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Abstract. In recent work on the safety analysis of systems we have
shown how causal relationships amongst events can be algorithmically
inferred from probabilistic counterexamples and subsequently be mapped
to fault trees. The resulting fault trees were significantly smaller and
hence easier to understand than the corresponding probabilistic coun-
terexample, but still contain all information needed to discern the causes
for the occurrence of a hazard. More recently we have developed an ap-
proach called Causality Checking which is integrated into the state-space
exploration algorithms used for qualitative model checking and which is
capable of computing causality relationships on-the-fly. The causality
checking approach outperforms the probabilistic causality computation
in terms of run-time and memory consumption, but can not provide a
probabilistic measure. In this paper we combine the strengths of both
approaches and propose an approach where the causal events are com-
puted using causality checking and the probability computation can be
limited to the causal events. We demonstrate the increase in performance
of our approach using several case studies.

1 Introduction

Model Checking [11] is an established technique for the verification of systems.
For a formal model of the system and a formalized requirement the model checker
automatically checks whether the model satisfies the requirement. In case the
requirement is not satisfied, a trace from the initial system state into a state
violating the requirement is produced by the model checker. This error trace is
called a counterexample. Counterexamples can be used to retrace the steps of
the system that lead to a particular requirement violating state, but they do
not provide any insight into which event did cause the requirement violation.
Consequently, debugging a system using counterexamples is a difficult iterative
and hence time-consuming process.

In the case of probabilistic model checking [6] the debugging of the system
becomes even more difficult. While in qualitative model checking a single trace of-
ten provides valuable information for the debugging of the system, a single trace
is most often not sufficient to form a probabilistic counterexample [4,17] since the
violation of a probabilistic property with a probability-bound can hardly ever
be traced back to a single error trace. In almost all cases a set of error traces is



needed to provide an accumulated probability mass that violates the probability-
bound of the specified probabilistic property. With an increasing number of error
traces that are needed to form the probabilistic counterexample, an increasing
number of different error traces need to be manually retraced and interpreted in
order to get insight into why the property was violated.

In recent work [22,26] we have developed two approaches that help to debug
complex systems:

1. The probabilistic causality computation approach described in [22], where
causal relationships of events are algorithmically inferred from probabilistic
counterexamples and subsequently mapped to fault trees [32]. Fault trees
are a method widely used in industry to visualize causal relationships. The
resulting fault trees were significantly smaller and hence easier to understand
than the corresponding probabilistic counterexample, but still contain all
information to discern the causes for the occurrence of a hazard.

2. The Causality Checking approach [26], where the causality computation algo-
rithm is integrated into the state-space exploration algorithms used for qual-
itative model checking. This algorithm is capable of computing the causality
relationships on the fly.

The obvious advantage of the probabilistic causality computation approach
over the causality checking approach is that it computes a quantitative mea-
sure, namely a probability, for a combination of causal events and hazards to
occur. The probability of an event combination causing a property violation
to occur is an information that is needed for the reliability and safety anal-
ysis of safety-critical systems. An important shortcoming of the probabilistic
causality computation approach compared to the causality checking approach is
that the causality computation requires a complete probabilistic counterexample
consisting of all traces that violate the property. The high amount of run-time
and memory that is needed to compute the probabilities of all traces in the
probabilistic counterexample limits the scalability of the probabilistic causality
computation approach.

The goal of this paper is to leverage the causality checking approach in order
to improve the scalability of the probabilistic causality computation approach.
The key idea is to first compute the causal events using the causality checking
approach and to then limit the probability computation to the causal event
combinations that have first been computed. Our proposed combined approach
can be summarized by identifying the following steps:

– The probabilistic PRISM model is mapped to a qualitative Promela model.

– The causality checking approach is applied to the qualitative model in order
to compute the event combinations that are causal for the property violation.

– The information obtained through causality checking is mapped back via
alternating automata to the probabilistic model. The probabilities for the
different event combinations that are causal for the property violation to
occur are computed using a probabilistic model checker.



Fig. 1. Overview of the approach.

Figure 1 gives an overview of the approach.
The remainder of the paper is structured as follows: In Section 2 we briefly in-

troduce probabilistic model checking, the PRISM language, and causality check-
ing. We discuss the translation of probabilistic PRISM models to qualitative
Promela models in Section 3. Section 4 is devoted to the translation of the in-
formation returned by the causality checker to the PRISM model and the prob-
ability computation of the causal events. In Section 5 we evaluate the usefulness
of the proposed approach on several case studies. Related work is discussed
throughout the paper and in Section 6. We conclude the paper and give an
outlook on future research in Section 7.

2 Preliminaries

2.1 Probabilistic Model Checking

Probabilistic model checking [6] requires two inputs: a description of the system
to be analyzed, typically given in some model checker specific modeling language,
and a formal specification of quantitative properties of the system, related for
example to its performance or reliability that are to be analyzed.

From the first of these inputs, a probabilistic model checker constructs the
corresponding probabilistic model. The probabilistic models we use in this paper
are continuous-time Markov chains (CTMCs) [21] where transitions are assigned
positive, real values that are interpreted as rates of negative exponential distri-
butions.

The quantitative properties of the system that are to be analyzed are speci-
fied using a variant of temporal logic. The temporal logic we use is Continuous
Stochastic Logic (CSL) [1,5].

