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ABSTRACT

In this paper we propose three methods of measuring betweenness of individuals in networks
which are best modeled as graphs with explicit time ordering on their edges. The between-
ness centrality index is one of the basic measure in the analysis of social networks, but most
of the work done for measuring the betweenness index of individuals is based on the aggregate

representation of the network. Many network problems are based on fundamental relation-
ship involving time. We incorporate the time factor in the aggregate graph representation
of social networks to create dynamic networks. We define and measure the betweenness in
this dynamic framework. We compare the three betweenness with the standard betweenness
measure for the same network. We show that by incorporating the exact times of interactions
among individuals in a network, we can better study the betweenness of individuals in the
underlying network.



1 Introduction

In this paper, we extend the study of betweenness centrality of individuals in social networks
to networks which are explicitly dynamic.

The idea of representing societies as networks of interacting individuals dates back to
Lewin’s earlier work of group behavior [27]. In this model individuals are represented
as nodes and interactions in the observed time period are represented as edges between
individuals. This representation provides an aggregate view of the population. Using this
aggregate network model, the structure and properties of many social networks have been
studied from different perspectives [3, 5, 6, 8, 22]. However, this model and other similar
analogies do not explicitly consider the temporal aspect of the network.

Many network problems are based on fundamental relationship involving time. Consider,
for example the problem of modeling the flow of information [9, 10, 12, 21, 24], spreading
of diseases in a population [13, 16, 23, 26, 30], viral marketing [14, 15], and transportation
networks [1, 4]. For all such domains the evolution of the network over time plays a key role.

In this paper, we present a dynamic network model which explicitly evolve over time.
The central motivation of our work in this paper is the following question: How does the
betweenness centrality for individuals in a network varies when we impose the additional
constraint of time ordered interactions?

Betweenness centrality is a parameter that measures the importance of individuals in
a network based on their position in the shortest paths connecting a pair of non-adjacent
individuals [2, 19, 20]. We present different flavors of the traditional betweenness centrality
concept in dynamic networks based on position, time, and duration of interactions among
individuals (Section 6). In addition, we experimentally compare the betweenness centrality
of individuals in the aggregate representation with that of the dynamic representation for
the same networks (Section 7). Our results show that the two network models are different
based on the betweenness index of individuals in the network. The dynamic network takes
into consideration the additional temporal aspect of the underlying network, hence, it is a
better representation of the network.

2 Background- Graph Theoretic Notation of Social Net-

works

A social network can be viewed in several ways. One of the most useful views is as a graph

of individuals joined by edges representing interactions among individuals. The types of
interactions vary with domains. For example, they can be co-membership [28], proximity
[29], or informal groups [21] among many other types of interactions.

In an instance of a social network graph we can study a single or multiple types of
interactions. In this work, for a social network, we consider only a single type of interaction
among the individuals.

An interaction is direct, if two individuals are connected by an edge. These individuals
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are called adjacent individuals. An interaction is indirect, when two individuals are not
adjacent. In terms, for any two non-adjacent individuals, there is a path between that pair
of individuals if they can be connected through one of more adjacent individuals [33]. The
shortest path between a pair of non-adjacent individuals is a path with the least number
of intermediate individuals or of the smallest weight, if weights are assigned to edges. The
length of such a path is known as the geodesic of the pair of individuals [33]. We focus on
quantifying the importance of those individuals that lie on the shortest paths between non-
adjacent individuals. Anthonisse [2] and later Freeman [19, 20] were the first to quantify the
importance of an individual based on its presence on the shortest paths of other individuals.
This is known as the betweenness or betweenness centrality of an individual.

In this paper, we present several methods to measure the betweenness centrality of indi-
viduals in dynamic networks– which are explicitly based on the time ordering of interactions.
In the next section we formally define such networks.

3 Dynamic Networks

For this work, we assume that the time during which the individuals are observed is finite.
For simplicity, we also assume that the time period is divided into discrete steps {1, . . . , T}.

A dynamic network can be visualized as a series 〈G1, . . . , GT 〉 of static networks. Where
each Gt is a snapshot of individuals and their interactions at time t.

