

Habiba¹, Jessica L. Munson², Jonathan B. Scholnick³, Viviana Amati¹, Yuriy Polyukhovych⁴, Matthew Looper⁴, Martha Macri⁴

> CAA 2017 ¹University of Konstanz ²Lycoming College ³University of California, Davis ⁴California State University Chico

> > March 16, 2017

Universität

Problem definition

- How to infer social ties based on shared linguistic traits?
- Determine whether the inferred networks map on to the known social ties.
- Assumption:
 - similarity in linguistic traits \Rightarrow social influence
 - social influence: unobserved
 - linguistic traits: evidenced by inscriptions

Problem definition

- How to infer social ties based on shared linguistic traits?
- Determine whether the inferred networks map on to the known social ties.
- Assumption:

similarity in linguistic traits \Rightarrow social influence

- social influence: unobserved
- Inguistic traits: evidenced by inscriptions

Problem definition

- How to infer social ties based on shared linguistic traits?
- Determine whether the inferred networks map on to the known social ties.
- Assumption:
 - similarity in linguistic traits \Rightarrow social influence
 - social influence: unobserved
 - linguistic traits: evidenced by inscriptions

\blacktriangleright ~ 250 known settlements/sites - ca. 200 – 1000 CE

~ 3000 monuments

▶ 75,359 glyph blocks

- ▶ graphemes ~ 956 (unique), 119, 109 inscriptions
- social relationships ~ 415 records from 79 different sites

time stamped!

~ 250 known settlements/sites - ca. 200 – 1000 CE

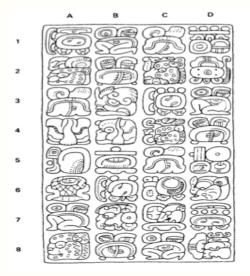
~ 3000 monuments

75,359 glyph blocks

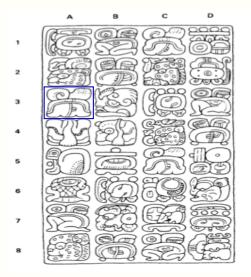
- similar graphemes \sim 956 (unique), 119, 109 inscriptions
- social relationships ~ 415 records from 79 different sites

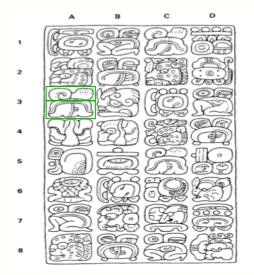
time stamped!

- \blacktriangleright ~ 250 known settlements/sites ca. 200 1000 CE
- ~ 3000 monuments
- 75,359 glyph blocks
 - ▶ graphemes ~ 956 (unique), 119, 109 inscriptions
 - $\blacktriangleright\,$ social relationships \sim 415 records from 79 different sites
- time stamped!


- \blacktriangleright ~ 250 known settlements/sites ca. 200 1000 CE
- ~ 3000 monuments
- 75,359 glyph blocks
 - ▶ graphemes ~ 956 (unique), 119, 109 inscriptions
 - $\blacktriangleright\,$ social relationships \sim 415 records from 79 different sites
- time stamped!