2.2 The PRISM Language

We present an overview of the input language of the PRISM model checker [23],
for a precise definition of the semantics we refer to [19]. A PRISM model is com-
posed of a number of modules which can interact with each other. A module con-
tains a number of local variables. The values of these variables at any given time
constitute the state of the module. The global state of the whole model is deter-
mined by the local state of all modules. The behavior of each module is described
by a set of commands. A command takes the form: “[action label] guard→ rate1 ∶
update1&...& updaten;”. The guard is a predicate over all variables in the model.
The update commands describe a transition which the module can make if the



guard is true. A transition is specified by giving the new values of the variables
in the module, possibly as a function of other variables. A rate is assigned to
each transition. The action label is used for synchronizing transitions of different
modules. If two transitions are synchronized they can only be executed if the
guards of both transitions evaluate to true. The rate of the resulting synchro-
nized transition is the product of the two individual transitions. An example of a
PRISM model is given in Listing 1.1. The module named moduleA contains two
variables: var1, which is of type Boolean and is initially false, and var2, which is
a numeric variable and has initially the value 0. If the guard (var2 < 4) evaluates
to true, the update (var2′ = var2+ 1) is executed with a rate of 0.8. If the guard
(var2 = 2) evaluates to true, the update (var1′ = true) is executed with a rate of
1.0.

module moduleA

var1: bool init false;

var2: [0..11] init 0;

[Count] (var2 < 4) -> 0.8: ( var2 ’= var2 + 1);

[End] (var2 = 4) -> 1.0: ( var1 ’= true);

endmodule

module moduleB

var3: [0..2] init 0;

[Count] (var3 < 2) -> 1.0: ( var3 ’= var3 + 1);

[Count] (var3 = 2) -> 1.0: ( var3 ’= 0);

endmodule

Listing 1.1. A module in the PRISM language.

2.3 Railroad Crossing Example

In this paper we will use the example of a railroad crossing for illustrative pur-
poses. In this example a train can approach the crossing (Ta), enter the crossing
(Tc) and finally leave the crossing (Tl). Whenever a train is approaching, the
gate should close (Gc) and open when the train has left the crossing (Go). It
might also be the case that the gate fails (Gf). The car approaches the cross-
ing (Ca) and enters the crossing (Cc) if the gate is open and finally leaves the
crossing (Cl). We are interested in computing the causal events for the violation
of the property “it is never the case that both the car and the train are in the
crossing at the same time”.

2.4 Causality Reasoning

The probabilistic causality computation approach and the causality checking
approach are based on an adoption of the structural equation model (SEM) by
Halpern and Pearl [16]. The SEM is an extension of the counterfactual reasoning
approach and the alternative world semantics by Lewis [28,12]. The “näıve”
counterfactual causality criterion according to Lewis is as follows: event A is
causal for the occurrence of event B if and only if, were A not to happen, B would
not occur. The testing of this condition hinges upon the availability of alternative
worlds. In our setting possible system execution traces represent the alternative
worlds. The SEM introduces the notion of causes being logical combinations of
events as well as a distinction of relevant and irrelevant causes. In the SEM
events are represented by variable values and the minimal number of causal



variable valuation combinations is determined. In our precursory work [22,26],
we extended the SEM by considering the order of the occurrences of events as
possible causal factors. In order to be able to reason about event orderings we
defined a temporal logic called event order logic (EOL).

We will now give a brief overview of the EOL as originally defined in [26].
The EOL allows one to connect variables representing the occurrence of events
with the boolean connectives ∧, ∨ and ¬. To express the ordering of events we
introduced the ordered conjunction operator .. The formula a. b with events a
and b is satisfied if and only if events a and b occur in a trace and a occurs before
b. In addition to the . operator we introduced the interval operators .[, .], and
.< φ .>, which define an interval in which an event has to hold in all states.
These interval operators are necessary to express the causal non-occurrence of
events.

Definition 1. Syntax of Event Order Logic (EOL). Simple EOL formulas over
a set A of event variables are formed according to the following grammar:

φ ∶∶= a ∣ φ1 ∧ φ2 ∣ ¬φ ∣ φ1 ∨ φ2

where a ∈ A and φ, φ1 and φ2 are simple EOL formulas. Complex EOL formulas
are formed according to the following grammar:

ψ ∶∶= φ ∣ ψ1 ∧ ψ2 ∣ ψ1 ∨ ψ2 ∣ ψ1 . ψ2 ∣ ψ .[ φ ∣ φ .] ψ ∣ ψ1 .< φ .> ψ2

where φ is a simple EOL formula and ψ1 and ψ2 are complex EOL formulas.
Note that the ¬ operator binds more tightly than the ., .[, .], and .< φ .>,
operators and those bind more tightly than the ∨ and ∧ operator.

The formal semantics of this logic is defined over execution traces. Notice
that the ., .[, .], and .< φ .> operators are linear temporal logic operators and
that the execution trace σ is akin to a linearly ordered Kripke structure.

Definition 2. Semantics of Event Order Logic (EOL). Let T = (S,Act,→, I,AP,
L) a transition system, let φ, φ1, φ2 simple EOL formulas, let ψ, ψ1, ψ2 complex
EOL formulas, and let A a set of event variables, with aαi ∈ A, over which φ,
φ1, φ2 are built. Let σ = s0, α1, s1, α2, . . . αn, sn a finite execution trace of T and
σ[i..r] = si, αi+1, si+1, αi+2, . . . αr, sr a partial trace. We define that an execution



trace σ satisfies a formula ψ, written as σ ⊧e ψ, as follows:

sj ⊧e aαi iff sj−1
αiÐ→ sj

sj ⊧e ¬φ iff not sj ⊧e φ
σ[i..r] ⊧e φ iff ∃j ∶ i ≤ j ≤ r . sj ⊧e φ

σ ⊧e ψ iff σ[0..n] ⊧e ψ, where n is the length of σ.