Definition 1. Let {1, . . . , T} be a finite set of discrete timesteps. Let V = {1, . . . , n} be a

set of individuals. Let Gt = (Vt, Et) be a graph representing a snapshot of a static network

at time t. Vt ⊆ V , is a subset of individuals V observed at time t. (ut, vt) ∈ Et if individuals

u and v have interacted at time t and for all v ∈ V and t ∈ {1, . . . , T − 1}, (vt, vt+1) ∈ E
are directed self edges of individuals across timesteps.

A dynamic network G = 〈G1, . . . , GT 〉 is the graph G = (V, E) of the time series of

graphs Gt such that V =
⋃

t Vt and E =
⋃

t Et ∪
⋃

t−1 (vt, vt+1).

In the above definition it is assumed that an interaction between a pair of individuals
takes place within one timestep. Figure 1(a) illustrates a dynamic network of four individuals
interacting over five timesteps. The solid line edges represent interactions among individuals
in a timestep. The dotted lines are directed self edges from an individual to itself across
timesteps. Empty circles are individuals observed during a timestep and filled circles are
individuals not observed in a particular timestep.

The above dynamic network model is equivalent to an undirected multigraph represen-
tation [25].

We define G = (V, E) as an undirected graph of V individuals and edge set E. Each edge
(u, v) ∈ E is labeled with a time label λ(u, v) specifying the time at which its endpoints u
and v have interacted. Thus, one can view a dynamic network as the pair (G, λ), where λ is
a function from the edge set to integers between 1 and T . We call λ as a time labeling of G.
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Figure 1: (a)A time series dynamic network of 4 individuals interacting over 5 timesteps.
(b) Dynamic labeled multigraph of 4 individuals interacting over 5 timesteps.

Definition 2. Let {1, . . . , T} be a finite set of discrete timesteps. Let V = {1, . . . , n} be

a set of individuals observed at any time between 1 and T . E is the multiset of edges that

occur during the time {1, . . . , T}. A function λ maps each edge to an integer value between

{1, . . . , T}, λ : E → {1, . . . , T}. A dynamic labeled multigraph, is a pair (G, λ). Where

G = (V, E) and λ is a function that maps each edge in E to the timestep in which that edge

occurred.

Figure 1(b) gives the multigraph representation of the dynamic network in Figure 1(a).

Proposition 1. The multigraph representation (G, λ) of dynamic networks is equivalent to

the time series representation G = 〈G1, . . . , GT 〉 of dynamic networks.

Proof. • The time series representation of a dynamic network can be reduced to the la-
beled multigraph representation of a dynamic network. For the trivial case, if timesteps
are equal to one timestep t, that is G = Gt for the time series dynamic network G.
Then, the multigraph representation for G is G′′ = (V ′′, E ′′) where V ′′ is the set of
individuals observed at timestep t and E ′′ is the set interactions that took place at
time t, and ∀(u′′, v′′) ∈ E ′′, λ(u′′, v′′) = t.

For the nontrivial case of a subset Gi, . . . , Gk of the time series dynamic network G =
〈G1, . . . , GT 〉, the equivalent multigraph is G′′ = (V ′′, E ′′) such that V ′′ =

⋃

i≤t≤k Vt

and E ′′ =
∑

i≤t≤k Et. Each (u′′, v′′) ∈ E ′′ has a label λ(u′′, v′′) = t if (u, v) ∈ Et where
i ≤ t ≤ k in the time series graph.

• The labeled multigraph representation of a dynamic network can be reduced to the
time series dynamic network.

Consider a subset G′ = (V ′, E ′) of a labeled multigraph G = (V, E). We reduce G′ to
a time series network G′′ such that, ∀(u′, v′) ∈ E ′ and u′, v′ ∈ V ′, if λ(u′, v′) = t, then,
u′, v′ ∈ V ′′

t and (u′, v′) ∈ E ′′
t , where, G′′

t = (V ′′
t , E ′′

t ) is the static graph of individuals
and their interactions at time t. The time series graph G′′ is the series of static graphs
G′′

t .
�
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In both representations of dynamic networks, we assume that interactions take place
within a timestep. The second representation is useful as it makes it easier to use stan-
dard graph traversal algorithms like breadth first search and depth first search for different
operations.

