
Int J Softw Tools Technol Transfer (2004) 6: 257–259 / Digital Object Identifier (DOI) 10.1007/s10009-004-0168-3

Special section on the algorithmics of software model checking

Introductorypaper

Matthew Dwyer1, Stefan Leue2

1Department of Computer Science and Engineering, 256 Avery Hall, University of Nebraska, Lincoln, NE 68588-0115, USA
e-mail: dwyer@cse.unl.edu
2Department of Computer and Information Science, University of Konstanz, 78457 Konstanz, Germany
e-mail: Stefan.Leue@uni-konstanz.de

Published online: 17 November 2004 –  Springer-Verlag 2004

1 Introduction

The term “software model checking” has recently been
coined to refer to a flourishing area of research in software
verification – the formal, automated analysis of program
source code. Software model checking is considered an
important application of classical model checking, where
the model of a software system is analyzed in an auto-
mated fashion for compliance with a property specifica-
tion. While classical model checking assumes the exis-
tence of an abstract model of the software system to be
analyzed, in software model checking the emphasis is on
directly analyzing program code given in a standard pro-
gramming language, such as Java or C. This introduces
a variety of significant obstacles, chief among them the
efficient treatment of the complex data, e.g., heap struc-
tured data, and control constructs, e.g., procedure calls
and exception handling, found in modern programming
languages. These obstacles can also be viewed as opportu-
nities for adapting traditional model checking data struc-
tures and algorithms to exploit the particular semantics
of programming language constructs to gain improved
performance. Moreover, while classical model checking
emphasizes proving a model correct as the primary ob-
jective, an increasingly widely held view is that model
checkers can function effectively as anomaly detectors or
bug finders, i.e., they locate and explain undesired behav-
ior of the software.
This special section is the second devoted to publish-

ing revised versions of contributions first presented at the
International SPIN Workshop Series on Model Check-
ing Software. In recent years this series of workshops has
broadened its scope from focusing on the model checker
SPIN to covering software model checking technology
in general. The editorial introduction by Havelund and
Visser to the first STTT special section devoted to SPIN
papers [11] provides an excellent overview of the foun-

dational ideas underlying software model checking. That
special section was based on papers presented at the 7th
International SPIN Workshop held at Stanford Univer-
sity (USA) in August/September 2001. Authors of well-
regarded papers from the 8th International SPIN Work-
shop held in Toronto (Canada), colocated with ICSE
2001 on 10–11 May 2001, and the 9th International SPIN
Workshop on Model Checking Software, held 11–13 April
2002 in Grenoble (France) as a satellite event of ETAPS
2002, were invited to submit to this special issue. All three
of the papers included here have been extended to include
significant new content and have undergone an indepen-
dent round of reviewing.1

2 Software model checking

Model checking is enjoying much attention in academia
and industry due to the fact that it can perform deep-
semantic reasoning about program behavior in a fully
automated fashion, i.e., it does not require interaction
from the designer once the model and the property spe-
cification have been created. This is particularly valuable
for validating concurrent programs where it is difficult to
drive traditional testing techniques to exercise unlikely,
but still possible, “corner cases” in a program’s logic. In
addition, when a property violation has been found, most
model checkers return an offending trace of the system’s
behavior, called a counterexample, that helps in locating
the cause of the property violation.
There are two prevailing model checking technolo-

gies. In symbolic model checking [4, 15], the state space
and the state transition function are represented by bi-
nary decision diagrams and the property verification cor-
responds to a symbolic fixed-point computation on the

1 Reviewing for the paper submitted by Edelkamp, Leue, and
Lluch-Lafuente was handled solely by Matthew Dwyer.



258 M. Dwyer, S. Leue: The algorithmics of software model checking

set of reachable system states. In explicit-state model
checking [5, 12], the system states are explicitly enumer-
ated using a next-state function and property verification
corresponds to a systematic search of the state space.
Explicit-state model checking has proven to deal very suc-
cessfully with the irregularly structured models that soft-
ware verification problems entail. The increasing matu-
rity of model checking technology is documented through
the availability of various monographs [3, 5, 16] andmodel
checking tools such as SPIN [12], SMV [15], Bandera [7],
JPF [10, 17], and UPPAAL [2]. An earlier STTT special
section focused on the pragmatics of model checking [6].
The more direct link in software model checking to

