazards that
result from system or system component failures. Tradition-
ally, FMEA does not take the probabilities with which these
failures may occur into account. Recently, this shortcoming was
addressed by integrating stochastic model checking techniques
into the FMEA process. A further improvement is the integra-
tion of techniques for the generation of counterexamples for
stochastic models, which we propose in this paper. Counterex-
amples facilitate the redesign of a potentially unsafe system
by providing information which components contribute most
to the failure of the entire system. The usefulness of this novel
approach to the FMEA process is illustrated by applying it to
the case study of an airbag system provided by our industrial
partner, the TRW Automotive GmbH.

I. I NTRODUCTION

In light of the fact that a failure of a safety-critical system
can lead to injuries and even loss of life it is extremely im-
portant to provide designers with safety assessment methods
that help to minimise the risk of the occurrence of such
disastrous events. One of these methods isFailure Mode
and Effects Analysis(FMEA) [19]. In FMEA, a team of
trained engineers or system designers analyses the cause-
consequence relationships of component failures on system
hazards. After having found such a relation, the occurrence
probability of that hazard is computed. It is then checked
whether this value is above a certain threshold, defined by
the tolerable hazard probability or rate (THP or THR). If this
is the case, measures must be taken to reduce the probability
of the undesired event.

To support the traditionally time-intensive and error-
prone FMEA, functional model checking techniques have
been integrated into the FMEA process [7], [9], [10],
[18], [15]. While these techniques are able to establish
cause-consequence relationships, they are unable to calculate
the actual failure probabilities. Therefore, stochastic model
checking was applied to FMEA, leading to aprobabilistic
FMEA (pFMEA) process [13]. Currently, this pFMEA pro-
cess provides no means to help the designer in reducing
the risk of failures. It only supports the first step of the
FMEA process, which is to identify cause-consequence
relationships and compute the actual hazard probabilities.

The contributions of our paper can be summarized as
follows:

• We illustrate the usefulness of pFMEA as supported
by stochastic model checking using the real-life case
study of an airbag system. We describe how to map
the system architecture to a PRISM [22] model and
illustrate how to perform pFMEA on this model. The
airbag case study results from a collaboration with
the automotive supplier TRW Automotive GmbH (in
the sequel simply referred to as TRW) in Radolfzell,
Germany, and is based on real data. Due to intellectual
property concerns of TRW we are unable to publish
the concrete values of component or overall system
failure probabilities. This does not affect our finding
that pFMEA can lead to useful failure probability
assessment values, as confirmed by TRW.

• We address the inability of the current pFMEA method
to give guidance on how to improve system dependabil-
ity by integrating a recently developed technique for
finding and visualising counterexamples in stochastic
models. Counterexamples provide means to identify
those parts that contribute most probably to the failure
of the system and thus, provide valuable information
for its redesign.

This paper is organised as follows: In Sec. II we will
briefly introduce FMEA, pFMEA and counterexamples in
stochastic model checking. Sec. III is devoted to the descrip-
tion of the airbag system and its PRISM model. In Sec. IV
we will describe possible hazard conditions and system fail-
ures, and Sec. V is devoted to the probabilistic FMEA of the
airbag system, supported by counterexample generation. In
Sec. VI we compare our approach with existing approaches
in the FMEA literature. Sec. VII describes the lessons learnt
from this case study. Finally, Sec. VIII concludes the paper
with a summary and an outlook on future research.

II. FMEA, PFMEA AND COUNTEREXAMPLES

This section explains the basic concepts of the FMEA and
its probabilistic extension pFMEA. In Sec. II-C we briefly
introduce an approach to counterexample generation and
visualisation for stochastic model checking.

A. FMEA

As described in the introduction, the aim of an FMEA
is to explore the consequences, such as hazards, of known



component-level failure modes and to propose countermea-
sures to reduce the probability that these consequences
occur. The final outcome of an FMEA is a table which
documents for each component the set of relevant com-
ponent failure modes, and for each of these failure modes
its consequences. Possible failure detection, correctionor
mitigation mechanisms may also be recommended in this
table. The structure, number of columns and meaning of
columns of the resulting FMEA table may vary in different
organizations performing FMEA. However, the following
column headings are commonly used [19]: investigated com-
ponent, failure mode, description of the failure mode/local
effect of the failure mode, possible cause for the failure,
effect at the system level, recommended failure detection
mechanism, recommended mitigation mechanism, and rec-
ommended design changes. For complex systems with a
large number of components and a large number of failure
modes per component this table can become very large.
Additionally, it has been reported in [16] that the table may
contain redundant information since different failure modes
can lead to the same consequences. The FMEA procedure
is commonly defined by an iterative process [14] that
identifies for all components the possible failure modes and
identifies their consequences. Recent approaches [7], [8],[9],
[10], [15], [18], [23] aim to support the FMEA process,
especially the identification of possible consequences with
model checking. The basic idea is to formalise the system’s
behaviour as a state-based model and the hazard conditions
as temporal logical formulae. As a result, fault injection
experiments can be created where specific failure modes are
injected into the system behaviour model. Model checking
tools can then analyse the consequences on the formalised
hazard conditions.