4 Temporal Paths

The notion of a path is fundamental to most of graph related measures, from connectivity
problems and spanning trees to flows and cuts, all are based on paths. Paths that take into
account the time labeling on edges are known as temporal paths [25].

A temporal path is a time respecting path if the time labels of the sequence of edges on
the path are nondecreasing. A path is strictly time respecting if the time labels of the edges
are increasing.

In this paper, we assume paths are strictly time respecting which is implied by our
assumption that each interaction takes one timestep.

Definition 3. A temporal path p(u, v) between a pair of individuals u and v, is a sequence

of edges connecting them. Formally,

p(u, v) = {(v0 = u, v1), (v1, v2), . . . , (vn−1, vn), (vn, vn+1 = v)}

such that, ∀(vj , vj+1), (vi, vi+1) ∈ p(u, v) and ∀i < j, λ(vi, vi+1) < λ(vj, vj+1).

Figure 2 shows all temporal paths between two individuals u and x based on the dynamic
network in Figure 1.

u v w x

1 2 4

(a)

u v x

1 4

u v x

1

(c)

(d)

5

u v w x

1 3 4

(b)

Figure 2: Simple temporal paths between u and x based on the dynamic graph in 1
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5 Measures

Centrality relies on measures of geodesics and shortest paths. In this section, we define each
of these for dynamic networks. We use the labeled multigraph representation of dynamic
networks for defining geodesic, simple temporal path, and link path. We use the time series
representation of dynamic networks for the definition of shortest temporal trails.

5.1 Geodesic

Traditionally, geodesic is the shortest distance from one individual to another individual
where distance is some function of edges on the shortest path. Usually, distance is the
number of edges on the path when the graph is unweighted.

In dynamic networks, geodesic is the length of the shortest temporal path. The length
of temporal path is defined in two ways.

1. If we do not take into account delays between any two consecutive interactions then
length d(u, v) of a path p(u, v) is the number of edges on the path, assuming that each
edge or interaction takes one timestep.

d(u, v) = |{(v0 = u, v1), . . . , (vn−1, vn = v)}|

where (v0 = u, v1) is the first edge on the path starting at u and (vn−1, vn = v) is the
last edge ending at v.

2. Alternatively, the length of a path is the time it takes for an interaction to take place
between a pair of non-adjacent individuals. Simply, the length is the time difference
of the first and last interactions on the path. The delays are implicitly embedded in
this distance measure between the two individuals.

d(u, v) = λ(vn−1, vn = v) − λ(v0 = u, v1) + 1

where λ(vn−1, vn = v) and λ(v0 = u, v1) are time labels of the last and first interaction
respectively on the path p(u, v) between u and v.

We can see that the first definition of length of a path is equivalent to the length of a path
in a simple unweighted aggregate graph. But unlike the aggregate graph, there is a path
between any two individuals only if it is temporal.

In this paper, for all measurements involving paths, lengths, and distances we take into
account the delay factor. Thus, the geodesic g(u, v) of two non-adjacent individuals u and v
in a dynamic network is defined as:

g(u, v) =

{

1 : (u, v) ∈ E
λ(vn−1, vn = v) − λ(v0 = u, v1) + 1 : (vn−1, vn), (v0 = u, v1) ∈ E
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Geodesic between two individuals in a dynamic network can be interpreted differently
based on the timing of interactions, the duration of interactions, and the number of individ-
uals involved in the interaction. We show that for all three factors, the value of the geodesic
is the same. Hence, all three can be independently used for defining the shortest paths. All
these factors have different relevance and meaning in various domains. Hence, we think it is
necessary to consider each one of them.

