We analyze reactive software systems consisting of a large number of components that communicate with each other by exchanging messages. Real life examples are tele-communication systems, internet-based systems, embedded systems, etc. Such systems usually possess a huge or even infinite state space, which makes it difficult or impossible to explore systematically the whole state space for checking properties of interest.

Abstraction

We abstract from
- program code;
- message orders;
- cycle activation conditions;
- cycle dependencies;

ILP problem(s)

\[x_1 \cdot 0 + x_2 \cdot 1 + x_3 \cdot 1 > 0 \]

Its solutions represent the undesired behavior. So, if no solution exists, then the system satisfies the considered property.

Counterexamples

It corresponds to the behavior in which only the cycle c2 is repeated infinitely often.

Yes, property satisfied

When necessary, we extract information which cycles must rely on which other cycles for repeated executions. Using such information, we are able to exclude a huge number of unrealistic combinations of cycle executions.

Refinement

Based on the discovery of control flow cycle dependencies

Case study

PBX – An IBM Telephony Switch System
- 29 classes of components, multiple instances of each class
- More than 75 unbounded message buffers
- State space: much larger than having 10^{46} states

Our analysis to determine communication buffer boundedness
- Runtime: 72 seconds
- #Cycles: 2345
- Size of ILP: 981*294

Publications

- TACAS 2006 automated termination proofs – for abstracting Java code on UML RT state machines
- CONCUR 2006 livelock freedom check
- TOOLS-EUROPE 2008 an executable UML-RT semantics in AsmL
- SPIN 2008 dependency analysis for control flow cycles
- TACAS 2004 boundedness test for UML RT models
- SPIN 2004 boundedness test for Promela models
- SPIN 2005 refinement

Prototype tools

- IBOC boundedness checker
- aLive livelock freedom checker
- PONES termination prover

A screenshot of the IBOC tool

DFG Colloquium

Konstanz

Wei Wei – Postdoc - Associated membership August 1, 2005 – April 3, 2008

Work group: Software Engineering