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Abstract. When the evolution of variables over time is relevant to a
classification task, established classifiers cannot be applied directly as
the typical input format (data table) is not appropriate. We propose
a new representation of temporal patterns that includes constraints on
(partial) presence, (partial) absence as well as the duration of temporal
predicates. A general-to-specific search-based algorithm is presented to
derive classification rules. The approach evaluates promising on artificial
and real data.

1 Introduction

One important aspect of data mining is to identify dependencies and interrela-
tionships that were unknown to the user before and deliver them in an easily
understandable representation. Rule-based systems and decision trees, which ful-
fill such requirements, assume a databases of cases with characterizing features
that held at the time of recording the case. In many areas, however, a case
stretches over time, such as the traffic density over one day, the medication of
a patient over the duration of illness, control variables of a production process
over a production cycle, a workflow of a business process, etc. In such domains
it is often not feasible to drop the temporal information, sometimes even the
order of isolated events is not sufficient, but their temporal extent and con-
temporaneity is important. The discovery of complex relationships of the latter
kind without compromising their interpretability requires a descriptive, graph-
ical representation of the discovered patterns. In this paper, we propose a new
temporal pattern representation and suggest an algorithm to learn classification
rules automatically from temporal data.

2 Representing Evolving Data

We consider the history of a binary attribute as a temporal predicate. Denoting
the temporal dimension by T, a temporal predicate Pl is a function P : T →
B. l is called the label of the predicate P . We assume that all available data
may be represented by such temporal predicates. The development of a nominal
attribute with domain {u, v, w} may be represented by three predicates Pu, Pv

and Pw, denoting when each of the values held. A series of numerical values (time



series) can be represented by extracting different predicates such as Pincreasing or
Phigh-valued. A set of such predicates (which we will call historyH) is often depicted
by listing the various predicates against the temporal dimension (cf. Fig. 1). A
suitable data representation is a (labelled) sequence of temporal intervals that
indicate when the predicate did hold. Such a representation is used frequently,
e.g. in the medical domain [7].
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Fig. 1. Representation of Evolving Data:
the black rectangles denote the intervals
when the predicate (labels to the left)
holds.
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Fig. 2. Thirteen possible relation-
ships between two intervals. The in-
verse relationships (after ↔ before)
have been omitted.

In the context of classification tasks the goal is to describe circumstances
(prototypical histories) under which a certain target variable is likely to occur.
Note that in contrast to stream mining approaches, where a single but potentially
infinite stream of data is considered, we assume that multiple finite, labelled
histories are available. Various ways to define such patterns in a stream of labeled
intervals have been proposed in the literature, many of them relying on Allen’s
interval relationships [1] (cf. Fig. 2) or variants thereof. Some approaches define a
history by specifying the exact relationship for every pair of intervals [3], others
allow for a set of possible relationships [4]. The representation by sequences
of chords [6] uses a partially ordered sequence of simultaneous (sub-) intervals
to define a pattern. Some other proposals consider a different set of interval
relationships or specify the next relationship only with respect to the union of
the pattern discovered so far [5].

While these approaches have their individual strengths, they also have their
weaknesses when it comes to represent certain simple situations. Thinking of
predicting a certain state of some network server (breakdown, overload, attack,
malfunction, etc.) on the history of, say, the last 24 hours, a situation as simple
as “there was only one connection to server A” (during the last n hours) is
usually impossible to discover for the approaches based on association rules [3,
6], as they count occurrences of events only and rely on a quickly decreasing
count of co-occurrences, such that an inclusion of absent features during counting
undermines the initial assumptions of association mining. A situation like “there
was a connection to B while the connection to A was lost” is impossible to
represent for the approaches that rely on explicitly given interval relationship,
as the exact position of B relative to A is not known [3]. Temporal constraints



“the connection to A was lost for at least 4 hours” or “... at most 4 hours” are
usually ignored completely or introduced in a postprocessing step.

