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Abstract—The problem of finding the most influential in-
dividuals, or the largest spreaders, in networks has been
shown to be NP-complete even for simple spreading models,
though approximable by a simple greedy algorithm. Yet,
even the greedy algorithm relies on stochastic simulations
that can be quite time consuming and intractable for large
networks. Recently developed heuristics are fast and work
well in practice but are limited to certain network models,
spreading goals, or sampled networks. In this work, instead of
devising a new spread optimization method, we re-examine the
problem by analyzing the global structural properties of the
underlying network as indicators of spread trends. Specifically,
our investigations use density of a network as an indicator
of: (a) when it is necessary to employ a sophisticated yet
computationally expensive method? or (b) when even a random
set of spread initiators perform as well as the best in expectation
for maximizing the spread in the network? and (c) why certain
heuristics like high degree as indicator of high spread work for
certain networks and not for others. We show that for network
densities above and below a certain threshold, the difference
between the best and expected spread is negligible. In between
the two extremes, the networks exhibit marked differences
between the best and expected spread. This region, rich with
non-trivial and complicated structures, requires further work
to devise efficient techniques for finding best spreaders.
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I. INTRODUCTION

Who are the most influential individuals in a (social)
network and can we efficiently find them? This has been
the subject of extensive research in applications of social
sciences, economics, viral marketing, and epidemiology,
among others [5,7,9-11, 14,17, 20,21, 24,26,27,30,31, 33,
35,37,42]. Unfortunately, computationally this and similar
questions have been shown to be in the class of NP-hard
problems. Moreover, even the best approximation algorithms
are infeasible for massive network data available on todays
ubiquitous large platforms, such as social networking web-
sites, blogosphere, and communication networks. However,
is it really necessary to expend this intensive computational
effort in order to identify those individuals? While theo-
retically the answer seems yes, in practice many efficient
heuristics have been demonstrated to be effective. In this
paper we show that the hardness of computationally finding
the most influential individuals in a network, depends on
the structural properties of that network, such as its density
(or, rather, the effective density, which is the combination of
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density and the probability of infection, that is, the density
within the spread network) and modular structure.

The problem of identifying influential individuals in a
social network has been most rigorously formulated and
analyzed by Kempe et al. [26]. The problem has been shown
to be NP-complete and a greedy approximation algorithm
guarantees a solution no worse than (1 — 1/¢e) factor of the
optimal for many general models of the spread of influence.
To find the set of & most influential individuals, the greedy
algorithm computes the most influential individual and re-
moves it along with those it influences from the network
and repeats the process. However, to find this one most
influential individual at every iteration the algorithm relies
on multiple repetitions (typically thousands) of stochas-
tic simulations of the process of spreading the influence
through the network. The larger the network, the many
more iterations are necessary for each stochastic simulation.
Moreover, a separate set of simulations is necessary for
each set of parameters of the influence spreading model.
This process becomes infeasible even for moderately sized
networks of several thousands nodes. To date, no algorithmic
or analytical way has been found to replace the stochastic
simulations. Instead, many simple yet effective heuristics
for finding influential individuals have been proposed that
exploit structural network properties.

It has been shown that removing nodes (or individuals)
of the highest eigenvalues reduces the spread (or influence)
the most [36, 38,40]. Expansion factor of a graph has been
shown to be a good indicator for detecting the spread of
a virus over the Internet [1]. The core versus periphery
structure of the network has been shown to facilitate the
inference of network of influence [18]. Immunization of
hubs in a network [23] is a good strategy to minimize spread
but clustering co-efficient is not an effective measure [22,
23] for such goals, or indirectly, immunizing acquaintances
of randomly selected nodes can contain the low threshold
spreads quickly [8]. Degree centrality heuristic has been
studied extensively for such goals. For example, it has
been shown to work well for containing spread of mis-
information [6], shown to strongly correlate with rates of
infection [25], and many other similar problems. In social
sciences, as early as 1960’s, Granovettors insight about the



strength of weak ties [19], and a large body of research
on the diffusion of innovations [37,39], has shown that an
individual’s ideas and behaviors are direct functions of the
ideas and behaviors of the people the individual is connected
to. However, no systematic, empirical or theoretical, study
has been done to explain why, seemingly in contradiction
to the theoretical results, and when do these heuristics work
well. And, more importantly, what is it in the structure of
the real social networks that allows them to perform so well.