σ[i..r] ⊧e φ1 ∧ φ2 iff σ[i..r] ⊧e φ1 and σ[i..r] ⊧e φ2
σ[i..r] ⊧e φ1 ∨ φ2 iff σ[i..r] ⊧e φ1 or σ[i..r] ⊧e φ2
σ[i..r] ⊧e ψ1 ∧ ψ2 iff σ[i..r] ⊧e ψ1 and σ[i..r] ⊧e ψ2

σ[i..r] ⊧e ψ1 ∨ ψ2 iff σ[i..r] ⊧e ψ1 or σ[i..r] ⊧e ψ2

σ[i..r] ⊧e ψ1 . ψ2 iff ∃j, k ∶ i ≤ j < k ≤ r . σ[i..j] ⊧e ψ1 and σ[k..r] ⊧e ψ2

σ[i..r] ⊧e ψ .[ φ iff (∃j ∶ i ≤ j ≤ r . σ[i..j] ⊧e ψ and (∀k ∶ j ≤ k ≤ r . σ[k..k] ⊧e φ))
σ[i..r] ⊧e φ .] ψ iff (∃j ∶ i ≤ j ≤ r . σ[j..r] ⊧e ψ and (∀k ∶ 0 ≤ k ≤ j . σ[k..k] ⊧e φ))
σ[i..r] ⊧e ψ1 .< φ .> ψ2 iff (∃j, k ∶ i ≤ j < k ≤ r . σ[i..j] ⊧e ψ1 and σ[k..r] ⊧e ψ2

and (∀l ∶ j ≤ l ≤ k . σ[l..l] ⊧e φ))

We define that the transition system T satisfies the formula ψ, written as T ⊧e ψ,
iff ∃σ ∈ T . σ ⊧e ψ.

A system execution trace σ = s0, α1, s1, α2, . . . αn, sn induces an EOL formula
ψσ = aα1 .. . ..aαn . For reasons of readability we omit the states in the execution
traces from now on. For instance, the execution σ = Ta, Ca, Cc, Gc, Tc of the
railroad example induces the EOL formula ψσ = Ta .Ca .Cc .Gc .Tc.

The adopted SEM defined in [22,26] can be used to decide whether the in-
duced EOL formula ψσ of a execution traces on which the target property ϕ
is violated represent a causal combination of events. In the following the term
property refers to the target property for whose violation we want to compute
the causal events. The conditions imposed by the adopted SEM for some ψ to
be causal can be summarized as follows:

– AC1: This condition is the positive side of the counterfactual test. It checks
whether there exists an execution trace σ that violates the property and
satisfies the EOL formula ψ.

– AC2(1): This condition resembles the counterfactual test, where it is checked
whether there exists an execution trace σ′ where the order and occurrence
of the events is different from ψ and the property is not violated.

– AC2(2): This condition says that for a ψ to be causal it can not be possible
to add an event so that causality is voided. This test serves to reveal causal
non-occurrence.

– AC3: This condition ensures minimality of the causal event combinations
and requires that no sub-formula of ψ satisfies AC1 and AC2.

– OC1: This condition checks for all events in ψ whether the order in which
they occur is causal or not.



For all executions where the property is violated the conditions imposed by
the adopted SEM are checked. For instance, the safety property for the railroad
crossing example is violated on the execution trace σ = Ta, Ca, Cc, Gc, Tc
because the car is on the crossing when the gate closes and the train enters
the crossing. Condition AC1 is fulfilled for ψσ = Ta . Ca . Cc . Gc . Tc since
σ exists and the property is violated. AC2(1) is fulfilled in this example since
there exists the execution trace σ′ = Ta, Ca, Gc, Tc where the occurrence and
order of the events is different from that specified by ψσ. For the AC2(2) test
all good execution traces are needed to check whether there exists an event that
can void the causality of ψσ. The condition AC2(2) reveals that there exists a
good execution trace σ′′ = Ta, Ca, Cc, Cl, Gc, Tc where the property is not
violated because the car leaves the crossing before the gate closes (Gc) and the
train enters the crossing (Tc). In other words, the non-occurrence of the event
Cl between the event Cc and the events (Gc ∧ Tc) is causal and its occurrence
can void the causality of ψσ.

According to the procedures defined in [26] the causal non-occurrence of Cl
is reflected by adding ¬Cl to ψσ and we get ψσ = Ta.Ca.Gf.Cc.< ¬Cl.> Tc.
AC3 is satisfied for ψσ because no subset of ψσ satisfies AC1 and AC2. Finally,
OC1 checks for all events whether their order is causal or not. If their order is not
causal the . operator is replaced by the ∧ operator. In our example, the order
of the events Gf, Cc, ¬Cl, Tc is causal since only if the gate fails before the car
and the train are entering the crossing, and the car does not leave the crossing
before the train is entering the crossing an accident happens. Consequently after
OC1 we obtain the EOL formula ψσ = (Ta ∧ (Ca . Cc)) .< ¬Cl .> (Gc ∧ Tc).
The disjunction of all ψσ1 , ψσ2 , ..., ψσn that satisfy the conditions AC1-AC3 and
OC1 is the EOL formula describing all possible causes of the hazard. For the
railroad crossing example the EOL formula returned by the causality checker is
ψ = (Gf∧((Ta∧(Ca.Cc)).<¬Cl.>Tc))∨((Ta∧(Ca.Cc)).<¬Cl.> (Gc∧Tc)).