B. pFMEA

A further development of the idea to use of model
checking support for FMEA is the approach referred to
as probabilistic FMEA (pFMEA) presented in [13]. Instead
of functional state-based models pFMEA uses stochastic
models, in particular discrete and continuous time Markov
chains. The hazard conditions are formulated as stochastic
temporal logical formulae. As a consequence the tolerable
hazard probabilities can also be integrated into the formalisa-
tion of the hazard conditions. Furthermore, to each injected
failure mode an occurrence probability can be assigned
in the probabilistic model. A main benefit of pFMEA is
the ability to probabilistically estimate the likelihood that
an injected failure mode will lead to a violation of the
hazard condition. The use of stochastic models also avoids a
common shortcoming of using functional model checking in
FMEA, namely that the model checker finds a relationship
between the injected failure mode and a hazard that is very
unlikely to occur in practice. As already noted in [13], one
practical problem of pFMEA is the lack of counterexamples

in stochastic model checking. This impedes the explanation
of property violations and hence failure mode / consequence
relationships found by the stochastic model checker.

C. Counterexamples in Stochastic Model Checking

In stochastic model checking, the property that is to be
verified is specified using a stochastic variant of temporal
logic. The temporal logic used in this paper is CSL (contin-
uous stochastic logic) [5], [6]. It is tailored to reason about
quantitative system behaviour, including the performance
and dependability of a system. Given an appropriate system
model and a CSL specified property, a stochastic model
checking tool such as PRISM can verify automatically
whether the model satisfies that property. If the model refutes
the property, it is desirable to have a counterexample avail-
able that can help engineers to comprehend the reasons for
the property violation. The computation of counterexamples
in stochastic model checking has recently been addressed
in [2], [3], [4], [17].

Notion of Counterexamples.:For our purposes it suf-
fices to consider upper bounded properties which require the
probability of a property offending behaviour not to exceed
a certain upper probability bound. In CSL such properties
can be expressed by formulas of the formP≤p(ϕ), whereϕ
is path formula specifying undesired behaviour of the the
system. Any path which starts at the initial state of the
system and which satisfiesϕ is called adiagnostic path.
A counterexample for an upper bounded property is a setX
of diagnostic paths such that the accumulated probability of
X violates the probability constraint≤ p.

Generation of Counterexamples.:In [2] it has been
shown that counterexamples for this class of properties
can be efficiently computed using an explicit state space
search strategy calledeXtended Best-First(XBF). XBF is a
variant of Best-First search. XBF explores the state space
of the model on-the-fly searching for diagnostic paths. It
does not explicitly compute the counterexample path set
X . Instead it incrementally computes a sub-graph of the
state space which coversX called diagnostic sub-graph.
Once the diagnostic sub-graph covers a sufficient number of
diagnostic paths so that the accumulated probability exceeds
the given upper probability bound, XBF terminates and
produces the diagnostic sub-graph as a counterexample.

Counterexample Visualisation.:A counterexample is
a potentially very large set of diagnostic paths. Although
XBF provides the counterexample in the form of a sub-
graph, it can still be very complex. Supporting the analysis
of complex counterexamples using visualisation techniques
is proposed in [3]. This approach aims at facilitating the
discovery of causal factors for property violations. Portions
of the model that contribute a larger portion of the probabil-
ity mass to the property violation are brought out visually
in order to support the discovery of causal dependencies.



The technique presented in [3] is designed for counterexam-
ple generation methods based on K-Shortest-Paths heuristic
search algorithms like K∗ [4]. For the purpose of this paper
we adopted that visualisation to be used in combination with
XBF.

III. C ASE STUDY: FUNCTIONALITY AND MODELLING

A. System Functionality

Modern cars are equipped with safety systems, such as
airbags, that protect the occupants of the vehicle. In case
of a crash, the airbag system will deploy airbags located in
different places in the car. They reduce the risk of serious
or even fatal injuries for the occupants.

An airbag system can be divided into three major parts:
sensors, crash evaluation and actuators. An impact is de-
tected by acceleration sensors (front/rear/side impact) and
additional pressure sensors (side impact). Angular rate or
roll rate sensors are used to detect rollover accidents. The
sensor information is evaluated by two redundant microcon-
trollers (µC) which decide whether the sensed acceleration
corresponds to a crash situation or not. The deployment of
the airbags is only activated if both microcontrollers decide
that there was indeed a critical crash. The redundancy of
the microcontroller system layout decreases the hazard of
an unintended airbag deployment, which is considered to
be the most hazardous malfunction of the system. Note
that older airbag systems comprise only one microcontroller.
Upon activation of the deployment, squibs are ignited and
as a consequence the airbags are inflated by irreversible
pyrotechnical actuators. The sensors can either be located
as internal sensors inside the Airbag Electrical Control Unit,
or mounted as satellites to the bumper, the a-, the b- or the
c-pillar.

The airbag system architecture that we consider consists
of two acceleration sensors whose task it is to detect
front or rear crashes, either one microcontroller or two
microcontrollers to perform the crash evaluation, and an
actuator that controls the deployment of the airbag. Fig. 1
gives a schematic overview of the system architecture using
the two microcontroller variant. Notice that the redundant
acceleration sensors are pointing in opposite directions so
that one (also referred to asmain sensor) is measuring
the acceleration in thex direction of the vehicle, and the
other (also referred to assaving sensor) is measuring the
acceleration in the−x direction. The microcontrollers read
the sensor values of the main and saving sensor (micro-
controller 1) or the saving sensor (microcontroller 2) in a
cyclic fashion. The two sensor values (x and -x acceleration)
are compared after they have been read by microcontroller
1. They are then separately used for crash discrimination
which is normally done by calculating mean values of the
acceleration measured over certain intervals of time. If a
certain threshold in a given time frame is exceeded, the
microcontrollers will synchronise their fire decisions and

FET
µ

C 1µ Airbag

C 2

sensor
Main

sensor
Safing

FASIC

Figure 1. Schematic system architecture

only if they both come to the conclusion that a critical crash
occurred the airbags will be deployed.