We propose a new notion of a pattern, called template history, that shall
be matched against an existing history later. To maximally support the under-
standability of the template, we keep the basic representation of Fig. 1, but relax
the temporal alignment to allow for successful matching despite of dilational and
translational effects. We do not care about a 1:1 mapping of time points (as in
dynamic time warping) but concentrate on a few relevant points in time that are
indicated by vertical alignment lines. This corresponds roughly to a discretiza-
tion of the temporal axis, but we do not finally fix the position of the lines but
adjust them at match-time. If m labels/predicates and n + 1 adjustment lines
are given, we obtain an m × n matrix which allows us to pose different condi-
tions on the predicates in each of the matrix cells. We distinguish four different
conditions:

Definition 1 (predicate constraint). Give a temporal interval T ⊆ T and
a predicate P , we say (a) P is present during T if ∀t ∈ T : P (t), (b) P is
absent during T if ∀t ∈ T : ¬P (t), (c) P exists during T if ∃t ∈ T : P (t) and
(d) P disappears during T if ∃t ∈ T : ¬P (t). If no condition is posed, we say
P is unconstrained during T . By C we denote the set of constraints { present,
absent, exists, disappears, unconstrained }.

Every cell of the template matrix is now filled with one of the five constraints.
Additionally a template may contain temporal constraints on the distance be-
tween the alignment lines (block duration).

Definition 2 (template). A tuple T = (L, n,C,D) is called a template if L is
a set of labels, n ∈ N, C : L × {1, .., n} → C and D : {1, .., n} → (T ∪ {∞})2
with 1 ≤ D(i)0 ≤ D(i)1 for all 1 ≤ i ≤ n.
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Fig. 3. Illustration of the template definition. The map D defines the block durations
(time interval between alignment lines) and is shown on the top. The predicate con-
straints are coded by color.

Figure 3 shows an example template with n = 3 blocks and thus four vertical
alignment lines, where the leftmost and rightmost alignment line shall always



represent the start and end of the history. The bottom row declares that a
predicate Pc is absent in the whole history. Somewhere in the history (2nd block),
Pb is present (Pb may be present or not elsewhere). Pa is present from the very
beginning, but disappears while Pc is present in the 2nd block. The duration of
the first block is arbitrary, the duration of the second block lies within [1, 10] =
[D(2)0, D(2)1] time units, the last block may again have any (positive) duration.

Matching a template to a real history involves two steps: Firstly, the align-
ment lines need to be positioned appropriately such that, secondly, all temporal
and predicate constraints hold.

Definition 3 (match). Let T = (L, n,C,D) be a template and H be a history.
Let [tmin, tmax] be the smallest interval subsuming ∪P∈Hdom(P ). T matches a
history H if and only if (a) there is a predicate Pl ∈ H for every l ∈ L, (b) there
are ti ∈ T, 0 ≤ i ≤ n, with t0 = tmin, ti ≤ ti+1, tn = tmax, (c) for every l ∈ L
and i ∈ {1, .., n} the constraint C(l, i) holds for Pl within [ti, ti+1) and finally
(d) for all 1 ≤ i ≤ n: ti − ti−1 ∈ ∆i with ∆i = [D(i)0, D(i)1].

3 Finding Patterns

Next, we propose a method to explore the space of templates to discriminate dif-
ferently labelled histories. The search algorithm implements a general-to-specific
search: It begins with a pattern, which matches all instances, and tries to special-
ize it further to improve some measure of interestingness (we use the J-measure
[8] as it balances the generality (applicability of the rule) and the interestingness
(deviation from a priori knowledge)). An initial template that matches all histo-
ries must have at least one block, all matrix constraints are unconstrained and so
are the temporal constraints [1,∞]. While a propositional rule can only be spe-
cialized by an additional condition (like outlook=sunny), there are at least three
ways to specialize a template: we may look at it in a finer resolution (by adding
another alignment line), we may change or add a predicate constraint (for some
label and block), or may introduce or change an existing temporal constraint.
We thus have chosen three different specialization operators to address each of
these aspects.