Probabilistic Causality Computation [22]. In order to apply the probabilis-
tic causality computation to a PRISM model first all traces in the counterexam-
ple and all good execution traces need to be computed using the DiPro tool [3].
The causality computation is subsequently performed as a post-processing step,
where the conditions AC1-AC3 and OC1 are checked for all bad traces. Once
the causality computation is completed, the probabilities of the execution traces
in the probabilistic counterexample are assigned to the disjuncts of the EOL
formula generated by the causality computation. The resulting EOL formula is
then mapped onto a Fault Tree.

Causality Checking [26]. The algorithms used for causality checking are inte-
grated into the state-space exploration algorithms used for model checking. The
state-space of the model is traversed using breadth-first search or depth-first
search. Whenever a bad trace violating the property or a good trace not entail-
ing a property violation is found, this trace is added to a data-structure called
sub-set graph. The conditions AC1-AC3 and OC1 are reduced to sub-execution



test, thus the decision whether a combination of events is causal or not can be
decided based on the position in the sub-set graph. Furthermore, this permits
an on the fly decision whether a good trace needs to be stored for the AC2(2)
test or whether it can be discarded.

2.5 Alternating Automata

In this paper we translate EOL formulas generated by the causality checker
to alternating automata on finite words [10,33]. Alternating automata are a
generalization of nondeterministic automata in which choices along a path can
be marked existential, meaning that some branch has to reach an accepting state,
or universal, which means that all branches have to reach an accepting state.
We use the definition of alternating automata from [15] which differs from the
definitions in [10,33] in that the automata are not defined with input symbols
labeling the edges but with input symbols labeling the nodes instead.

Definition 3. Alternating Automaton. An alternating automaton A is defined
recursively as follows:
A ∶∶= εA (empty automaton)
∣ ⟨v, δ, f⟩ (single node)
∣ A1 ∧A2 (conjunction of two automata)
∣ A1 ∨A2 (disjunction of two automata)

where v is a state formula, δ is an alternating automaton expressing the next-
state relation, and f indicates whether the node is accepting (denoted by +)
or rejecting (−). We require the automaton be finite. The set of nodes of an
automaton A, denoted by N (A) is formally defined as
N (εA) = ∅
N (⟨v, δ, f⟩) = ⟨v, δ, f⟩ ∪N (δ)
N (A1 ∧A2) = N (A1) ∪N (A2)
N (A1 ∨A2) = N (A1) ∪N (A2)

A path through a nondeterministic automaton is a sequence of nodes. A
“path” through an alternating automaton is, in general, a tree.

Definition 4. Tree. A tree is defined recursively as follows:
T ∶∶= εT (empty tree)
∣ T ⋅ T (composition)
∣ ⟨⟨v, δ, f⟩, T ⟩ (single node with child tree)

Definition 5. Run of an Alternating Automaton. Given a finite sequence of
states σ = s0, ..., sn−1 and an automaton A, a tree T is called a run of σ in A if
one of the following holds:
A = εA and T = εT
A = ⟨v, δ, f⟩ and n > 1, T = ⟨⟨v, δ, f⟩, T ′⟩, s0 ⊧ v and T ′ is a run of s1, ..., sn−1

in δ, or n = 1, T = ⟨⟨v, δ, f⟩, εT ⟩ and s0 ⊧ v
A = A1 ∧A2 and T = T1 ⋅ T2, where T1 is a run of A1 and T2 is a run of A2

A = A1 ∨A2 and T is a run of A1 or T is a run of A2



Definition 6. Accepting Run. A run is accepting if every path through the tree
ends in an accepting node.

For each alternating automaton A there exists a nondeterministic finite au-
tomaton An such that L(An) = L(A), which was shown in [10,9,33].

3 Translating PRISM Models to Promela Models

Our goal is to compute the causal events using the causality checking approach
and limit the probability computation to the causal events. To achieve this
goal we need to translate the model given by a continuous-time Markov chain
(CTMC) [21] specified in the PRISM language to a labeled transition system
in the Promela language [20]. The translation is necessary since the causality
checking approach is based on the SpinJa toolset [13], a Java re-implementation
of the explicit state model checker Spin [20]. Due to space restrictions we can
not introduce the Promela language here and refer to [20] for an in-depth in-
troduction to Promela. Furthermore, the reachability property describing the
hazard which is specified in Continuous Stochastic Logic (CSL) [1,5] needs to
be translated into a formula in linear temporal logic [29]. The translation of the
CSL formula to an LTL formula is straight forward: If the CSL formula is a state
formula, then it is also an LTL formula. If the CSL formula is a path formula,
then the path formula is an LTL formula if we replace a bounded-until operator
included in the formula with an LTL until operator. For the time being we do
not support CSL formulas containing nested path-operators.

We base our translation of PRISM models to Promela models on the work in
[31], but since no implementation of the described approach is available and the
approach translates Markov Decision Processes specified in a PRISM model to
a Promela model, we can not apply this approach directly. Furthermore, the in
[31] proposed translation of synchronizing action labels to rendezvous channel
chaining in Promela is not consistent with the PRISM semantics specified in [19].
Our translation algorithm maps the CTMC to a labeled transition system.

Definition 7. Labeled Continuous-time Markov Chain (CTMC) [21]. A labeled
Continuous-time Markov Chain C is a tuple (S, s0,R,L), where S is a finite set
of states, s0 ∈ S is the initial state, R ∶ S × S → R≥0 is a transition rate matrix
and L ∶ S → 2AP is a labeling function, which assigns to each state a subset of
the set of atomic propositions AP.