the software artifact to be analyzed offers various advan-
tages over model-based classical model checking. First,
the manual model-building step is avoided. This relieves
the software engineer of the challenge of building a suit-
able model based on adequate and sound abstractions.
Also, when a property violation is found, it is much easier
to trace a counterexample that has been produced back to
the software code, which enhances error explanation. On
the downside, the state spaces of software models are ei-
ther very large or even infinite. The size of the state space
is due to the use of variables over finite, but very large,
data domains and due to the concurrent nature of many
software systems. Unboundedness of the size of the state
space is due, in part, to recursive function and procedure
invocations.
Historically, one of the first model checkers to directly

analyze software code was the tool Verisoft [9], which
offers an incomplete model checking algorithm for ver-
ifying safety properties of C programs. It implements
the concept of memoryless model checking, which means
that only a small finite history of the state space explo-
ration is retained. The tool has been successfully used to
analyze telecommunications code for software property
violations, in particular deadlock detection. SLAM [1],
developed at Microsoft Research, is a software model
checking toolset for C programs based on the idea of
boolean abstraction. It is capable of checking implemen-
tations of real Windows XP device drivers for sequenc-
ing properties described as automata; recent experiments
with SLAM have analyzed programs of more than 20,000
source lines. While SLAM treats sequential code, the
SPIN-based FeaVer system [13] extracts SPIN models
from concurrent C code. FeaVer served as a very effect-
ive complement to traditional testing in the development
of the control software for a voiceover-IP software switch
at Lucent Technologies. Much attention has recently also
been devoted to the analysis of Java code. The Ban-
dera [7] and Java PathFinder [10, 17] toolsets are the most
prominent examples of Java model checkers. The primary
characteristic of Bandera is that it combines a variety of
program analysis and transformation phases, e.g., slic-
ing and data abstraction, to reduce the model to a form
that is significantly more efficient to model check. Java
PathFinder is implemented as a customized stateful Java

interpreter, and as such it can process nearly any Java
source code; it has been used by NASA in the verification
of mission-critical Java code.

3 Customizing model checking data structures
and algorithms for software

The successful application of software model checking
technology in practical software design processes hinges
on the availability of efficient model checking algorithms
that are capable of dealing with the tremendous state
space sizes that the software systems to be analyzed en-
tail. For many software systems, enormous state spaces
remain even after sophisticated abstraction techniques
have been applied. This special section focuses on three
successful techniques that are capable of significantly im-
proving the performance of existing model checking algo-
rithms in dealing with the complexities of software.
A focus of research has recently been the use of

heuristics-guided, informed search algorithms as a re-
placement of the otherwise uninformed state-space-tra-
versal algorithms. The paper by Groce and Visser pro-
duces heuristics based on the structure of the underlying
Java code in order to improve the efficiency of finding
errors. The idea of this approach is to use the con-
trol and concurrency structure of the program in order
to achieve a better coverage of the state space when
looking for concurrency-related properties, such as dead-
lock detection. The objective of these heuristics is simi-
lar to coverage-increasing heuristics in software testing:
a higher or more evenly distributed coverage of the state
space increases the chances of finding errors within the
time and memory limits available. The most important
structural heuristics that these authors suggest include
a branch-counting heuristic and a heuristic that attempts
to maximize the number of thread switches in order to
more easily find concurrency-related faults. The authors
implement their heuristics in the Java PathFinder model
checker and apply their approach to the DEOS operating
system and reengineered Java code of the Deep Space 1
spacecraft as case studies.
The paper by Edelkamp, Leue, and Lluch-Lafuente

also addresses heuristics-directed model checking. How-
ever, unlike the paper by Groce and Visser, the authors
use property-oriented heuristics that help in finding
shorter or even optimally short counterexamples when
comparing with the standard depth-first search (DFS)
strategy commonly used in explicit-state model checkers.
Short counterexamples aid in determining the causes of
faults in the model since they are easier to comprehend
than the typically very long counterexamples obtained
through DFS-based model checking. In this paper the
authors extend their previous work on directed explicit-
state model checking [8] by reconciling it with partial-
order concepts, in particular partial-order reduction. This
form of automated state space compaction is essential