The general idea for all refinement operators is to search for specializations
that improve the measure of interestingness, which basically requires that the
specialized pattern still matches the positive instances but less negatives.
Adding a predicate constraint. Suppose we want to specialize the pattern
in Fig. 3 by an additional constraint for label X (which is unconstrained so
far). If four instances are given that match this template, we have to inspect
the occurrences of X relative to the alignment lines of the template. This is
shown (only for variable X and the four cases) in Fig. 4. We create confusion
matrices for all possible refinements (each block and constraint combination) of
the predicate X by counting how the instances will be classified by the considered
specialization. For instance, the specialization shown in Fig. 5 would perfectly
discriminate between the classes, as PX is present in the first block only for
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Fig. 4. Relative occurrence of the
predicate X to the matches of the
pattern shown in Fig. 3 in the in-
stances
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Fig. 5. Refined pattern for classify
the instances correctly

the positive examples. Finally we apply the measure of interestingness on all
confusion matrices to find the best refinement for X. We instantiate such a
constraint refinement for every label to pick the best constraint specialization.
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Fig. 6. Relative occurrence of the
predicate X to the matches of the
pattern shown in Fig. 3 in the in-
stances
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Fig. 7. Refined pattern for classify
the instances correctly

Adding an alignment line. The second operator adds new alignment lines to
the template. Similar to Fig. 4, a different constellation of cases is shown in Fig.
6. Apparently an exists-constraint would match the positive classes (in any of
the blocks), but unfortunately, it would also match the negative cases. However,
we notice that all the positive cases start at the beginning of the first block,
whereas the negative cases do not. By introducing a new alignment line that
subdivides the first block, we may pose a present-constraint on the left part of
the first block. The original template from Fig. 3 is extended by a new vertical
line as shown in Fig.7. As before, we again determine confusion matrices for
different specializations and evaluate them for each block and combination of
absent/present-constraints.

Adding a temporal constraint. Finally, the third operator tries to find a
block length for a specific block, so that the new block length mostly holds by
the positive examples but does not hold by the negative ones. Again, the best



specialization is determined by the interestingness measure on the respective
confusion matrix.

The search algorithm itself is relatively simple and based on a beam-search. It
begins with a pattern which matches all instances. In every iteration the k best-
evaluated patterns are further refined by the previously introduced operators. At
the end of the iteration, only the k best specializations are preserved for the next
loop. The search ends when no more improvements during the last p iterations
were made. We do not stop immediately if the present iteration did improve the
best rule (p = 1) to avoid getting trapped in local minima due to the greedy
nature of the approach. The best k templates are reported to the user.

The number of possible patterns grows quickly with the number of alignment
lines and predicates, but the number of actually explored patterns is limited by
the size of the beam. For each main iteration, the patterns in the beam are
extended by the three presented operators. The necessary statistics to find the
best specialization can be constructed in O(n ·m2) time where n is the number
of cases and m is the number of distinct durations considered as a temporal
constraint. Rather than considering every possible duration constraint, the ob-
served durations may be discretized beforehand, thereby limiting the number of
choices and the overall runtime.

4 Experimental Evaluation

Artificial example. In order to evaluate the new representation we generated
a synthetic dataset on the basis of a pizza recipe. In general the process of making
a pizza consists of the following four steps: First we have to mix the ingredients
to make the dough. Then we let the dough rise for 60 to 120 minutes in a place
without (air) draught. Afterwards we role out the dough and add the toppings.
Finally we have to bake the pizza 25 to 29 minutes.