Definition 8. Labeled Transition System [6]. A transition system TS is a tuple
(S,Act, →, I,AP, L) where S is a finite set of states, Act is a finite set of
actions, → ⊆ S ×Act×S is a transition relation, I ⊆ S is a set of initial states,
AP is a set of atomic propositions, and L ∶ S → 2AP is a labeling function.

Definition 9. Transition System Induced by a CTMC. Let C = (S, s0,R,L) a
CTMC then T = (S,Act, →, I,AP, L) is the transition system induced by C if:
The set S of states in T is S = S, the set I of initial states in T is I = {s0}, and
for all pairs s, s′ ∈ S we add a transition to → and a corresponding action to Act
if R(s, s′) > 0.



We translate the induced transition system of the CTMC into the Promela
language.

The implementation of the PRISM to Promela translation works on the
syntax level of PRISM. PRISM modules are translated to active proctypes in
Promela consisting of a do-block which contains the transitions. Transitions that
are synchronized are translated according to the parallel composition semantics
of PRISM [19]. All variables in the PRISM model are translated to global vari-
ables of the corresponding type in the Promela model. This is necessary, since
otherwise it would not be possible to read variables from other proctypes as it
is permitted in PRISM. Listing 1.2 shows the output of the PRISM to Promela
translation of the PRISM code in Listing 1.1 from Section 2.2. The comments
at the end of each transition are merely added to make the Promela model more
readable but are not necessary for the translation.

Our approach requires that each command in the PRISM module is labeled
with an action label representing the occurrence of an event. If a command of
the PRISM model is not already labeled with an action label a unique action
label is added to this command during the translation. This does not change the
behavior of the PRISM model since the action label is unique and consequently
is not synchronized with any other command.

bool var1 = false; byte var2 = 0; byte var3 = 0;

active proctype moduleA (){

do

:: atomic {((var3 <2) && (var2 <4)) -> var2=var2 +1; var3=var3 +1;}/*Count*/

:: atomic {(( var3 ==2) && (var2 <4)) -> var2=var2 +1; var3 =0;}/*Count */

:: atomic {(var2 ==4) -> var1=true;}/*End*/

od;}

active proctype moduleB (){

do

:: atomic {((var2 <4) && (var3 <2)) -> var3=var3 +1; var2=var2 +1;}/*Count*/

:: atomic {((var2 <4) && (var3 ==2)) -> var3 =0; var2=var2 +1;}/*Count */

od;}

Listing 1.2. Example Promela translation of the PRISM model from Section 2.2.

Now that we can translate the PRISM model to a Promela model we can
apply the qualitative causality checking approach. How the results of the qual-
itative causality checking can be mapped back to the PRISM model and used
for probability computation is discussed in Section 4.

4 Computing Probabilities for Causal Events

For the railroad crossing example from Section 2.3 the EOL formula returned by
the causality checker is ψ = (Gf∧ ((Ta∧ (Ca.Cc)).< ¬Cl.> Tc))∨ ((Ta∧ (Ca.
Cc)).< ¬Cl.> (Gc∧Tc)). Intuitively, each disjunct of this formula represents a
class of execution traces on which the events specified by the EOL formula cause
the violation of the property.

In the rail road crossing example there are two classes of execution traces on
which the hazard occurs.

1. If the gate fails (Gf) at some point of the execution and a train (Ta) and a
car (Ca) are approaching this results in a hazardous situation if the car is
on the crossing (Cc) and does not leave the crossing (Cl) before the train
(Tc) enters the crossing (Gf ∧ ((Ta ∧ (Ca .Cc)) .< ¬Cl .> Tc)).



2. If a train (Ta) and a car (Ca) are approaching but the gate closes (Gc) when
the car (Cc) is already on the railway crossing and is not able to leave (Cl)
before the gate is closing and the train is crossing (Tc), this also corresponds
to a hazardous situation ((Ta ∧ (Ca .Cc)) .< ¬Cl .> (Gc ∧Tc)).

For instance, the execution traces σ = Ca,Ta,Gf,Cc,Tc and σ′ = Ca,Ta,Gc,Tc,
Tl,Go,Ta,Gf, Cc,Tc are traces that belong to the first class of traces. The trace
σ′′ = Ca,Ta,Cc,Gc,Tc is an example for a trace in the second class.

We now formalize the observation that each disjunct of the EOL formula
represents a class of traces by the notion of causality classes.

Definition 10. Causality Class. Let T = (S,Act, →, I,AP, L) a transition sys-
tem and σ = s0, α1, s1, α2, . . . αn, sn a finite execution trace of T. The set ΣB is
the set of traces for which some LTL property ϕ is violated.

The causality classes CC1, ...,CCn defined by the disjuncts of the EOL for-
mula ψ = ψ1 ∨ ... ∨ ψn decompose the set ΣB into sets ΣBψ1

,..., ΣBψn with
ΣBψ1

∪ ... ∪ΣBψn = ΣB.

Note that it can be the case that σ ∈ ΣBψ1
∧ σ ∈ ΣBψ2

if σ ⊧e ψ1 ∧ σ ⊧e ψ2.

All causal information that is needed in order to debug the system is rep-
resented by the causality classes. We can leverage this fact and compute the
probability sum of all traces represented by a causality class instead of comput-
ing the probability of all traces belonging to this class individually. This means
that the number of probabilistic model checking runs is reduced to the number
of causality classes instead of the number of traces in the counterexample.