The deployment of the airbag is secured by two redundant
protection mechanisms. The Field Effect Transistor (FET)
controls the power supply for the airbag squibs. If the Field
Effect Transistor is not armed, which means that the FET-
Pin is not high, the airbag squib does not have enough
electrical power to ignite the airbag. The second protections
mechanism is the Firing Application Specific Integrated
Circuit (FASIC) which controls the airbag squib. Only if
it receives first an arm command and then a fire command
from the microcontroller 1 it will ignite the airbag squib.
In case there is only one microcontroller, the signals from
both the main and the saving sensor are evaluated by this
microcontroller. The signals to both the FET and FASIC
units are also only sent by this microcontroller.

Although airbags save lives in crash situations, they may
cause fatal behaviour if they are inadvertently deployed.
This is because the driver may lose control of the car
when this deployment occurs. It is therefore a pivotal safety
requirement that an airbag is never deployed if there is no
crash situation.

B. System Model

The airbag system was modelled using the input language
of the stochastic model checking tool PRISM [22]. The
overall structure of the model corresponds directly to the
system’s architecture (cf. Fig. 1). The behaviour of each
block and each bus or connection line, which may also be
subject to failures, was modelled by a separate module in
PRISM.

While modelling the airbag system, the following chal-
lenges had to be met:

1) Many failures stem from corrupted signals, which are
of continuous nature. Continuous signals cannot be
modelled in the PRISM language and we have to
resort to abstractions by discrete approximations. The
sensors convert the physical signals using an A/D
converter to discrete signals whose values range from
-512 to 511. Notice that for the system analysis it
is irrelevant whether the original signal is corrupted
or whether the corruption is due to an A/D converter
failure. The obtained abstraction is, however, still too



FASICArmed

read_sensor!

eval_register!

ReadSensors EvalRegister

crash_recognised!

Crash
arm_FET!

FETArmed

arm_FASIC!

Figure 2. Basic microcontroller model

fine since the induced state space is beyond what could
be handled by the PRISM model checker. We therefore
abstract from the concrete values of the digital signals
and only consider four categories of sensor values: a)
normal driving, b) rear crash, c) frontal crash, and d)
borderline cases (cf. Sec. IV). Due to space limitations,
we can only consider cases a) and b) in this paper.

2) For the microcontrollers and the sensors we can safely
abstract from internal behaviour, for instance from the
failure of subcomponents, since these subcomponents
are not manufactured by TRW. As a consequence,
these failure modes fall outside of the responsibility of
the organisation for which the FMEA is to be carried
out. Instead, the total failure rate of the component that
was determined by the supplier of these components
is used. If these components turn out not to satisfy
the reliability requirements, they need to be replaced
in their entirety by other components.

3) The probability distributions for all failure rates can
be safely assumed to be exponential. Either this
assumption holds due to the data provided by the
manufacturers of the components, or the distribution
follows a bathtub curve [24] of which only the portion
where the failure rate is constant is relevant. According
to TRW, we can assume that the phases where the
bathtub curve is not constant are either observed early
in production and filtered out during the end of line
testing, or they occur very late in the lifetime of the
system where it can safely be assumed that the car is
inoperative at that time.

Using these abstractions, we end up with a fairly accurate
basis model (no failures, critical crash) that possesses ap-
proximately 55,000 states.

In Fig. 2 we present the state machine model of the
microcontroller.ReadSensors is the system’s initial state.
Sensor values are read asynchronously from the sensors. The
values are stored in registers and evaluated. If the sensor
values indicate forn consecutive readings that a critical
crash occurred, then the FET and the FASIC are armed,
as indicated by the actionsarm FET! and arm FASIC!,
respectively. This reflects the fact that a critical crash has to
be discriminated from innocuous high acceleration readings.
For instance, when the car is driven over a curbstone or
very fast in a curve or roundabout, high acceleration may

FASICFiredFETArmed
arm_FET?

WaitFET
fire_FASIC!

Figure 3. Basic FET model

FASICFired
arm_FASIC?

WaitFASIC FASICArmed
fire_FASIC?

Figure 4. Basic FASIC model

be sensed for a very short period of time, leading to very
few (less thann) high acceleration sensor readings. In this
situation the airbag must of course not be deployed.

In Fig. 3 and Fig. 4 we present the basic state-machine
model for the FET and FASIC modules with initial states
WaitFET andWaitFASIC, respectively. The FET and FASIC
synchronise with the microcontroller which sends commands
to the FET and the FASIC using actionsarm FET? and
arm FASIC?, respectively. For the FASIC to finally fire, it
synchronises with the FET via the actionfire FASIC?, which
is sent by the FET unit (fire FASIC!).

IV. SYSTEM FAILURES AND HAZARD CONDITIONS

We describe possible failures of the system components
and their respective consequences for the safe functioning
of the system. Hazards consist of unintended airbag ignition
and suppressed or delayed airbag ignition in the case of a
crash.