The goal of this work is to find clues in the global network
structure that make a particular heuristic for identifying
influential individuals work better than others and to figure
out when heuristics work at all and when a serious com-
putational effort is unavoidable. Thus, we take a step back
from devising yet another method that works for a certain
set of networks, to answer a more general question of what
makes a certain heuristic effective, and not another, for a
given network? Specifically, we show that it is possible to
use effective density and modular structure of a network as
indicators of when it is necessary to employ a sophisticated
yet computationally expensive method versus when even
a random set of spread initiators will perform as well
as the best, in expectation, for maximizing the spread of
influence in the network. We find that the effective density,
which is the product of the density and the probability of
spread, is a better indicator of the extent of spread than
the density on its own. A spreading process with very low
spreading probability in denser networks behaves similar
to the spreading process in sparse networks. We show
that networks with (effective) densities above and below
a certain threshold are amenable to simple heuristics. In
dense networks, in fact, there is no differentiation between
influence of individuals and any random set of individuals
is good, given a high enough rate of spread. In effectively
sparse networks simple heuristics like highest degree nodes
perform well. In between the two extremes, the difference
between the best and a random set of individuals may
be significant. That difference, in fact, depends on how
modular (non uniform) the network is. The more modular,
non-uniform, the network is, the bigger that difference is.
Thus, it is for those intermediate density networks with
rich complicated structure that we need to use sophisticated
and computationally intensive approaches to find influential
individuals. This result supports the findings that simple
heuristics perform well in practice since most real world
networks are very sparse, with few exceptions that are very
dense (that represent small single communities).

To demonstrate our results, we systematically empirically
evaluate the difference between the expected and the ap-
proximate optimal extent of influence spread on a variety of
synthetic and real world networks, over a range of generative
models, densities, and degrees of modularity. Our results
consistently tell the same story: density and modularity
matter and can tell us when to use a simple heuristic and
when to put the effort and use the approximation algorithms

based on stochastic simulations. Indeed, once stated this
way, it is not surprising and quite intuitive: in dense networks
everybody is connected to almost everybody and any set
of individuals will do well; and in sparse networks nothing
spreads well beyond the immediate neighbors so high degree
nodes do best. However, our work for the first time test this
assertion in a systematic way, quantifies the critical network
properties, identifying the transition thresholds and laying
grounds for a more rigorous theoretical analysis.

II. METHODOLOGY

We simulate spread of influence in networks of varying
densities and modular structure, using optimal, random, and
heuristic criteria for selecting spread initiators. We record
the expected extent of the resulting spread and compare the
optimal to all other choices.

Our experimental analysis is based on a large set of real
world networks as well as synthetic networks generated
using well studied generative network models. For real world
networks, the biggest challenge was to find a variety of
networks that cover the entire range of densities. Most
real world networks, such as, social networks, co-authorship
networks, or the web, are very sparse. On the other hand,
networks observed for studies like behavior or disease spread
are generally proximity networks that are generally very
dense. In this paper, we report results of two real world net-
works which we could sample for a range from low to high
density by aggregating it over increasing time window size.
For synthetic networks, we used the preferential attachment
model to generate networks that resemble many real world
networks. For finer insights into how network structure, other
than its density, contributes to the disparity in optimal and
expected or heuristic spreads, we use the block mixture
model [34] to generate another set of synthetic networks.
For each network, real or synthetic, we simulated a spreading
process, over a range of parameters of the spreading model
and compared the best, expected, and heuristic extents of
the resulting spread in the network.

A. Real world networks

We have examined numerous real world networks includ-
ing blogosphere, on-line social networks, email exchange
networks, router networks, co-authorship, human proximity
networks, and animal proximity networks'. The list of
networks and their basic statistics is given in Table 1. The
datasets statistics in Table I show that most real world
networks are very sparse and the results of our experiments
are consistent with all other results on sparse networks
shown in this paper. Two of these networks are dense:
Reality Mining and Plains zebra. These networks are also
dynamic and by varying the length of the window over which
the network was aggregated we could sample the network
at different densities.