M. Dwyer, S. Leue: The algorithmics of software model checking 259

to the success of explicit-state model checking in analyz-
ing concurrent software models, and hence it needs to be
proven that this reduction method is compatible with the
directed model checking approach. The authors also in-
troduce heuristics based on Hamming distances between
a given error trail and the current system state that help
in reducing the length of precomputed counterexamples.
The authors apply their approach to various examples of
models of real-life concurrent software systems and have
implemented their methods in a heuristic extension of
SPIN, called HSF-SPIN.
Finally, the paper by Iosif proposes amethod to reduce

the state space of dynamic concurrent programs. These
types of programs are typical for object-oriented systems
written in languages like C++ or Java in which object in-
stances are generated and terminated dynamically dur-
ing execution time of the code. In the paper, the author
proposes criteria for determining symmetries between ob-
ject instances with respect to the threads in which they
execute and the heaps on which their data are allocated.
The authors also prove that their symmetry reductions are
compatible with partial-order reductions. They have im-
plemented their reduction technique in the model checker
dSPIN [14], a variant of SPIN that is capable of dealing
very efficiently with dynamic systems structures. On the
case studies that the authors present significant reductions
in the size of the state spaces can be observed.

References

1. Ball T, Rajamani SK (2001) Automatically validating tem-
poral safety properties of interfaces. In: Proceedings of SPIN
2001. Lecture notes in computer science, vol 2057. Springer,
Berlin Heidelberg New York

2. Bengtsson J, Larsen KG, Larsson F, Pettersson P, Yi W
(1997) UPPAAL – a tool suite for automatic verification of
real-time systems. In: Alur R, Henzinger TA, Sonntag ED

(eds) Hybrid systems III – Verification and control. Lecture
notes in computer science, vol 1066. Springer, Berlin Heidel-
berg New York, pp 232–243

3. Bérard B, Finkel M, Bidoit A, Laroussine F, Petit A, Petrucci
L, Schoenebelen P, McKenzie P (2001) Systems and software
verification. Springer, Berlin Heidelberg New York

4. Clarke EM, McMillan KL, Dill DL, Hwang LJ (1992) Sym-
bolic model checking: 1020 states and beyond. Inf Comput
98(2):142–170

5. Clarke EM, Grumberg O, Peled DA (1999) Model checking.
MIT Press, Cambridge, MA

6. Cleaveland R (1999) Pragmatics of model checking: an STTT
special section. Int J Softw Tools Technol Transfer 2(3):208–
218

7. Corbett JC, Dwyer MB, Hatcliff J, Laubach S, Pasareanu
CS, Robby, Zheng H (2000) Bandera: extracting finite-state
models from Java source code. In: 22nd IEEE international
conference on software engineering (ICSE)

8. Edelkamp S, Leue S, Lluch-Lafuente A (2004) Directed
explicit-state model checking in the validation of communica-
tion protocols. Int J Softw Tools Technol Transfer 5(2–3):247–
267. DOI: 10.1007/s10009-002-0104-3

9. Godefroid P (2003) Software model checking: the VeriSoft ap-
proach. Technical report, Bell Labs Technical Memorandum
ITD-03-44189G. Formal Meth Syst Des (in press)

10. Havelund K, Pressburger T (2000) Model checking Java pro-
grams using Java PathFinder. Int J Softw Tools Technol
Transfer 2(4):366–381

11. Havelund K, Visser W (2002) Program model checking as
a new trend. Int J Softw Tools Technol Transfer 4(1):8–20.
DOI: 10.1007/s10009-002-0080-7

12. Holzmann GJ (2003) The SPIN model checker, primer and
reference manual. Addison-Wesley, Reading, MA

13. Holzmann GJ, Smith MH (2000) Automating software feature
verification. Bell Labs Tech J 5(2):72–87

14. Iosif R, Sisto R (1999) dSPIN: A dynamic extension of SPIN.
In: Proceedings of the 6th SPIN workshop. Lecture notes in
computer science, vol 1680. Springer, Berlin Heidelberg New
York, pp 261–276

15. McMillan KL (1993) Symbolic model checking. Kluwer, Dor-
drecht

16. Peled DA (2001) Software reliability methods. Springer,
Berlin Heidelberg New York

17. Visser W, Havelund K, Brat G, Park S (2000) Model checking
programs. In: IEEE International conference on automated
software engineering. September 2000