We will now show how the probability sum of all traces represented by a
causality class can be computed using the PRISM model checker [23]. In order
to compute the probability of all traces represented by a causality class we trans-
late the EOL formula representing the causality class to an automaton which
accepts exactly those execution traces that are represented by the corresponding
causality class. Subsequently we show how we can synchronize the execution of
this automaton with a PRISM model, such that the probability of all sequences
which are accepted by the automaton is the probability sum of all traces repre-
sented by the corresponding causality class.

Note that since causality checking is limited to reachability properties a non-
deterministic finite automaton (NFA) is sufficient to represent the finite execu-
tion traces represented by the causality class [6]. Since all orders of the events
characterizing the causality class need to be considered, the size of the result-
ing NFA can be exponential in the size of the formula. To prevent this we use
alternating automata on finite words [10,33] as defined in Section 2.5.

Given an EOL formula ψ we can construct an alternating automaton A(ψ)
such that L(A(ψ)) = L(ψ). The construction of the automaton follows the struc-
ture of the formula.



Definition 11. Alternating Automaton for an EOL formula. Let ψ an EOL
formula that is built over the set of event variables a ∈ A. The automaton A(ψ)
for the EOL formula ψ can be constructed recursively following the structure of
the formula as follows: For an event variable a: A(a) = ⟨a, εA,+⟩, and for EOL
formulas ψ1, ψ2 and φ1:

A(ψ1 ∧ ψ2) = A(ψ1) ∧A(ψ2)
A(ψ1 ∨ ψ2) = A(ψ1) ∨A(ψ2)
A(ψ1 . ψ2) = ⟨true,A(ψ1 . ψ2),−⟩ ∨A1 where A1 = A(ψ1) ∧A2

and A2 = ⟨true,A2,−⟩ ∨A(ψ2)
A(φ1 .] ψ1) = A(ψ1) ∨ (⟨true,A(φ1 .] ψ1),−⟩ ∧A(φ1))
A(ψ1 .< φ1 .> ψ2) = ⟨true,A(ψ1 .< φ1 .> ψ2),−⟩ ∨ (A(ψ1)

∧(⟨true,A(ψ1 .< φ1 .> ψ2),−⟩ ∨ ⟨true,A(φ1 .] ψ2),−⟩))

Note that since we consider only reachability properties, it can not be the
case that an event voiding causality appears at the end of an execution trace. The
EOL operator .[ can hence not be added to an EOL formula as a consequence of
AC2(2) and consequently we do not specify a translation rule for this operator.
Notice that the only way for a ¬ operator to be added to an EOL formula by the
causality checking algorithm is when the non-occurrence of the negated event in
the specified interval is causal. To illustrate the proposed translation consider
that for the EOL formula

ψ = (Ta ∧ (Ca .Cc)) .< ¬Cl .> (Gc ∧Tc) (1)

of the railroad crossing example the first application of the recursive definition
creates the following rewriting:

A(ψ) = ⟨true,A((Ta ∧ (Ca .Cc)) .< ¬Cl .> (Gc ∧Tc)),−⟩ ∨ (A((Ta ∧ (Ca .Cc)))
∧ (⟨true,A((Ta ∧ (Ca .Cc)) .< ¬Cl .> (Gc ∧Tc)),−⟩
∨ ⟨true,A(¬Cl .] (Gc ∧Tc)),−⟩))

(2)

.
In order to compute the probability of a causality class we need to trans-

late the corresponding alternating automaton into the PRISM language and
synchronize it with the PRISM model.

Each action label in the PRISM model corresponds to an event variable in the
set A over which the EOL formulas were built. As a consequence each alternating
automaton accepts a sequence of PRISM action labels.

We will now define translation rules from alternating automata to PRISM
modules. We call a PRISM module that was generated from an alternating
automaton causality class module. The transitions of the causality class modules
are synchronized with the corresponding transitions of the PRISM model. The
transition rates of the causality class modules are set to 1.0, as a consequence,
the transitions synchronizing with the causality class modules define the rate
for the synchronized transition. In Listing 1.3 we present the pseudo-code of the



algorithm that generates a causality class module from an alternating automaton
representing an EOL formula.

The key idea is that for each event we add a boolean variable representing
the occurrence of the event and a transition labeled with the action label of
the event. The order constraints specified by the EOL formula are encoded by
guards. Synchronized transitions can only be executed if for each other module
containing transitions with the same action label the guard of at least one transi-
tion per module evaluates to true. It might hence be the case that the causality
class module prevents the execution of transitions in the PRISM model with
which the causality class module is synchronized. Since this would change the
behavior of the PRISM model and affect the probability mass distribution we
add for each transition of the causality class module for which the guard is not
always true a transition with the negated guard and without updates.

We also add a PRISM formula acc ψ for each sub-automaton which is true
whenever the corresponding sub-automaton is accepting the input word. Those
formulas are used to construct a CSL formula of the form P=?[(true)U(acc ψ)]
for each causality class. The CSL formulas can then be used to compute the prob-
ability of all possible sequences that are accepted by the causality class module,
which is the probability sum of all traces that are represented by the causality
class. Since it its possible that a trace belongs to more than one causality class,
we add an additional CSL formula that computes the probability of all traces
that are only in the causality class defined by ψ. This CSL formula has the form
of P=?[(true)U(acc ψ)&!(acc ψi∣...∣acc ψj))], where acc ψi∣...∣acc ψj are the for-
mulas of all causality classes except ψ.

global var var_def = "", trans = "", formulas = "";

function EOL_TO_PRISM(A(ψ)){

PRISM_CODE(A(ψ),true)

print "module ψ /n" + var_def +"/n"+ trans

+ " /n endmodule /n" + formulas; }

function PRISM_CODE(A(ψ), cond){

IF A(ψ) = ’A(a)’ THEN

var_def += ’s_ψ: bool init false;’