A sample monument

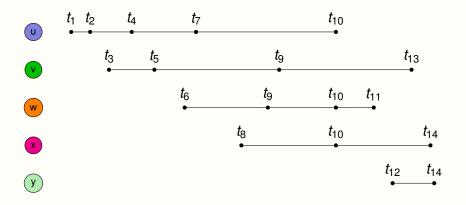


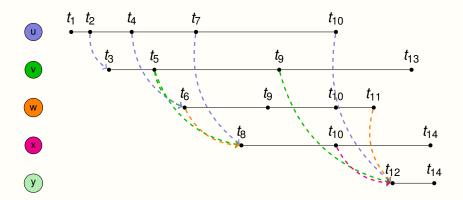

A sample monument

A sample monument

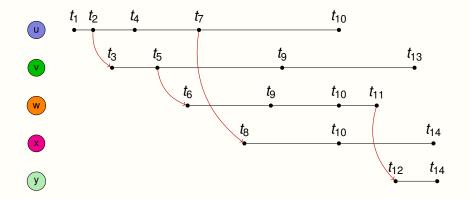
Universität Konstanz

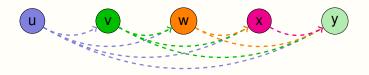
Inferring paths of influence Sites



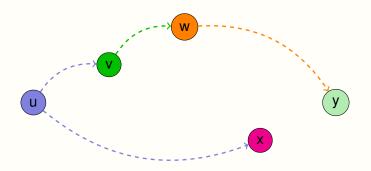

Sites + inscription timelines of a grapheme

Step 1: All potential sources of influence

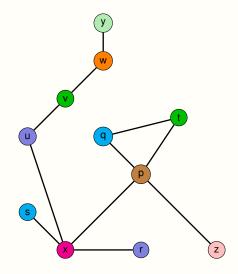



Step 2: Select strongest influence

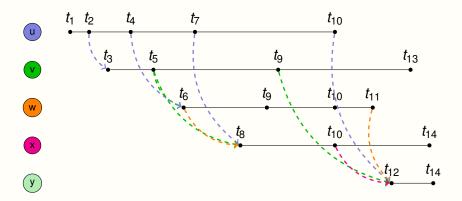
Step 1: Directed Acyclic Graph of influence



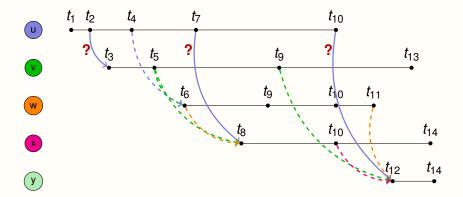
Step 2: Influence propagation tree


Step 3: Influence graph

Step 3: Influence graph

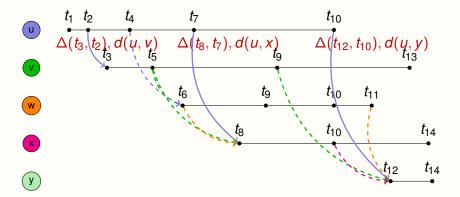


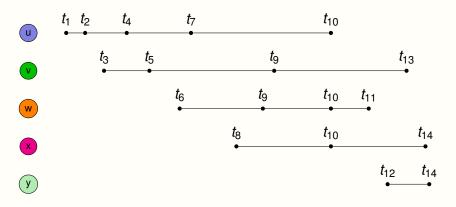
Measure of influence



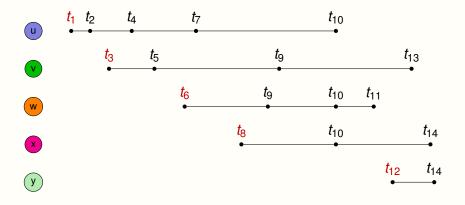
Measure of influence

Exponential waiting time distribution for influence propagation



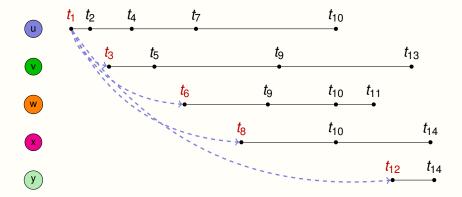

Measure of influence

Exponential waiting time distribution for influence propagation

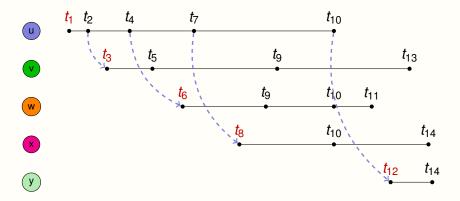


Universität Konstanz

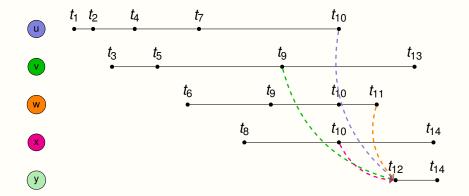
First recording of a grapheme: time of "influence"



Universität Konstanz

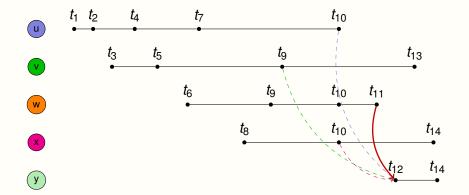

First time of inscription at a site determines the directionality of the influence