A. System Hazards and Safety Requirements

According to the upcoming ISO standard 26262 [21],
which is an adaption of ISO 61508 [20] for road vehicles,
new airbag systems have to comply with ASIL D (Automo-
tive Safety Integrity Level D) for unintended deployment of
the airbag. ASIL D corresponds to a tolerable hazard rate
(THR) of 10−8 per hour. Currently, airbag systems are only
required to comply with ASIL B which specifies a THR of
10−7 per hour. For our case study, we found the following
hazard conditions to be relevant (specified in CSL using the
Probabilistic Existence pattern from [12]):

1) The airbag is not ignited even though a critical crash
occurred. This hazard can be formalised as safety
requirement 1 in CSL as follows:

P≤p1
(true U>T1 (critical crash ∧ ¬fasic fired)).

For the purpose of the analysis we let the proba-
bility bound p1 = 10−3 and the actual time bound
T1 = 20 ms. critical crash and fasic fired are atomic
properties that can be derived from the original PRISM
model.critical crash is the state of the microcontroller
in which, after reading and evaluating the sensor
values, it is decided that the crash event requires airbag
deployment. fasic fired is the state of the FASIC
module which indicates that the FASIC finally sent
the fire command to the airbag squibs.



2) The airbag is ignited at latest afterT2 = 45 ms, which
yields safety requirement 2:

P≤p2
(true U>T2 (critical crash ∧ fasic fired))

With this hazard condition, we associate a tolerable
violation probabilityp2 of 10−4.

3) The airbag is deployed unintentionally, which means
that it is ignited even though no crash at all or only
a non-critical crash has occurred. This leads to safety
requirement 3 in CSL:

P≤thp3(T3)(true U≤T3 (¬critical crash∧fasic fired))

This hazard is associated with a tolerable hazard
probability (THP) thp3(T3) which depends on the
mission timeT3, and the THR associated with the
desired ASIL D:

• Given the mission timesT3 = 1 hr, 5 hrs,
and 10 hrs and using ASIL B we obtain:
thp3(1 hr) = 1.0·10−7, thp3(5 hrs) = 5.0·10−7,
and thp3(10 hrs) = 1.0 · 10−6. The actual
THP can be computed according to the formula
THP (t) = 1 − e−THR·t, wheret is the mission
time (here: driving time).

• Similarly, for ASIL D, we obtain:thp3(1 hr) =
1.0 · 10−8, thp3(5 hrs) = 5.0 · 10−8, and
thp3(10 h) = 1.0 · 10−7.

B. Sensor Failures

For the sensors, we have identified the following failure
modes:

1) Even though both sensors measure the same signal, the
amplitude of this signal at both sensors is different.

2) The sensors deliver wrong amplitudes. This means that
the amplitude of the real signal is corrupted by sensor
failures.

3) The sensors function correctly, but since the sensor
values are not sampled synchronously the delay be-
tween the two samples may be so large that the am-
plitudes are erroneously interpreted as being different.

4) Both sensors are accelerated in the same direction.
This means that the amplitudes on both sensors have
the same prefixes.

C. Microcontroller Failures

As we argued above, for the purpose of this FMEA we
treat the microcontroller as an atomic system component and
do not consider its internal failure behaviour. The potential
consequences of a failure of one of the microcontroller
components are:

• A fire command is needlessly sent to the FET and
FASIC, thus causing an unintended deployment of the
airbag.

• A fire command in case of a critical crash is suppressed,
thus preventing the airbag from being ignited.

• The fire command for the airbag in case of a crash is
delayed, thus causing the airbag to be ignited too late.

According to TRW, the first case is considered to be the
most hazardous scenario.

D. Power Supply Failures

The power supply unit has two lines: a 5V-line connected
to the microcontroller and the sensors and a 24V-line to the
FET- and FASIC-units. Both lines are subject to failures:

1) 5V-line: If the voltage of this line is above a certain
threshold a number of causally dependent failures can
occur:

• Both sensor amplitudes have the same value
which means that the sensor signals are corrupted,
and

• the firing lines of the microcontroller can be set
needlessly to high.

If the voltage is below4V , then the airbag system
will be set to the inactive mode, which is indicated by
a warning lamp. This can be considered to be a safe
operational mode.

2) 24V-line: We distinguish two failures that may lead to
hazardous situations:

• If the voltage is too high, for instance above40V,
the FET and FASICs may be destroyed.

• If the voltage is between 7 and 19V, the airbag
system is in a degraded operational mode.

If the voltage of this line is below 7V, the airbag sys-
tem is inactive which means this is a safe operational
mode.

E. FET Failures

The FET can be compared to a switch. It can either be
closed inadvertently and hence enable the FASIC to fire, or it
can be open instead of being closed as requested and hence
suppress ignition of the airbag.

F. FASIC Failures

The FASIC consists of two internal switches (High-side
and Low-side switch).

1) It is possible that either one or both of these switches
close inadvertently, or that one or both of them do
not close as requested. In the first case, an ignition
of the airbag is not possible as long as the FET is
not activated. In the latter case a correct firing may be
suppressed by the FASIC.

2) For diagnostic purposes the FASIC is connected to the
voltage supply. If this line is connected to the output
line of the FASIC due to an internal short circuit, the
FET protection becomes useless and the airbag may
be fired.



G. Bus/Connection Line Failures

Due to environmental conditions the connection lines
from the sensors to theµC and the busses from theµC
to both the FET and FASIC in the airbag system are subject
to failures. These signals can be corrupted, thus potentially
violating all three safety requirements.