So the dataset consists of the labels: ’make dough’, ’let the dough rise’, ’role
out & coat the dough’, ’draught’ and ’baking’. Generally each instance is gener-
ated as followed: First a ’make dough’ interval (5-20 minutes), followed by ’let the
dough rise’ (60-120 minutes), after 5-30 minutes the ’role out & coat the dough’
interval is present (5-10 minutes) and finally after 0-10 minutes there is a ’bak-
ing’ interval (25-30 minutes). Furthermore it consists of the three classes: perfect
pizza (the baking process fits the recipe), pizza burned (the baking process fits
the recipe except the baking time is greater than 30 minutes) and dough not
rised (the baking process fits the recipe except ’dough rise’ is missing or during
the time the dough rises there is a draught interval). The interval lengths were
chosen randomly and depending on their fit into the abovementioned intervals
the class label was selected appropriately.

The training set consists of 99 instances (33 per class) and the test set of 990
instances (330 per class). To compare the results of the new approach with the
results of the old approaches we applied the algorithm described in Sect. 3 as well
as a reduced version without time-, absent-, exists- and disappears-constraints
to simulate the setting of previous approaches.
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Fig. 8. Pattern for perfect pizza found by
the limited pattern language (comparable
to earlier approaches)

[1, *] [1, *] [25, 29][1, *] [1, *]

let the dough rise

draught

baking

[1, *]

Fig. 9. Pattern for perfect pizza found by
new approach.

The best pattern found by the old approach for perfect pizza is shown in
Fig. 8. As we can see it requires ’let the dough rise’ followed by ’baking’ but
the pattern neither carries any information on how long the pizza should be
backed to get not burned, nor is there a restriction of absent ’draught’ during
the proving process. The new approach found the pattern shown in Fig. 9, which
requires that during the whole time the dough is rising (first two blocks, ends
in third block due to absence constraint) there is no draught. Furthermore this
pattern demands a baking time between 25 and 29 minutes due to the block 4 to
6, where blocks 4 and 6 forbid the presence of baking and the fifth block requires
baking with a duration of 25-29 minutes. Similar patterns were derived for the
other classes, too. Figure 10 summarizes how the patterns evaluated on the test
set. As we can see the new approach performed considerably better than the old
approach, mainly because the old approach lacks means to identify those cases
where certain steps of the process were intentionally or incidentally absent.

old approach:

 P ¬P
match 330 490
¬match 0 170

 DnR ¬DnR
match 160 0
¬match 170 660

 B ¬B
match 12 170
¬match 318 490


new approach:

 P ¬P
match 330 0
¬match 0 660

 DnR ¬DnR
match 0 628
¬match 330 32

 B ¬B
match 330 0
¬match 0 660



Fig. 10. Confusion matrices for the best patterns found by old and new approach. P:
perfect pizza, DnR: dough not rised, B: burned pizza

Real data. Furthermore we applied our approach to weather data collected by
a weather station located on a small island in the northern sea (Helgoland). This
station collected air-pressure, wind strength and wind direction hourly for several
years. At first we had to preprocess these timeseries to a stream of intervals,
where we used the following labels:

– air-pressure: very low (−−), low (−), middle (o), high (+), very high (++).
– air-pressure slope and wind strength change: highly decreasing (−−), de-

creasing (−), normal (o), increasing (+), highly increasing (++).



– wind strength: very low (+), low (++), high (+++), very high (++++)
– wind direction: N, NE, E, SE, S, SW, W, NW.

We tried to predict the occurrence of a strong wind (wind strength: high) and
extracted all intervals within 72 hours before strong winds occured as positive
examples. Negative examples (no strong winds to come) were extracted randomly
from other time points. We do not expect to find new knowledge from the data,
as it is already known that the actual value of the air pressure is irrelevant, but
the change in the air pressure is a good indicator for strong winds, but we are
again interested in finding evidence that the new representation is useful with
real world scenarios.

An obvious pattern that simply requires quite strong winds followed by an
increasing trend in wind strength leads to a rule with a J-Measure of 0.0583.
Taking the newly introduced constraint types into account, this basic rule can
be extended to increase the J-measure by more than 30%. Two of the patterns are
shown in Fig. 11. We see that the ability to use the newly introduced constraints
allows significant improvements also in real datasets. A much higher J-value is
hard to obtain, because the J-measure is limited by the (relatively low) frequency
of strong winds.
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Fig. 11. Two different patterns found to predict a upcoming strong wind.