IComplete results and references of these datasets are available at:
http://compbio.cs.uic.edu/~habiba/diffusion—networkStructure.html



Table I: Real networks statistics

Dataset | Nodes | Edges | Density
AS 16299 | 34157 | .0002570
DBLP 964 1891 .0004074
Live Journal 15001 | 66286 | .0005890
P2P 8114 | 26013 | .0007903
Epinions 9997 | 216213 | .0043270
Political Blogs 1224 16715 | .0223320
Pol Books 105 441 .0809520
Karate 34 75 .1336900
Enron 147 3467 .3229890
Plains 282 29050 | 0.730606
Reality Mining 96 3625 | 0.794956
Onagers 29 402 9901000
Grevys 28 779 1

1) MIT Reality mining: The Reality Mining project rep-
resents the proximity network of Bluetooth devices of about
100 students and faculty members at MIT over 9 months.
This is one of the first such systematic collection of data
about human interaction and behavior [12]. We sample this
network by aggregating the proximity data in one month
size windows 2. As is expected the density of interactions
(proximity) increases with the each additional month. As a
result, we get a series of sparse to dense networks for the
Reality mining network of 9 months. Figure 1(a) represents
a few samples of this network from low to high densities.

2) Plains zebra network: Social interactions between
Plains zebra (Equus burchelli) in Kenya were recorded
by direct observations made by behavioral ecologists from
Princeton University. The data was made from visual scans
of the population, typically once a day, over a period of
several months. Each entity is a zebra, uniquely identified
by the pattern of its stripes. Each spatially proximate group
of animals, as determined by GPS coordinates, represents a
complete set of interactions amongst those individuals [15].
Similar to our experiments on the Reality Mining dataset,
we aggregated fixed size samples of the network overtime.
We generated a time series of sparse to dense networks of
Plains zebra. A sample of the series of increasing density
Plains networks is given in Figure 1(b).

B. Synthetic networks

To rigorously test our conjecture in controlled paramet-
ric settings we used generative network models that have
been shown to represent real world networks closely. We
generated synthetic networks using the extensively stud-
ied Preferential Attachment(PA) model for scale-free(SF)
networks [28]. This model, among other properties, repre-
sents the skewness of the degree distribution of many real
world networks. We also used the stochastic block mixture
model [34]. This model highlights the modularity of many
real world networks (especially biological networks).

2The size of the appropriate aggregate window for network sampling is
in general a nontrivial problem and is beyond the scope of this paper.

(b) Plains zebras

Figure 1: Series of progressively (successively) accumulated net-
works. The size of the node represents the relative degree of the
node.

1) Preferential attachment model for scale-free networks:
The web, citation networks, and the network of film actors
are among a few examples of social networks that have
been shown to exhibit a skewed degree distribution [2—4,
41] . Preferential attachment model [4] generates networks
with skewed degree (specifically, power law) distributions.
This is one of the first network generative models. In this
model the network evolves over time. Nodes are added to
the network sequentially, each new node creates links to
already existing nodes proportional to how well connected
the other nodes are. Hence, a new node is much more
likely to get connected to a high degree node than to a
low degree node. The idea is based on the premise of “rich
getting richer”. Many real world networks have been shown
to exhibit this process of growth. The skewness of the degree
distribution is determined by a parameter v which is usually
set between 2 and 3 based on the type of network being
studied. We generated networks of more than 30 different
densities ranging from very sparse to very dense networks.
Each density is sampled 10 times.

2) Block mixture model: The Erdos-Renyi (ER) random
graph [13] model is simple and is completely defined by
one parameter, namely the probability of an edge. In this
model, given a fixed set of nodes and a probability p,



each edge is generated independently uniformly at random
with that probability p. The resulting graph, of course,
has density p(g ) The model’s many asymptotic properties
have been well studied which makes it ideal for analyzing
the relation between density and the extent of spread in a
network. However, the model does not fit well to real world
networks. For example, nodes of real world networks are
often structured in tight relatively well-connected clusters
(communities) not captured by ER model. The stochastic
block mixture model was proposed for this purpose in the
context of social sciences, using a Bayesian approach [34].
Further refinements, such as the assortative mixing [29] has
made this model a natural choice to analyze real world
networks in controlled parameter settings. The block mixture
model designates the nodes into C' blocks. Given two
parameters, the inter— and intra—block edge probabilities,
the edges are generated uniformly at random, with the
appropriate probabilities for each pair of nodes. We use this
model to generate networks of very low to high densities
while varying the inter— and intra—block probabilities. The
resulting set of synthetic networks not only provides us with
data to compare density with the extent of spreads but also
gives us better insight into the modular structure of networks
to further refine our analysis.