5.2 Shortest Simple Temporal Path

Shortest Simple Temporal Path ps(u, v), between a pair of individuals u and v is the shortest
time respecting path between those individuals, with each intermediate individual present
atmost once. The length of the shortest simple temporal path is the geodesic g(u, v).

ps(u, v) =

{

(u, v) : (u, v) ∈ E
{(v0 = u, v1), (v1, v2), . . . , (vn−1, vn), (vn, vn+1 = v)} : (vi, vi+1) ∈ E

Figure 2(a), (b), and (c) show the shortest simple path between two individuals u and x
for the dynamic network in Figure 1. Note that although Figure 2(d), is a temporal path
between u and x, it is not the shortest because of the time it takes for the interaction to
take place.

5.3 Shortest Link Path

Shortest Link Path pl(u, v), is the shortest simple temporal path with minimum number
of individuals on the path. The significance of this type of path is that it reduces the
dependency of the source and destination on intermediate individuals.

pl(u, v) = min|ps(u, v)|

Figure 2(b) shows the shortest link path between individuals u and x for the dynamic
network in Figure 1. Note, that the geodesic of all the paths in Figure 2 are the same but
none of the other two are the shortest link paths.

5.4 Shortest Temporal Trails

Another way of measuring the significance of intermediate individuals on the shortest paths
of non-adjacent individuals is in terms of the ratio of the time spent on an intermediate node
to the total length of the path. Note, that the length of the path is defined in terms of time
for the temporal paths. It is obvious that an individual that retains the information for the
longest time in a shortest path is more significant than others in some ways. We modify the
betweenness centrality definition based on the time spent on each individual in the shortest
paths of any pair of individuals.
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By accounting for delay at each intermediate individual, the paths are no longer simple.
The delay on each intermediate individual is essentially a self loop around that individual.
These routes in temporal networks are called temporal trails1. A temporal trail pd(u, v) be-
tween u and v is a sequence of edges pd(u, v) = 〈(v0 = u, v1), (v1, v2), . . . , (vn−1, vn), (vn, vn+1 =
v)〉, such that λ(vt−1, vt) < λ(vt, vt+1) for t = 1, . . . , n − 1.

The shortest such trails are the one with the smallest geodesic. We call them the Shortest

Temporal Trails. The important thing is that these shortest trails have the same geodesic as
the shortest simple paths and shortest link paths between the same pair of individuals.

Based on the above definitions of dynamic graphs, shortest temporal paths, shortest tem-
poral trails, and geodesics we now give definitions of the betweenness centrality in dynamic
networks.

6 Betweenness Centrality in Dynamic Graphs

6.1 Temporal Betweenness Centrality

Temporal betweenness centrality measures the importance of individuals based on their
position in the shortest temporal paths of all other nodes. Temporal betweenness centrality
BT (v) of node v is defined as:

Definition 4. Let gst be the number of shortest temporal paths between s and t. Let gst(v) be

the number of shortest temporal paths between s and t that pass through v. Let BT (st)(v) be the

fraction of shortest temporal (s, t) paths passing through v. Then, the temporal betweenness

centrality BT (v), of a node v is defined as the sum of fraction of all shortest temporal paths

passing through the node v between all pairs of nodes. Formally,

BT (v) =
∑

s 6=t6=v

BT (st)(v) =
∑

s 6=t6=v

gst(v)

gst

.

6.2 Delay-Betweenness Centrality

The delay-betweenness centrality, BD(v), of individual v, is defined as:

Definition 5. Let nstst be the number of shortest trails from s to t. Let nstst(v) be the

number of time steps of delay of v that all shortest trails from s to t. Let BD(st)(v) denote

the delay-dependency of (s, t) on v. The delay-betweenness centrality BD(v) of a vertex v is

the sum of all delay-dependencies BD(st)(v) of all other node pairs (s, t). Formally,

BD(v) =
∑

s,t:s 6=t6=v

BD(st)(v) =
∑

s,t:s 6=t6=v

nstst(v)

nstst
.

1A trail may repeat vertices but must not repeat edges
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In the dynamic network in Figure 1, there are three shortest temporal trails from u to x
as illustrated in Figure 3. Individual v appears for five time steps in these trails. Therefore,
the delay-dependency of u and x on v is BD(ux)(v) = 5

3

Figure 3: The shortest temporal trails from u to x in the dynamic network in Figure 1.

u

t=0 t=1 t=2 t=3 t=4

v

w

x

t=5

Figure 4: The DAG of the dynamic network in Figure 1.