H. Component Failures

The failure mode matrix that describes the change from
fault-free to faulty behaviour is modelled as a PRISM
module. In case of single component failures, it consists of
a single transition, from normal behaviour (failure modefm
0) to the failure moden under consideration (n = 1...10,
cf. Table I).

In case of multiple-component failures, this module be-
comes more complex, for example, for microcontroller and
FASIC failure, we obtain the following failure mode transi-
tion matrix encoded in PRISM:

module FailureViewMatrix
fm:[0..11] init 0; //Ten basic failure modes //
//combined failure modes are assigned a fresh value //
[] fm = 0 -> rate_MCFailure:(fm’ = 3);
[] fm = 0 -> rate_FASICFailure:(fm’ = 6);
[] fm = 3 -> rate_FASICFailure:(fm’ = 11);
[] fm = 6 -> rate_MCFailure:(fm’=11);

The expressionsfm = ... denote the transition guards in
which the current failure mode is checked. The respective
transition can only fire if the guard condition is satisfied.
In the course of a transition the failure mode is set to a
new value, for instance from 0 to 3 when taking the first
transition. In the case of intermittent failures (sensor or
bus line failures can be of that kind in this case study),
transitions back to failure mode 0 have to be added. For all
other components, such as FET, FASIC and microcontroller,
failure recovery is not considered.

The failures are injected into the basic model by adding
transitions that model the effect of the failure to the respec-
tive component. These transitions can only be taken if the
system is in the corresponding failure mode. The transitions
which model the failure-free module behaviour can also
only be taken if the failure under consideration has not yet
occurred.

For example, consider the potential microcontroller failure
of suppressing a fire command in case of a critical crash.
This scenario is important for safety requirements 1 and 2
(cf. Sec. IV-A). In case of a failure (fm = 3), in the worst
case, the fire signal is not sent, represented as transition from
Crash back toReadSensors, labelled withfm = 3/skip!. A
simple state machine representation of this model can be
found in Fig. 5. If the microcontroller fails such that the
signal is delayed, this is modelled by assigning a smaller
rate to the fire-command-transitions. Since no real data for
this situation exists, TRW suggested to use half the rate that
is applied in case of normal operation.

read_sensor!

eval_register!

ReadSensors EvalRegister

crash_recognised!

Crash FETArmed
fm=0/arm_FET!

fm=3/skip!

fm=0/arm_FASIC!

FASICArmed

Figure 5. State machine representation of microcontrollerwith injected
failure

When a failure of the microcontroller results in a needless
deployment of the airbag (relevant for safety requirement 3),
the fire command is sent even if no crash is recognised. In
Fig. 6 this situation is shown, by a transition labelled with
fm = 3/skip! from the initial stateReadSensors to the state
Crash.

ReadSensors EvalRegister

Crash FETArmed
fm=3/skip!

fm=0/eval_register!

fm=0/read_sensor!

fm=0/crash_recognised!

(fm=0 | fm=3)/arm_FET!

(fm=0 | fm =3)/arm_FASIC!

FASICArmed

Figure 6. State machine representation of microcontrollerwith injected
failure

V. PROBABILISTIC FMEA OF THE A IRBAG SYSTEM

In order to perform the pFMEA we conduct model
checking experiments by injecting faults into the PRISM
system model1. Thereby, we proceed as described in detail
in [13]. The injected faults are as described in Sec. IV. Faults
can be single or joint faults. In other words, more than one
component can fail at a time.

A. Scenarios

To conduct the experiments, we assume that there is an
environment which models the possible driving scenarios
that there is 1) no crash, and 2) a frontal crash. For the
first scenario the relevant hazard condition is the unintended
ignition of the airbag. For the second scenario we are
interested in the probability of a timely airbag ignition.
Each scenario is considered in isolation as the analysis
results would be useless otherwise. We are interested in the
probability that the safety requirements from Sec. IV-A are
violated. If all possible scenarios were merged into a single
model, such an analysis would be impossible.

1A sanitized basic PRISM model with no accident as well as a FETfail-
ure model can be downloaded from the following URL: http://www.inf.uni-
konstanz.de/soft/research/projects/pFMEA/pFMEA-PRISM.zip.



B. Failure Modes and Experiments

For our analysis, we have identified one normal operation
mode, which is referred to asFm0, and ten failure modes,
Fm1 to Fm10. A short description of the failure modes can
be found in table I. While the official safety requirements

Failure view Description

Fm0 Normal operation
Fm1 Sensor failure: Different amplitudes
Fm2 Sensor failure: Amplitudes wrong
Fm3 Summary failure of any microcontroller component
Fm4 Power supply failure
Fm5 FET failure
Fm6 FASIC failure
Fm7 µC-FET-line failure
Fm8 µC-FASIC-line failure
Fm9 Main sensor-line failure
Fm10 Saving sensor-line failure

Table I
FAILURE MODES

standards only consider single failures it is possible in
principle to experience simultaneous multiple component
failures. Since our analysis approach is automated, we can
easily accommodate multiple component failures and hence
consider the following combinations: 1) power supply- and
microcontroller-failure, 2) FET- and FASIC-failure and 3)
microcontroller-, FET- and FASIC-failure. Table II presents
the results of the pFMEA for 2 microcontrollers in case of
a critical frontal crash for the safety requirements 1 and 2
from Sec. IV-A that are the relevant safety requirements for
this scenario. We only considered failure modesFm0, Fm1,
Fm3, Fm4, Fm6, and Fm9. Where applicable, we have
taken both permanent and intermittent failures into account.
The system with one microcontroller also complies with
ASIL D for safety requirements 1 and 2.