C. Spreading process

We simulate spread in the real world and synthetic net-
works using the Independent cascade spreading model. This
model was first introduced in the context of word-of-mouth
marketing [10, 16]. This is also the most commonly used
simple model to study disease transmission in networks [9,
30,32, 33,35]. In this model, transmission from one indi-
vidual to another happens independent of interactions with
all the other individuals. This model describes a spreading
process in terms of two types of individuals, active and
inactive. The spreading process unfolds in discrete timesteps.
In each timestep, each active individual attempts to activate
each of its inactive neighbors. The activation of each inactive
neighbor is determined by a probability of success. If an
active individual succeeds in affecting any of its neighbors,
those neighbors become active in the next time step. Each
attempt of activation is independent of all previous attempts
as well as the attempts of any other active individual to
activate a common neighbor.

D. Extent of spread simulations

The extent of spread in a network is the number of indi-
viduals affected at the end of a spread process (simulation),
initiated by a set of individuals. Here we measure this extent
based on three types of spread initiators.

1) Optimal spreaders: The k spreaders that maximize
the extent of spread in the network. Since for large
networks it is hard to find the exact k£ best spreaders,
we use the greedy approximation of Kempe et al [26]
for k > 1.

2) Random spreaders: Any k spread initiators picked uni-
formly at random from the network.

3) Ad-hoc spreaders: k top ranked individuals based on
some network property that are used for initiating
spread. In this work we used degree, eigenvalue, and
boundary nodes to rank nodes in the network.

For each network we find the extent of spread using the three
types of spreaders. We compare the maximum spread in the
network - based on the optimal spreaders to the expected
spread in the network - based on randomly selected sample
of individuals. We also compare the optimal spreaders to the
ad hoc spreaders. The difference in the extent of spread, for
each pair of methods, highlights the disparity in the network
structure and how it affects the resulting extent of spread. We
focus on how this difference varies with network density. All
spreads simulations are based on the Independent cascade
model described in the previous section.

III. RESULTS AND ANALYSIS

Partial aggregations of a dynamic network over a set of
individuals give a series of networks of increasing density
over those individuals. This process of adding (but not re-
moving) interactions to create increasingly denser networks
is similar to the way most network generative models are
defined. Moreover, assuming the underlying generative pro-
cess which is evidenced by the network is stable, those series
represent networks with similar dynamics. As a result, we
have a set of networks from the same domain and interaction
dynamics but varying (increasing) densities. Figure 1 shows
the series of aggregated Reality Mining and Plains zebra
networks. Clearly, the two networks become denser as more
data are sampled and added to the network. Similarly, we
generate a series of sparse to dense Scale—free networks
using the Preferential Attachment model [4].

Recall, that for each network in the series we have
simulated a spreading process (with many repetitions), using
each node, in turn, as the spread initiator. We have computed
the resulting extent of spread and can now compare the op-
timal, the expected (mean) and the heuristic—based resulting
spreads. We observe the following three trends in our ex-
perimental analysis. (a) The optimal extent of spread is well
approximated by the expected extent of spread in networks
with very low or high densities but not in the mid-range
density; (b) degree-based heuristics result in remarkably
near—optimal extent of spread in lower density networks, but
these heuristics may not perform consistently well for denser
networks; And (c¢) modularity of a network can be exploited
for designing better heuristics that approximate the optimal
spread well especially for networks of mid-range density.

A. Optimal versus expected spread

Figures 2(a), 2(b), and 2(c) show the difference between
the optimal spread and the expected spread as a function
of the effective density in Reality Mining, Plains zebra
networks, synthetic networks respectively. The plots show
the following three trends in the extent of spreads as the



effective densities (density x probability ¢ of influence) of
the networks progressively increase.

First, at very low effective densities (< .004 for real
networks and < .001 for synthetic networks), the extent
of spread is very low, irrespective of how sophisticated
the approach for selecting spread initiators is. Low density
networks lack a “well defined” structure, by definition,
most nodes in low density networks are sparsely connected.
Such low density networks have extremely skewed degree
distribution: a very small number of disproportionately high
degree nodes and the remainder of sparsely connected nodes.
Hence, in these networks, the extent of spread is very low
relative to the size of the network even with high proba-
bilities ¢ of influence (which is essentially a deterministic
spread), since most nodes have few or no neighbors to whom
they can propagate the spread. Only high-weighted degree
nodes can influence many others but there are so few of
them, and their neighbors have such low degrees, that they
hardly make a dent in the overall extent of spread.