IF cond = ’true ’ THEN

trans += ’[a] (cond) -> 1.0 : (s_ψ’=true);’

ELSE

trans += ’[a] (cond) -> 1.0 : (s_ψ’=true);’

trans += ’[a] !(cond) -> 1.0 : true;’

ENDIF

formulas += ’formula acc_ψ = s_ψ;’

ELSE IF A(ψ) = ’A(ψ1) ∧A(ψ2)’ THEN

PRISM_CODE(A(ψ1), cond); PRISM_CODE(A(ψ2), cond);

formulas += ’formula acc_ψ = acc ψ1 & acc ψ2;’

ELSE IF A(ψ) = ’A(ψ1 ∧ψ2)’ THEN

PRISM_CODE(A(ψ1), cond); PRISM_CODE(A(ψ2), cond);

formulas += ’formula acc_ψ = acc ψ1 & acc ψ2;’

ELSE IF A(ψ) = ’A(ψ1 ∨ψ2)’ THEN

PRISM_CODE(A(ψ1), cond); PRISM_CODE(A(ψ2), cond)

formulas += ’formula acc_ψ = acc ψ1 | acc ψ2;’

ELSE IF A(ψ) = ’A(ψ1) ∨A(ψ2)’ THEN

PRISM_CODE(A(ψ1), cond); PRISM_CODE(A(ψ2), cond);

formulas += ’formula acc_ψ = acc ψ1 | acc ψ2;’

ELSE IF A(ψ) = ’A(ψ1 .ψ2)’ THEN

PRISM_CODE(A(ψ1), cond); PRISM_CODE(A(ψ2), acc ψ1 );

formulas += formula acc_ψ = acc ψ2;

ELSE IF A(ψ) = ’A(φ1 .] ψ1)’ THEN

PRISM_CODE(A(¬φ1), cond); PRISM_CODE(A(ψ1), cond & !(acc ¬φ1 ));

formulas += ’formula acc_ψ = acc ψ1;’

ELSE IF A(ψ) = ’A(ψ1 .< φ1 .> ψ2)’ THEN

PRISM_CODE(A(ψ1), cond); PRISM_CODE(A(¬φ1), acc ψ1)

PRISM_CODE(A(ψ2), (acc ψ1 & !(acc ¬φ1 ))

formulas += ’formula acc_ψ = acc ψ2;’

ENDIF }

Listing 1.3. Pseudo-code of the EOL to PRISM algorithm.



Due to space restrictions we can not show the causality class modules that
are generated for the railroad crossing example here, they can be found in [27].

In the railroad example the total probability of a state where both the train
and the car are on the crossing is p total = 2.312 ⋅10−4. The proposed combined
approach returns for the causality class characterized by ψ1 = Gf ∧ ((Ta ∧ (Ca .
Cc)) .< ¬Cl .> Tc) the total probability of pψ1 = 4.386 ⋅ 10−5 and the exclusive
probability of pψ1 excl = 3.464 ⋅10−5, and for the causality class characterized by
ψ2 = (Ta∧(Ca.Cc)).<¬Cl.> (Gc∧Tc) the total probability of pψ2 = 1.970 ⋅10−4

and the exclusive probability of pψ2 excl = 1.914 ⋅ 10−4. We use the EOL to fault
tree mapping proposed in [22] to visualize this results as a fault tree.

5 Experimental Evaluation

In order to evaluate the proposed combined approach, we have extended the Spin-
Cause tool. SpinCause is based on the SpinJa toolset [13], a Java re-implementation
of the explicit state model checker Spin [20]. The following experiments were per-
formed on a PC with an Intel Xeon Processor (3.60 Ghz) and 144 GBs of RAM.
We evaluate the combined approach on a case study from the PRISM bench-
mark suite [24] and two industrial case studies [2,7] for which the PRISM models
where automatically generated by the QuantUM tool [25] from a higher-level ar-
chitectural modeling language. The extended SpinCause tool and the PRISM
models used in this paper can be obtained from http://se.uni-konstanz.de/

research1/tools/spincause.

5.1 Case Studies

Embedded Control System [30]. The PRISM model of the embedded control
system is part of the PRISM benchmark suite [24]. The system consists of a main
processor, an input processor, an output processor, 3 sensors, and two actuators.
Various failure modes can lead to a shutdown of the system. We are interested
in computing the causal events for an event of the type “system shut down
within one hour”. Since one second is the basic time unit in our system one
hour corresponds to a mission time of T=3,600 time units. The formalization
of this property in CSL reads as P=?(true U≤T down). We set the constant
MAX COUNT, which represents the maximum number of processing failures
that are tolerated by the main processor, to a value of 5.

Airbag System [2]. This case study models an industrial size airbag system. It
contains an behavioral description of all system components that are involved in
deciding whether a crash has occurred. It is a pivotal safety requirement that an
airbag is never deployed if there is no crash situation. We are interested in com-
puting the causal events for an inadvertent ignition of the airbag. In CSL, this
property can be expressed using the formula P=?(noCrash U≤T AirbagIgnited).
The causality checker returned 5 causality classes. The total probability for an
inadvertent deployment of the airbag within T=100 computed by the combined
approach is p total = 0.228.

http://se.uni-konstanz.de/research1/tools/spincause
http://se.uni-konstanz.de/research1/tools/spincause


Train Odometer Controller [7]. The train odometer system consists of two
independent sensors used to measure the speed and the position of a train. A
monitor component continuously checks the status of both sensors. It reports fail-
ures of the sensors to other train components that have to disregard temporarily
erroneous sensor data. If both sensors fail, the monitor initiates an emergency
brake maneuver and the system is brought into a safe state. Only if the monitor
fails, any subsequent faults in the sensors will no longer be detected. We are
interested in computing the causal events for reaching an unsafe state of the
system. This can be expressed by the CSL formula P=?[(true)U<=T (unsafe)].