We checked safety requirement 3 with varying time
bounds for the case in which no critical crash occurs.
We first analysed the one-microcontroller architecture and
checked whether it complies with ASIL D. ASIL D cannot
be satisfied in all cases with this architecture. In the case
of a combined microcontroller and power supply failure,
with T3 = 5 and 10 hours mission time, the actual hazard
rate was slightly above the THR. Therefore, the experiments

Requirement 1 Requirement 2
violated (yes/no)?

Fm0 no no
Fm1, permanent failure no no
Fm1, intermittent failure no no

Fm3 no no
Fm4 no no
Fm6 no no

Fm9, permanent failure no no
Fm9, intermittent failure no no

Table II
ANALYSIS RESULTS IN CASE OF A FRONTAL CRASH(2

MICROCONTROLLERS, ASIL D)

T3 = 1h T3 = 5h T3 = 10h

Requirement 3 violated (yes/no)?
Fm0 no no no

Fm1, per. failure no no no
Fm1, int. failure no no no

Fm3 no no no
Fm4 no no no
Fm6 no no no

Fm9, per. failure no no no
Fm9, int. failure no no no

Table III
ANALYSIS RESULTS FOR REQUIREMENT3, NO CRASH(2

MICROCONTROLLERS, ASIL D)

T3 = 1h T3 = 5h T3 = 10h

Requirement 3 violated (yes/no)?
Fm3 andFm10 no yes yes
Fm5 andFm6 no no no

Fm3, Fm5 andFm6 no yes yes

Table IV
ANALYSIS RESULTS FOR REQUIREMENT3, NO CRASH, MULTIPLE

FAILURES (1 MICROCONTROLLER, ASIL D)

were repeated with a model of the airbag system with two
microcontrollers. The results of this experiment can be found
in table III.

C. Multiple Failures and Counterexamples

We now consider the actual hazard rate for multiple
failures, even if this is not required by the standard. We
believe that it is important to go beyond the minimum safety
requirements specified in the standard in order to design
reliable safety critical systems.

While the airbag system with only one microcontroller
complies with ASIL B, it does not comply with ASIL D in
the case of multiple failures. We noticed that when micro-
controllers and FET and FASIC failures occurred the actual
hazard rate is significantly above the THR (cf. Sec. IV-A).
In table IV we can find the results of the pFMEA analysis
in case no accident occurs while considering multiple com-
ponent failures. Therefore, we generated counterexamples
for these cases in order to identify the primary source of
the safety requirement violation. For 2 microcontrollers the
actual hazard probability complies with the upcoming ASIL
D.

Counterexample Support for pFMEA.:Due to space
limitations, we can only discuss the case in which the
microcontroller, FET and FASIC can fail. This case is
interesting for the following reasons: First, the FASIC is
the least reliable component. Second, the microcontroller
is the central part of the system, and the correct airbag
ignition depends heavily on the results delivered by the
microcontroller. It is therefore interesting to check what
weighs more in the violation of the ASIL D property, the
reliability or the potential consequences of a failure. Intu-
itively, one might expect that the FASIC failure contributes
more to the violation of ASIL D than a microcontroller



failure. The computation and analysis of the counterexample,
however, reveals that in fact the microcontroller failure is
more critical. Based on these findings, a solution that reduces
the impact of a microcontroller failure is to be preferred over
making the FASIC more reliable. TRW does indeed follow
this finding by introducing a second microcontroller into
the airbag architecture, thus alleviating the consequences
of a single microcontroller failure. A second interesting
finding of the counterexample analysis is the fact that
multicomponent failures are highly improbable. For further
analyses they hence do not need to be considered, which
results in models with a much smaller state space.

The execution traces of the system leading to states
in which component failures causes an erroneous airbag
ignition can be represented in a purely textual way. Since
there is potentially a very large number of such traces, the
user would have to browse many of them until the desired
information which component failure contributes most to the
property violation has been recognized. In order to facilitate
this task we propose to present a visualization of the error
traces. In Fig. 7 we show the visualisation of a portion of
the error traces of the airbag system model. Note that this
figure only contains a very small excerpt of the entire state
space graph that we use to explain the basic principle of the
visualization. A more complete view can be found in [1]. To
visualize the full graph we need to rely on high resolution
devices.

Error states in Fig. 7 are represented by diamond-shaped
rectangles with red lines. The more probable it is to be in
such an error state, the larger the state is depicted. We can
see that the state representing a microcontroller failure is
much larger than any other state. Which state corresponds
to which failure mode can be read from the transition labels.
According to Table I, a microcontroller failure corresponds
to a transition with labelFailuremode3, a FASIC failure
corresponds to a transition with labelFailuremode6, and
combined FET and FASIC failures corresponds to a trace
in which both Failuremode5 and Failuremode6 labelled
transitions can occur.

D. Time and Space Complexity of Model Checking

The sizes of the models we encountered vary from 1,536
states for failure mode 0 and no crash to 615,600 states
for failure mode 2 with intermittent failures and crash. The
largest model only required 28.4 MB of storage, including
iteration vectors for the numerical analysis. Memory con-
sumption hence was not a problem during the analysis.