The second trend we observe is that at high effective
densities (> 0.25 for real networks and > .0035 for synthetic
networks), most nodes are uniformly well connected. In
expectation, the extent of spread initiated by any random
node is high and is comparable to the optimal spread in these
dense networks due to the similarity in the connectivity of
nodes. In networks of high densities, we find that spreading
processes behave almost deterministically, that is, spreading
process affect the entire connected component irrespective
of who initiates it. Hence, similar to low density trends, we
find that in such networks, the optimal approach does not
outperform the expected by much.

Finally, and most interestingly, in networks of interme-
diate effective densities we find a clear phase transition in
the difference between the extent of spread resulting from
the optimal and random initiators. This difference in the
optimal and the expected spread increases until it peaks and
starts to decline gradually, as network densities progressively
increases. In this intermediate region, the extent of spread
is very sensitive to the identity of the initiator. Clearly,
in this region it is worth while looking for an optimal or
near—optimal spread initiator. Moreover, the structure of the
network plays a role in how influential different nodes are.
We further focus on this intermediate region in Section III-C
to investigate how the edge topology affects the difference
in the extent of spread from various nodes.

Note one difference between the Scale—free and the real
world networks: compared to the real world networks, the
high optimal versus expected difference region is confined to
a smaller range of densities. Clearly, network characteristics
other than just the density and the skewness of the degrees
implicitly contribute to the extent of spreads that are not
captured by the Scale—free networks. Before we delve further
into this issue we analyze the behavior of some of the most
well studied heuristics for influence maximization in the
same effective density settings.
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Figure 2: The difference between the optimal and the expected.
Figures (a-b) also show the difference between the optimal and the
degree heuristic (cross signs) and figure (b) shows the difference
between the optimal and the eigenvalue heuristic (asterisks). Spline
function smoothing applied to draw approximation curves. X-axis
are the inverse log of the effective density. Y-axis are the the relative
difference w.r.t optimal spread.

B. Optimal versus heuristic spread

We compared both the optimal and the expected spread to
the performance of some of the most well studied heuristics
for influence maximization problem. Degree centrality and
highest eigenvalues have frequently been shown to correlate
with the influence maximization objective [6, 25, 36, 38, 40].
We simulated spread in Reality Mining and Plains zebra
networks by using & highest degree and & largest eigenvalues
nodes as spread initiators. We compared these results with
the optimal and the expected extent of spread. The difference
in the optimal and the heuristic extent of spread for k = 1 are
shown in Figure 2(a) and 2(b) for Reality Mining and Plains
zebra networks, respectively. For other values of k the trends
are the same and we omit them here due to space constraints.
We find that both heuristics give close to optimal solutions
at extreme densities. In fact, at low densities the optimal
spread initiators are indeed the nodes with the highest
degree and highest eigenvalues. Thus, at low densities our
results support what has been found in many other studies.



At high density, even though results from heuristics are
comparable to the optimal, the identities of the optimal
spread initiators and the heuristically chosen nodes are not
the same. Recall, that at those densities any randomly chosen
initiator performs as well as the optimal. Thus, the good
performance of the heuristics here is not due to the identity
of the chosen initiator but due to the fact that any node serves
well. This eliminates the significance of a heuristic or even
the optimal approach over a random one at high density.
In the intermediate region, although the heuristics work
remarkably better than random, the differences in the extent
of spreads between the optimal and heuristic methods are
inconsistent. Thus, a heuristic may work for some networks
but not others, and there are no theoretical or empirical
guarantees for its performance in this region. This trend
has not been taken into consideration in formulating better
methods for spread optimization. This study gives us a better
understanding of the effects of network structure on spread
and it shows where we need to put our efforts to exploit the
structure of the intermediate densities for formulating better
methods for the spread optimization problem.

For better insight into the effect of network structure on
the extent of spread we analyze extent of spreads in synthetic
networks generated using stochastic block mixture models.