To compute the delay-dependency BD(st)(v), we create a directed acyclic graph (DAG)
G′′ = (V ′′, E ′′) from the dynamic network G = (V, E) (Section 3) as follows. For each node
v ∈ V , we create a node vt ∈ G′′ for t = 0, 1, . . . , T if v is observed at time t. We create vt for
all t = 0, ..., T . We add an edge (vt−1, vt) ∈ E for t = 1, 2, . . . , T . Then, for each undirected
edge (u, v) ∈ E incident on u, v ∈ V , we create two directed edges (ut−1, vt) and (vt−1, ut)
in E ′′ where t = λ(e). Lastly, for each v ∈ V , we create two dummy nodes, a source vin

and a sink vout, and connect them to all vt of v with edges (vin, vt) and (vt, vout). Figure 4
illustrates the DAG for the dynamic network in Figure 1. The dummy nodes are suppressed
in Figure 4.

Lemma 1. In a given dynamic network G = (V, E), each temporal trail from u to v, u, v ∈ V ,

corresponds to a unique simple path from uin to vout in the DAG of G created as described

above. Let n be the length of the temporal trail and n′ the length of the corresponding simple

path in the DAG. We also have that n = n′ − 2.

See appendix A.1 for proof.
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Now, we compute BD(st)(v) using the Dynamic Programming in a way similar to the
Brandes’ algorithm [7]. The delay-betweenness BD(v) of v can be computed as the sum of
the delay-dependency BD(s•)(v) of a node s on a node v. Formally,

BD(v) =
∑

s:s 6=v

BD(s•)(v).

To compute BD(s•)(v), let Ds = (V ′′, E ′′
s ), s ∈ V , denote the DAG returned by Dijkstra’s

traversing algorithm [11] starting at sin ∈ V ′′. To simplify the notation, we use (u, v) ∈ Ds

to denote every edge in E of the multigraph that is on some shortest temporal trail starting
at s. Note that we can count the number of temporal trails from s to v, nstsv, while running
Dijkstra’s traversing algorithm.

Theorem 2. The following recurrence can be used to compute the delay-dependency of s on

v.

BD(s•)(v) =
∑

(v,w)∈Ds

nstsv
nstsw

(

1 + BD(s•)(w)
)

.

See Appendix A.2 for proof.
Moreover, we can compute BD(s•) on the DAG instead, using the standard graph traversal

algorithm. By traversing the Ds and computing BD(s•)(vt), vt ∈ V ′′ in post-order (i.e., the
Dynamic Programming with memoization), we have the delay-dependency of s on node v at
time t when it terminates. Then, for each v ∈ V , we compute the summation BD(s•)(v) =
∑T

t=0 BD(s•)(vt)
In section 7 we experimentally compare the betweenness centrality for the dynamic and

aggregate networks.

7 Experimental Results

In this section, we compare the three dynamic betweenness measures with the traditional
betweenness measure in networks. We use the following data sets for our experiments.

7.0.1 Grevys

Populations of Grevy’s zebras (Equus grevyi) were observed by biologists [17, 18, 31, 32]
over a period of June–August 2002 in the Laikipia region of Kenya. Predetermined census
loops were driven on a regular basis (approximately twice per week) and individuals were
identified by unique stripe patterns. Upon sighting, an individual’s GPS location was taken.
In the resulting dynamic network, each node represents an individual animal and two animals
are interacting if their GPS locations are the same. The data set contains 28 individuals
interacting over a period of 44 timesteps.

Figure 5 shows the comparison of the four betweenness indices of individuals in the
Grevys data set. The static betweenness of individuals is very low because the aggregate
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graph of the 44 timesteps results in two almost complete cliques of individuals. Hence, with
aggregate graph we cannot tell which individuals are relatively more important for any kind
of interaction. However, the dynamic betweenness indices show that certain individuals are
more important. We infer that most of these individuals are not just the ones who are on the
shortest paths between other pairs of individuals but they are the ones who appear interact
with the source individual in earlier timesteps as compared to the rest of the individuals in
the same shortest path. They play a key role in linking the source to the sink and thus are
more important.