While in the case of safety requirements 1 and 2 the
model checking is very efficient despite large state spaces,
it can be seen that in case of safety requirement 3 the
runtimes increase steeply. For the failure mode 2 model with
intermittent failures, having 615,600 states and requirement
2, model checking took only 311 sec., whereas for safety
requirement 3 and a mission time of 10 h for the same

Approach
& Year

Spec.
Formal-

ism
Tool Prob.

FMEA

Coun-
ter-

examples

Case
Studies

Heimdahl et
al. 2005[18] RSML−e NuSMV No Yes

Altitude
Switch

Bozzano et
al. 2003 [7]

NuSMV
code

FSAP/
NuSMV-

SA
No Yes Bit Adder

Cichocki &
Górski

2000[9],
[10]

CSP FDR No No
Line
Block
System

Grunske et
al. 2005

[15]

Behavior
Trees

SAL No Yes
Metal
Press

Elmqvist &
Nadjm-
Tehrani

2008 [11]

PRISM
Reactive
Modules

PRISM Yes No
Altitude
Meter
System

Grunske et
al. 2007

[13]

PRISM
Reactive
Modules

PRISM Yes No
Metal
Press

Our
Approach

PRISM
Reactive
Modules

PRISM Yes Yes

Industrial
case study

(airbag
system)

Table V
COMPARISON WITH RELATED APPROACHES

model, the model checking time exceeded 12 hours. This
enormous increase can be explained by the fact that in the
latter case the time bounds are extremely high in comparison
to safety requirements 1 and 2. This runtime increase occurs
since, amongst other factors, the number of iterations for
transient analysis is determined by this value.

VI. RELATED WORK

A considerable number of approaches have been proposed
to automate or support the FMEA process with model
checking [7], [8], [9], [10], [15], [18], [23]. The existingap-
proaches are summarised in Figure V. From this comparison
it becomes evident that only the approaches described in [11]
and [13] use probabilistic model checking and support a
probabilistic FMEA process. All other approaches work with
traditional model checking tools. The novel aspect described
in this paper with respect to the approaches in [11] and [13]
is the support (generation and analysis) of counterexamples.
These counterexamples provide valuable insights in the
cause-consequence relationships between low level compo-
nent failures and system level hazards. Furthermore, while
all the existing approaches only work with small academic
examples, a central contribution of this paper is to provide
evidence that the process scales to an application taken from
an industrial product development context.

VII. L ESSONSLEARNT

System Modelling.:With respect to system modelling,
we have learnt the following lessons: First, even though
PRISM is not designed to model continuous signal pro-
cessing we were able to devise a suitable discrete state



Failuremode5

...Failuremode3Failuremode6Failuremode5... ...

...
Failuremode6

...

Figure 7. A portion of the counterexample visualisation in the case ofµC, FET and FASIC failures

machine abstraction of the signal generating process. Using
this abstraction we could model crash events with a state
machine with only five states. TRW confirmed that this
abstraction is adequate and does not negatively influence
our findings.

Second, it is interesting to realize that the state space
size or structure is not the only limiting factor for the
applicability of stochastic model checking. We had to deal
with large time bounds. Time bounds influence the number
of iterations needed for transient analysis. Even for the
moderate size models that we encountered the runtime cost
for numerical analysis may become prohibitive. This is an
observation that appears to more generally apply to the
analysis of safety critical systems that have long mission
times.

Third, we learnt that PRISM is a language that the
engineers at TRW could quickly learn. The logic CSL itself,
however, was considered to be rather “exotic”. A pattern-
based approach as, for example suggested in [12], may help
the further proliferation of pFMEA in the industry.

Implications for Industry.: There are a number of
potential benefits from the adoption of probabilistic FMEA
in industry. First of all, pFMEA is a means to to analyze
with a reasonable effort which reliability requirements are
satisfied by anexistingstate of the art design. In this case,
we saw that although an existing single path airbag system
is reliable in the field, not all new safety requirements are
fulfilled. This result confirms the decision of TRW that in
order to fulfill all safety requirements, future systems have to
be built with two redundant paths to increase the reliability.

Second, probabilistic FMEA is a technique that can be
used at the early stages of the system development process
to evaluate the reliability of anewly designed system and
to identify weak paths with a high failure probability in
the architectural design. The upcoming standard ISO 26262
defines the goal to decrease the number of unintended
behaviour of electronic components in the car and it re-
quires the assessment of design alternatives to find the one
that is the most reliable. The proposed approach facilitates
and supports this assessment and provides a basis for the
technical discussion and comparison of design alternatives.

Third, due to the fact that the analysis is automated and
supported by tools it is possible to investigate much more
complex scenarios than with a manual analysis, such as for
instance multiple failures.

VIII. C ONCLUSION

We have presented a case study for applying probabilistic
FMEA to an industrial airbag system. The system was
modelled and analysed using the PRISM tool. By apply-
ing probabilistic FMEA, two system configurations were
checked for compliance with the upcoming safety standard
for road vehicles ASIL D with respect to a large number of
possible component failures. For the system variant with one
microcontroller, we found the ASIL D requirements to be
violated. Using counterexample generation and visualisation,
we were able to identify the main source of the requirement
violation.

Although the research presented in this paper provides
evidence of the applicability of the pFMEA process to
industrially relevant systems, improvements to the perfor-
mance of probabilistic model checking and counterexample
generation algorithms as well as improved counterexample
presentation and visualization methods would in particular
further enhance the applicability of the pFMEA process.