C. Network modularity and extent of spread

Recall from Section II-B2, that a network can be repre-
sented as a set of components, or blocks, with inter— and
intra-block probabilities for connectivity. For a well-defined
clustering of nodes to exist it is assumed that the inter—block
probabilities of forming links are much lower than the intra—
block probabilities. Given this explicit modular structure of a
network, intuitively a good strategy for influence maximiza-
tion in such a network is to distribute the k& spread initiating
nodes among the blocks of the network, proportionally to the
size of each block. This is exactly the expected distribution
of the initiators if we select them uniformly at random
from among all the nodes in the network. We compare
the expected extent of spread resulting from such random
initiator selection to the optimal (greedy) initiator selection,
as we did previously. We observe essentially the same three
trends in the extent of expected spread as we generate
sparse to dense network using the stochastic block model.
The control of the modular structure of the network, in
addition to its density, supplements the observations made in
earlier real world as well as synthetic networks analysis. The
following are the trends we observe in the stochastic block
model networks. First, in a sparse network, the probability
of edges within a block is not much higher than across the
blocks (otherwise the networks rapidly become too dense).
The resulting network is therefore not much different from a
sparse uniform random graph. Thus, as before, the optimal
influence maximization strategy is not significantly more
effective compared to selecting the top %k highest degree
nodes as spread initiators. Second, in very dense networks,
similarly, the probability of connections within a block is

high but so is the probability of connections across blocks,
to make up for the very high density overall of the network.
Again, this structure results in a network similar to uniform
random graph and the extent of spread is the same (and
large), regardless of the initiators. Thus, the best approaches
are comparable to the random choices of spread initiators
in dense stochastic block networks, as before. Third, in
between the two cases is the intermediate density region
where, in terms of stochastic block mixture model, blocks
are clearly defined by the large differences in the inter— and
intra-block probabilities of connections. Here our analysis
is further refined into two sub-cases: In this intermediate
density region the extent of spread using the optimal strategy
differs significantly from the expected spread, where the
spread initiators are chosen uniformly at random. This result
supports what we have shown in real and scale-free networks
in Section III-A. The choice of the stochastic block mixture
model provides us with a better understanding of the effect
of network structure on the extent of spread. Block mixture
model is completely defined by the inter— and intra—block
probabilities. Regardless of our knowledge of the modular
structure of the network, the optimal influence maximization
strategy would still pick the best of the (Z) possible choices
as spread initiators. The brute force enumeration, as is the
case with all large real world networks, is an infeasible
strategy. But given that the structure of the underlying
network is generated by the stochastic block mixture model,
one intuitive influence maximization heuristic is to distribute
the k spread initiators among various blocks proportionally
to the blocks sizes. In this case, the expected spread in the
network is approximately the sum of the extent of spread
in each block and the sum of the extent of spread across
the blocks. Let each block B; have inter—block connection
probability of p; (for simplicity, we assume that to be
uniform within a block). And let p;; be the intra-block
connection probability between any two blocks B; and B;.
Let k& be the number of spread initiators and ¢ the probability
of influence. Then, the expected spread E(G,q, k) in the
network G(N, E), when the initiators are chosen uniformly
at random from among all the nodes, is:

E(G ={UiBi},q,k) = Y _ E(Bi,pi)+ > _ E(Bi, B}, pij).
i i

An improvement on the extent of the expected spread would
be to choose the spread initiator by taking into consideration
the modular structure of the network. One possible heuristic
is to select nodes on the boundary of blocks, that is,
nodes that connect one block to another. Such nodes are
structurally well placed to be effective spreaders within and
across blocks. It is also worth noting that such peripheral
nodes have above average degrees. Since the expected degree
of a node within the block B; is p;, the boundary node by
definition has an expected degree of p; + > je{uB,} Pij:
Thus, with relatively high degrees such nodes are better
candidates for maximizing spread. In expectation, the spread
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Figure 3: The difference between the Greedy approximation and
the expected spread, the boundary heuristic and the expected
spread, the approximation and the boundary heuristic spread.