7.0.2 Onagers

Populations of wild asses (Equus hemionus), also known as onagers, were observed by biol-
ogists [31, 32] in the Little Rann of Kutch, a desert in Gujarat, India, during January–May
2003. This data is also obtained from visual scans, as in Grevy’s zebra case. The data set
contains 29 individuals over 82 timesteps.

Figure 6 shows the comparison of the four betweenness indices of individuals in the
Onagers data set. This data set is relatively sparse. Hence, overall certain individuals
are important even in the aggregate graph for interactions among non-adjacent individuals.
The delay betweenness and the shortest simple path betweenness show a similar pattern of
behavior in individuals. We can infer from the results, that individuals who are central and
important for passing messages in an interaction between a pair of non-adjacent individuals
are also retaining it for the longest time. Hence, those individuals are significant than others.

7.0.3 DBLP

This data set is a sample of the Digital Bibliography and Library Project [28]. This is a
bibliographic data set of publications in Computer Science. We use a cleaned version of the
data from 1967–2005. In the dynamic network each node represents an individual author
and two authors are interacting if they are co-authors on a paper. A year is one timestep.
The sample we used contains 1374 individuals and 38 timesteps.

Figure 7 shows the comparison of the four betweenness indices of individuals in the DBLP
data set. Again, there is a strong co-relation between the delay betweenness and shortest
simple temporal path betweenness of individuals. Another interesting observation is that the
link betweenness corresponds to the former two betweenness strongly. What we can infer
about the network is that it has high clustering coefficient. That is, the individuals who
have co-authored among themselves also collaborated quite frequently among their mutual
co-authors. Thus, an individual that initiates the collaboration with a certain new individual
is vital for introducing the new individual to the rest of the group. The new individual may
eventually co-author with many other individuals in the rest of the group but the one which
introduces it to others is more significant than others for creating the link. By a new
individual, we mean an individual that appears for the first time in the time series of the
observed time period as compared to other individuals that have already been observed in
previous timesteps.
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Figure 5: Grevys: Comparison-Simple, Link, Delay, Static Betweenness

Figure 6: Onagers: Comparison-Simple, Link, Delay, Static Betweenness
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Figure 7: DBLP: Comparison-Simple, Link, Delay, Static Betweenness

Figure 8: Southern Women: Comparison-Simple, Link, Delay, Static Betweenness
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7.0.4 Southern Women

This is the data set of social activities of 18 women observed over a period of nine months
in Natchez, Mississippi [21]. This data set is based on the work of five ethnographers in the
1930s who reported a comparative study of social class in black and in white society [21].
During the observed period, various subset of women met in a series of 14 informal social
events.

Figure 8 shows the comparison of the four betweenness indices of individuals in the
Southern Women data set. We can observe that all four types of betweenness strongly co-
relate to each. From this correspondence we deduce that the group of observed individuals
have interacted in a persistent pattern. Thus, the topologies of the resulting aggregate and
dynamic graph are quite similar.

8 Conclusions

In this paper, we present different methods of measuring the importance of individuals based
on their betweenness in dynamic social networks. We argue that for networks that are based
on the time ordering of interactions, it is necessary to incorporate the time factor in the
graphical representation of the network. We first give formal framework of such dynamic
networks. We formulate different methods of measuring basic parameters like paths, trails,
and geodesics based on the dynamic networks framework. We then present different methods
of evaluating the betweenness centrality of individuals based on shortest temporal paths and
shortest temporal trails.

We experimentally compare the betweenness centrality of individuals using shortest sim-
ple temporal paths, shortest link paths, and delay betweenness with the traditional between-
ness in the static graphs for same networks. We graphically show the variations in the four
measures.