Furthermore we applied our algorithm to the libras movement data set from
the UCI repository [2]. It contains 15 different signs described by their char-
acteristic hand movement over 45 frames, where the current x- and y-positions
of the hand were recorded. There are 24 instances per sign, 360 in total. In
the first step we have preprocessed the data in order to extract predicates that
represent the hand movement. The extracted features address the speed of the
hand movement in the x- and y-direction. Although one can easily think of more
sophisticated features (rotation, absolute position, ...) and threshold extraction,
we used a priori defined thresholds (quantiles) and the following labels only:

– X-Movement: fast left (−−), left (−), constant (o), right (+), fast right (++).
– Y-Movement: fast down (−−), down (−), constant (o), up (+), fast up (++).

For example, a fast hand movement to the upper left is recognized if predicates
x-movement−− and y-movement++ hold at the same time.



For every sign we applied the algorithm with and without the newly in-
troduced constraints. Figure 12 shows the the confusion matrices for the best
pattern found for each of the two approaches.

sign id old approach new approach

1

 1 ¬1
match 22 3
¬match 2 333

  1 ¬1
match 23 0
¬match 1 336


7

 7 ¬7
match 12 0
¬match 12 336

  7 ¬7
match 22 0
¬match 2 336


9

 9 ¬9
match 0 256
¬match 24 80

  P ¬P
match 21 0
¬match 3 336


11

 11 ¬11
match 16 6
¬match 8 330

  11 ¬11
match 19 0
¬match 5 360


12

 12 ¬12
match 12 0
¬match 12 336

  12 ¬12
match 23 0
¬match 1 336


15

 15 ¬15
match 5 270
¬match 19 66

  15 ¬15
match 15 0
¬match 9 336



Fig. 12. Effect of newly introduced constraints on libras data [2].

As we can see the patterns with the newly introduced constraints perform
considerable better, the number of false positives and false negatives have de-
creased. On average we have an increase of 3.6 true positives per pattern which
equals an increase of 15 percent. For the sign four, which represents a half circle
swing (see Fig. 14), we show the identified patterns in Fig. 13. The first pattern
was found by the old approach and tries to separate the instances by requiring
certain movements – that may occur in other signs also. The second pattern,
however, requires a movement to the left over a relatively long period of time
(14-24 frames), during which no fast downward movement takes place. After-
wards, an upward movement is required, but the pattern contains no further
information/constraints about the last frames, as they are not that helpful for
discriminating the signs. The key to the increased performance is the possibility
of excluding certain co-occurring predicates.

5 Conclusions

We have proposed a new representation to define templates of evolving vari-
ables for classification tasks that overcome deficiencies of previous approaches.



[1, *] [1, *] [1, *] [1, *]

Y−Movement/o

X−Movement/++

Y−Movement/++

[1, *]

[1, *] [1, *]

X−Movement/−

Y−Movement/−−

Y−Movement/+

[1, *] [1, *] [1, *][1, *][14, 24]

Fig. 13. The two best patterns found by the different
approaches to describe sign four (top: old, bottom:
new approach).

Fig. 14. Instance of sign #4,
plotted by connecting all hand
positions

A general-to-specific approach to find useful templates has been presented. First
experiments were promising and indicated the practical usefulness of the rep-
resentation. The identified templates may also be used for feature generation
when other classifiers shall be applied. Future work includes the application of
the approach to business workflows.
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7. Y. Shahar and M. A. Musen. RÉSUMÉ: A temporal abstraction system for patient
monitoring. Computers and Biomedical Research, 26:155–273, 1993.

8. P. Smyth and R. M. Goodman. An information theoretic approach to rule induction
from databases. IEEE Trans. Knowledge Discovery and Engineering, 4(4):301–316,
Aug. 1992.