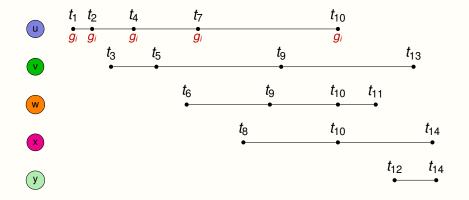
Strength of influence: latest inscription before adoption

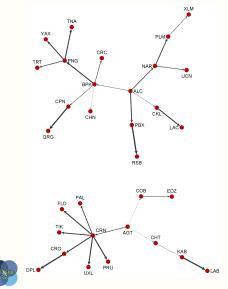


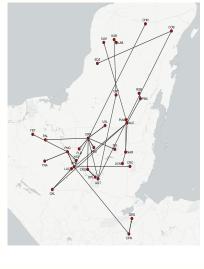
-Pt

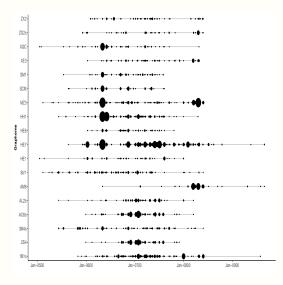
Universität Konstanz


Source of influence: shortest time difference between latest inscription and adoption

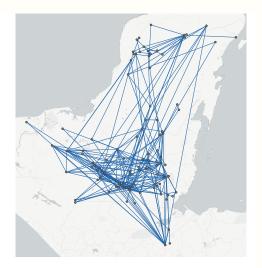

Source of influence: shortest time difference between latest inscription and adoption


Grapheme is unchanging at least for the time period of observations under study



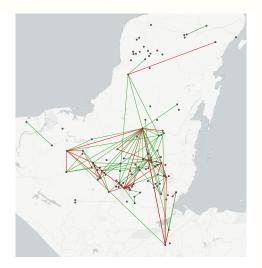


Influence propagation tree of BV1 grapheme


Inscription timelines of a selected sample of graphemes

Influence graph based on the 18 graphemes

Results Relationship graph



Comparison of relationship graph with inferred influence paths

Inferring complex diffusion graphs:

- multiple sources of influence
- increasing the number of graphemes
- Robustness of the inference model: cross validation
- Incorporating relationship data as an explanatory variable
- No. of inscriptions of a grapheme
- "Linguistic attributes" of graphemes

Inferring complex diffusion graphs:

- multiple sources of influence
- increasing the number of graphemes
- Robustness of the inference model: cross validation
- Incorporating relationship data as an explanatory variable
- No. of inscriptions of a grapheme
- "Linguistic attributes" of graphemes

Inferring complex diffusion graphs:

- multiple sources of influence
- increasing the number of graphemes
- Robustness of the inference model: cross validation
- Incorporating relationship data as an explanatory variable
- No. of inscriptions of a grapheme
- "Linguistic attributes" of graphemes

- Inferring complex diffusion graphs:
 - multiple sources of influence
 - increasing the number of graphemes
- Robustness of the inference model: cross validation
- Incorporating relationship data as an explanatory variable
- No. of inscriptions of a grapheme
- "Linguistic attributes" of graphemes

- Inferring complex diffusion graphs:
 - multiple sources of influence
 - increasing the number of graphemes
- Robustness of the inference model: cross validation
- Incorporating relationship data as an explanatory variable
- No. of inscriptions of a grapheme
- "Linguistic attributes" of graphemes

- Inferring complex diffusion graphs:
 - multiple sources of influence
 - increasing the number of graphemes
- Robustness of the inference model: cross validation
- Incorporating relationship data as an explanatory variable
- No. of inscriptions of a grapheme
- "Linguistic attributes" of graphemes

- Inferring complex diffusion graphs:
 - multiple sources of influence
 - increasing the number of graphemes
- Robustness of the inference model: cross validation
- Incorporating relationship data as an explanatory variable
- ► No. of inscriptions of a grapheme
- "Linguistic attributes" of graphemes