ACKNOWLEDGMENT

The authors wish to thank Dr. Johannes Konle and
Richard Cording of TRW Automotive GmbH for their
excellent cooperation. We especially thank Martin Brügel
for his essential assistance in the FMEA process.

We also thank the anonymous referees for their valuable
suggestions to improve the qualitiy of the paper.

REFERENCES

[1] H. Aljazzar, M. Fischer, L. Grunske, M. Kuntz, F. Leitner,
and S. Leue. Safety Analysis of an Airbag System using
Probabilistic FMEA and Probabilistic Counter Examples.
Technical Report soft-09-01, University of Konstanz, Chair
for Software Engineering, 2009.

[2] H. Aljazzar and S. Leue. Extended Directed Search for Prob-
abilistic Timed Reachability. InProceedings of FORMATS
’06, volume LNCS 4202, pages 33–51. Springer, 2006.



[3] H. Aljazzar and S. Leue. Debugging of Dependability Mod-
els Using Interactive Visualization of Counterexamples. In
Proceedings of QEST 2008, pages 189–198. IEEE Computer
Science Press, 2008.

[4] H. Aljazzar and S. Leue. K*: A Directed On-The-Fly
Algorithm for Finding the k Shortest Paths. Technical
Report soft-08-03, University of Konstanz, Chair for Software
Engineering, 2008.

[5] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying
continuous time Markov chains. InComputer-Aided Verifica-
tion, volume LNCS 1102, pages 146–162. Springer, 1996.

[6] C. Baier, B. Haverkort, H. Hermanns, and J. Katoen. Model-
Checking Algorithms for Continuous-Time Markov Chains.
IEEE Trans. Software Eng., 29(7):1–18, July 2003.

[7] M. Bozzano, A. Cavallo, M. Cifaldi, L. Valacca, and A. Vil-
lafiorita. Improving Safety Assessment of Complex Systems:
An Industrial Case Study. InProceedings of FME 2003,
volume LNCS 2805, pages 208–222. Springer, 2003.

[8] M. Bozzano and A. Villafiorita. Improving System Reliability
via Model Checking: The FSAP/NuSMV-SA Safety Analysis
Platform. In Proceedings of SAFECOMP 2003, volume
LNCS 2788, pages 49–62. Springer-Verlag, 2003.

[9] T. Cichocki and J. Górski. Failure Mode and Effect Analysis
for Safety-Critical Systems with Software Components. In
Proceedings of SAFECOMP 2000, volume LNCS 1943, pages
382–394. Springer, 2000.

[10] T. Cichocki and J. Górski. Formal Support for Fault Mod-
elling and Analysis. InProceedings of SAFECOMP 2001,
volume LNCS 2187, pages 190–199. Springer, 2001.

[11] J. Elmqvist and S. Nadjm-Tehrani. Formal support for quan-
titative analysis of residual risks in safety-critical systems. In
Proceedings of HASE 2008, pages 154–164. IEEE Computer
Society, 2008.

[12] L. Grunske. Specification patterns for probabilistic quality
properties. In Robby, editor,Proceedings of the International
Conference on Software Engineering (ICSE 2008), pages 31–
40. ACM, 2008.

[13] L. Grunske, R. Colvin, and K. Winter. Probabilistic Model-
Checking Support for FMEA. InProceedings of QEST 2007,
pages 119–128. IEEE Computer Science Press, 2007.

[14] L. Grunske, B. Kaiser, and R. H. Reussner. Specification
and Evaluation of Safety Properties in a Component-based
Software Engineering Process. InEmbedded Software Devel-
opment with Components -An Overview on Current Research
Trends, pages 737–738. Springer-Verlag, 2005.

[15] L. Grunske, P. A. Lindsay, N. Yatapanage, and K. Winter.
An Automated Failure Mode and Effect Analysis Based on
High-Level Design Specification with Behavior Trees. In
Proceedings of IFM 2005, volume LNCS 3771, pages 129–
149. Springer, 2005.

[16] H. A. Haapanen Pentti. Failure Mode and Effects Analysis
of Software-based Automation Systems. Technical report,
VTT Industrial Systems, Helsinki, STUK-YTO-TR 190, 37
pp, 2002.

[17] T. Han and J.-P. Katoen. Counterexamples in Probabilistic
Model Checking. InProceedings of TACAS 2007, volume
LNCS 4424, pages 60–75. Springer, 2007.

[18] M. P. E. Heimdahl, Y. Choi, and M. W. Whalen. Deviation
Analysis: A New Use of Model Checking. Automated
Software Engineering, 12(3):321–347, 2005.

[19] International Electrotechnical Commission. Analysis Tech-
niques for System Reliability - Procedure for Failure Mode
and Effects analysis (FMEA), IEC 60812, 1991.

[20] International Electrotechnical Commission. Functional Safety
of Electrical/Electronic/Programmable Electronic Safety-
related Systems, IEC 61508, , 2000.

[21] International Organization for Standardization. Road Vehicles
Functional Safety, ISO 26262 (Commitee Draft), 2008.

[22] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic
symbolic model checking with PRISM: A hybrid approach.
International Journal on Software Tools for Technology
Transfer (STTT), 6(2):128–142, 2004.

[23] J. D. Reese and N. G. Leveson. Software Deviation Analysis.
In Proceedings of ICSE 1997, pages 250–261. ACM Press,
1997.

[24] K. S. Trivedi. Probability and statistics with reliability,
queuing and computer science applications. John Wiley and
Sons Ltd., 2002.