Combined Approach Probabilistic Causality Comp.
Run time (sec.) Memory (MB) Run time (sec.) Memory (MB)

Embedded: States: 6,013 Transitions: 25,340
T=10 3.06 19.27 2,003.00 409
T=3600 4.79 19.29 2,102.00 409
Airbag: States: 2,952 Transitions: 14,049
T=10 10.88 52.44 682.00 154
T=1000 33.63 52.44 874.00 154
Train Odometer Controller: States: 117,222 Transitions: 66,262
T=10 91.37 195.29 16,191.00 1,886
T=1000 2,572.74 195.29 44,356.00 1,886

Table 1. This table shows the experiment results with the combined approach and the
probabilistic causality computation approach.

5.2 Discussion

As we would expect, for all case studies the total probability returned by the
combined approach is equal to the probability returned for the respective prob-
abilistic property by PRISM after a probabilistic model checking run. If we sum
up the probabilities of the traces computed by DiPro for each causality class
and only consider traces that belong to exactly one causality class, then the sum
of the probability of each causality class is equal to the corresponding pψ excl
value of that causality class computed by the combined approach. If, on the
other hand, we sum up the probabilities of of the traces computed by DiPro for
each causality class and also consider the probability mass of traces that belong
to more than one causality class, the the sum of each causality class is equal to
the corresponding pψ value of that causality class computed by the combined
approach. These observations make us confident that the combined approach
computes correct probabilities.

Table 1 shows the run time and memory consumption of the combined ap-
proach and the probabilistic causality computation approach for each of the case
studies. The runtime and memory values for the combined approach include the
runtime and memory needed for all steps of the approach, namely translation



from PRISM to Promela, causality checking, alternating automata derivation
and mapping to PRISM, and the PRISM model checking. The combined ap-
proach consumes significantly less run time and memory than the probabilistic
causality computation approach. This difference can be explained by the fact
that for the probabilistic causality approach the probability of each traces in the
counterexample needs to be computed individually, which requires a probabilis-
tic model checking of a part of the model for each trace. The combined approach
reduces the number of probabilistic model checking runs to the number of the
computed causality classes. The run time of the combined approach increases
with the mission time T because the time needed by the PRISM model checker
to compute the probability for the different causality classes increases with an
increasing T. The relatively low runtime that is needed by the combined ap-
proach for the embedded case study as compared to the other case studies can
be explained by the relatively short length of the traces in the causality classes
of the embedded case study.

6 Related Work

A translation from Markov decision processes (MDPs) into the PRISM lan-
guage has been proposed in [31], but no implementation of the tool is publicly
available. Furthermore, the proposed translation of synchronizing action labels
to rendezvous channel chaining in Promela is not consistent with the PRISM
semantics specified in [19].

In [8], a formalization of the semantics of dynamic fault trees (DFTs) [14]
and a probabilistic analysis framework for DFTs based on interactive Markov
chains [18] is presented. The approach in [8] takes the DFT as the only input.
As a consequence, while this approach allows for a probabilistic analysis of the
events in the DFT, there is no possibility to combine the analysis with a model
containing the events of the DFT.

The approach of [7] computes minimal-cut sets, which are minimal combina-
tions of events that are causal for a property violation, and their corresponding
probabilities. Our approach extends and improves this approach by considering
the event order as a causal factor. Work in [17] documents how probabilistic
counterexamples for discrete-time Markov chains (DTMCs) can be represented
by regular expressions. While the regular expressions define an equivalence class
for some traces in the counterexample, it is possible that not all possible traces
are represented by the regular expression and consequently not all causal event
combinations are captured by the regular expression. In [4,34] probabilistic coun-
terexamples are represented by identifying a portion of an analyzed Markov chain
in which the probability to reach a safety-critical state exceeds the probability
bound specified by an upper-bounded reachability property. The method pro-
posed in this paper improves these approaches by identifying not only a portion
of the Markov chain, but all event combinations and their corresponding or-
der. Furthermore, the approach presented in [34] is applicable to DTMCs and
MDPs, whereas our approach is applicable to CTMCs. In addition none of the



approaches in [7,17,4,34] is able to reveal that the non-occurrence of an event is
causal.

To the best of our knowledge there is no approach in the literature that com-
bines qualitative causality reasoning with probabilistic causality computation.

7 Conclusion

We have discussed how the qualitative causality checking approach can be lever-
aged in order to improve the scalability of the probabilistic causality computation
approach. Furthermore, we have proposed and implemented a mapping of CTMC
models in the PRISM language to transition systems in the Promela language.
In addition, we have shown how an EOL formula generated by the qualitative
causality checking approach can be translated into an equivalent alternating
automaton, and how the resulting alternating automaton can be translated to
a causality class module in the PRISM language. The resulting causality class
module can then be used to compute the probability sum of all traces represented
by the causality class. We have demonstrated the performance increase of the
proposed synergy approach compared to the probabilistic causality computation
on several case studies from academia and industry.

In future work we plan to extend the combined approach to support DTMC
and MDPs models and to implement a version of the causality checking approach
that works directly on the probabilistic model.
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