initiated by the boundary nodes is greater than the expected
uniformly initiated spread: B(G,q,k) > E(G,q, k) and the
optimal spread is, of course, at least that of the heuristic
spread: O(G,q,k) > B(G,q,k). Given that finding the
optimal solution is not feasible (since the only known way is
to use brute force enumeration), we can either approximate
it again using the greedy approximation algorithm or use
the difference between the expected and boundary spread as
the lower bound on the difference between the expected and
the optimal. Moreover, the boundary choice heuristic shows
how modular structure of the network can be used to find a
better influence maximization solution. Overall, we analyzed
three types of spread differences in networks that were
generated using the stochastic block model. We compared
differences in the extent of the optimal and the boundary-
node based heuristic spread, the boundary heuristic and the
uniform expected spread, and the optimal and the expected
spread for networks of various densities and inter— and
intra—block probabilities of connectivity. Figure 3 shows that
with the increase in network modularity, all the differences
between the optimal and the expected, the optimal and the
boundary heuristic, as well as the boundary and the expected
spread increase as well. We observe that, in the intermediate
density region, the difference between the inter— and intra—
block connectivity is the highest. Within this high difference
region, we find that simple degree—based heuristics, that
take into account the modular structure of the network,
perform much better than the expected and much closer
to the optimal spread. Yet, this heuristic is much easier
to compute than the optimal solution. Thus, the additional
knowledge of the modular structure was helpful in devising
a better heuristic for this specific model. We conclude that
the effective density and modularity of a network are the
two key properties that affect the extent of spread in the
network. Consequently, these network properties should be
incorporated in the design of efficient methods for influence
maximization problem.

IV. CONCLUSIONS

This work is a systematic exploration of the connection
between network structure, specifically, density (and the
probability of influence), modularity, and extent of spreads in
those networks. Our results show strong density effect on the

extent of spread and the ease of finding influential individu-
als. Extent of spread in networks demarcate these networks
in three broad classes of low, medium, and high effective
density. We show that networks with densities above and
below certain thresholds are amenable to simple heuristics
or even simple random choices, whereas in between the two
extremes is a region that require better and efficient methods
for effective solutions of spread maximization.

Towards the sparse end of the effective density region
we show that even the optimal methods do not result in
significant extent of spread. Moreover, real world networks
like social networks, communication networks, the web
among others, are mostly sparse and generally have skewed
degree distributions. On the one hand, the sparsity of the
network inhibits significant extent of spreads for spreading
models like the independent cascade even at high probabil-
ities of influence. On the other hand, the degree skewness
makes local structural measures like degree and eigenvalues
perform as good as the optimal or greedy approximation[26].

In very dense networks, we find that, due to the unifor-
mity of local structure of nodes, extent of spread by any
method, including the optimal, are very similar. We find
that proximity networks, like the ones used for studying
animal social behavior or disease spread in human networks,
are usually very dense. These networks are distinct from
the electronic, communication, and other social networks
mentioned above. We find that in such networks the extent
of spread is uniformly high for almost any spread initiator.
Hence, the optimal or its greedy approximation method
result in the extent of spread very similar to the one obtained
by using a random set of spread initiators in expectation.

In between the low and high effective density regions is
an intermediate range of densities where the behavior of the
optimal spread method is markedly different from random
spread methods. Moreover, at some densities in this region
the difference between the optimal and expected spread is as
large as the approximation ratio. Hence, it is this intermedi-
ate range of densities for which application of sophisticated
and computationally intense methods is necessary for finding
good spread initiators efficiently. However, even in this
intermediate range of densities we find that the particular
structure of the networks make local structural measures like
degree, variants of degree heuristics, and simple estimates
like eigenvalues, to be good estimates of the optimal spread.
Moreover, observing the relatively well defined modularity
of the network structure in this intermediate region for
block mixture model we get a better understanding of what
makes certain heuristics more effective than others. Thus,
taking advantage of the insights provided by this rigorous
experimental analysis, better structural based heuristics can
be devised that are efficient and easier to evaluate.

To summarize, we experimentally showed that the optimal
extent of spread in sparse networks is achieved by the high
degree nodes and in very dense networks it is achieved
by any choice of spread initiators for a particular param-



eterization of the spreading model. Hence, for networks of
these effective density ranges we do not need to use com-
putationally challenging methods to find the best spreaders
to maximize the extent of spread. This result leads to the
discovery of an intermediate effective density range where
the spread in networks is sensitive to the identity of the
spread initiators. We further verify that the general heuristics
for finding good spread initiators work very well for most
networks due to their inherent modular structure. Hence,
we can simplify a computationally hard problem of finding
critical individuals for maximizing spread by limiting the
application of computationally expensive methods to within
a certain range of densities. This work also gives us the
basis to further explore the effect of network structure on
the extent of spread, both empirically and theoretically and
to design algorithms that take advantage of this connection.
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