We believe that for problems that are best modeled using a network with an explicit time
ordering on its edges, our methods of measuring betweenness gives a more accurate picture
of the individuals in the network. We think that other than position of individuals in the
shortest paths, the time at which the intermediate individuals appear in the shortest path
are vital for measuring the significance of intermediate individuals.

There are many possible extensions of our work. Other than betweenness, we can de-
fine the degree and closeness centrality measures for dynamic networks. Similarly, network
measures like clustering coefficients, cliques, connectivity, and many more can be formally
studied in explicitly dynamic networks.
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A Proofs

A.1 Proof of Lemma 1

Proof. Let P = {e1, e2, . . . , en} be a temporal trail in a dynamic network G. Let s(ei) and
t(ei) denote the two nodes that ei connects. Since P is a temporal trail, t(ei) = s(ei+1)
and λ(ei) < λ(ei+1) for all i = 1, 2, . . . , T − 1. First, we show that every two consecutive
edges ei, ei+1 in P have two corresponding edges in a path in the DAG of G. Recall that
we create the DAG such that each edge e ∈ E has two corresponding edges (ut−1, vt) and
(vt−1, ut) in the DAG, where s(e) = u, t(e) = v and t = λ(e). Therefore, for every two
consecutive edges ei, ei+1 in P , where s(ei) = u, s(ei+1) = v, t(ei+1) = w and λ(ei) = t, there
is a path ut−1, vt, wt+1 in the DAG. By induction, there is a path from xλ(e1)−1 to yλ(en) where
x = s(e1) and y = t(en). Since there are edges (xin, xλ(e1)−1) and (yλ(en), yout) in the DAG,
there is a path from xin to yout. Obviously, the two edges, (xin, xλ(e1)−1) and (yλ(en), yout),
make n = n′ − 2. �

A.2 Proof of Theorem 2

Proof. We have essentially to prove that Brandes’ recurrence [7] works with shortest temporal
trails on a multigraph. Let nstst(u, v) denote the number of shortest temporal trails from s to
t that contains an edge e where (s(e), t(e)) = (u, v) (note that, since G is a multigraph, there
can be more than one edge between u and v, and nstst(u, v) counts all shortest temporal
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trails that contain one of such edges). We have that

BD(s•)(v) =
∑

t∈V :t6=s 6=v

BD(st)(v) =
∑

t∈V :t6=s 6=v

nstst(v)

nstst

=
∑

t∈V :t6=s 6=v

∑

w:(v,w)∈Ds

nstst(v, w)

nstst

=
∑

w:(v,w)∈Ds

∑

t∈V :t6=s 6=v

nstst(v, w)

nstst

Let BD(st)(u, v) denote the delay-dependency of s and t on all edges between u and v.
That is, BD(st)(u, v) = nstst(u, v)/nstst. Therefore, we have that

∑

w:(v,w)∈Ds

∑

t∈V :t6=s 6=v

nstst(v, w)

nstst
=

∑

w:(v,w)∈Ds

∑

t∈V :t6=s 6=v

BD(st)(v, w).

Out of nstsw shortest trails from s to w, there are nstsv of such trails that go to v first
and then go to w. Therefore, out of nstst(w) shortest trails from s to t that contain w, there
are nstsv

nstsw

·nstst(w) of such trails that go to v first and then go to w. Therefore, we have that
the delay-dependency BD(st)(v, w) of s and t on v and w is

BD(st)(v, w) =

{

nstsv

nstsw

if w = t
nstsv

nstsw

· nstst(w)
nstst

= nstsv

nstsw

· BD(st)(w) otherwise.

Substituting into the above summation, we have

∑

w:(v,w)∈Ds

∑

t∈V :t6=s 6=v

BD(st)(v, w)

=
∑

w:(v,w)∈Ds





nstsv
nstsw

+
∑

t∈V \{w}:t6=s 6=v

nstsv
nstsw

· BD(st)(w)





=
∑

w:(v,w)∈Ds

nstsv
nstsw



1 +
∑

t∈V \{w}:t6=s 6=v

BD(st)(w)





=
∑

w:(v,w)∈Ds

nstsv
nstsw

(

1 + BD(s•)(w)
)
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