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In this work we present a statistical model for generating realistic dynamic networks
over time. Modeling such networks is necessary both to better understand the underlying
dynamics of the population, as well as, for generating synthetic networks that emulate
the real–world properties, for validating analysis.

Classically there are two main schools of network modeling. The approach primarily
used in social sciences is to treat the entire network as a maximum likelihood object
from a statistical distribution where some of the parameters, such as the number of
dyads or triads, are fixed [4]. A radically different approach originates from the random
graph community, where generative models are designed to emulate large scale global
statistical behaviors in networks, such as the degree distribution [1, 2] and average
distance [5], among others. A significant shortcoming of these classes of models is that
they are fundamentally evolutionary but not truly dynamic. That is, once a connection
is established it cannot be removed. This intuitively contradicts how social links are
formed, reinforced, and lost in real world. These models essentially give a “static”
representation of the dynamics of interactions aggregated up to a certain point in time.

Here is a simple example of what the above mentioned models fail to capture. At
given point in time, society exists as a collection of loosely formed communities [3, 7]. As
an individual joins a community, she/he forms relationships with its members. Overtime
the individual updates those relationships by adding more links to already existing mem-
bers or new–comers and by removing other links. Moreover, some individuals leave the
communities all–together. Most of the models in the aforementioned two classes capture
one or the other network properties but fail to incorporate many others. Especially, the
existing models do not capture dynamic of forming and breaking relationships in a fluid
community membership.

1 Model

We present a truly dynamic statistical generative network model that captures mem-
bership, formation, and fluidity of community membership and the resulting structure
of interactions. This model incorporates some of the most fundamental properties of
the real–world networks. A time evolving network generative model that evaluate net-
work community structure is presented in [6]. However, the multiplicity of scale and
relationships renders it harder to analyze in detail.
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Table 1: Parameters for the generative model

Parameter Description

N Size of the network

T Number of timesteps

〈C0, . . . , Cm〉 Distribution of community sizes.

Pintra Intra–cluster link probability.

Pinter Inter-cluster link probability.

Optional parameters to setup the dynamics of link formation within communities. For example,
for preferential attachment model, skewness and average degree.

At a high level, the interactions in our dyanmic network generative model are driven
by the individuals’ membership in informal communities. Individuals tend to interact
more within a community than accross communities however, over time they may update
their affiliations.

2 The dynamic generative process

The network generative process works as follows. The model requires the parameters
listed in 1. Given the size of the network N and the number of timesteps T , in each
timestep ti ∈ T , we generate a set of communities according to the given community
distibution vector 〈C0, . . . , Cm〉. Nodes 1, . . . , N are proportionally assigned to each
community. Then, based on the Pintra probability, nodes within a community are linked
to each other. In the next step, the nodes are connected across communities using
the probability Pinter. The above steps are repeated for each timestep t ∈ T . Once
the community distribution and node affiliations are fixed in each timestep, nodes are
switched from one community to another community across timesteps based on the
probability Psw. Note that this process of community affiliation over time roughly follows
the stochastic block model generative process with the evolution of the network with time
incoporporated into it. Other than the basic uniform probability of interactions within
a community Pintra, the model can take optional parameters to specify other individual
level interactions pattern. For example, in the current version, this generative model
can take Preferential Attachement model as the process by which nodes interact among
themselves within a community.

3 Sample networks

We study the dynamic evolution of networks over a wide range of parameter values.
For instance, to generate networks that have at most one giant community and other
communities that are trivially small, while maintaining a preferential attachment model
of connectivity within a community, we sample thousands of networks by controlling
for the relevant parameters. 2 shows the degree distribution of a class of networks in
which the giant component encompasses 40–50 % of the network and all the rest of the
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Figure 1: Modular structure of dynamic network

components are some constant fraction c of log of the network size N . For the preferential
attachment model the exponent of skewness γ is set between 2 and 3, as has been shown
for most real–world networks. For networks based on this model, the minimum average
degree is set slightly above 1 to mimic the growth process. The resulting synthetic
networks have a bimodal degree distribution. That is, there is a large frequency of
smaller node degrees but also a relatively significant number of nodes that have degrees
closer to the size of the largest component. This instantiation of the network generative
process also captures the modular structure of the underlying dynamic network, as is
evident by the sample graph in 1.

To verify how well this model imitates reality, we suggest two types of tests. First,
measure the global network properties of the static representation of the dynamic sam-
ple network. Real–world networks have been shown to exhibit certain standard global
properties, such as, most real–world networks belong to certain classes of degree dis-
tributions, have short geodesics, and/or high clustering coefficient. Comparing these
real–world network properties with the ones exhibited by the dynamic network model
based networks help us estimate the parameter settings of our model that correlate to
the properties observed in real world. Secondly, using the maximum likelihood approach
to measure the actual properties of the real–world dynamic networks. Such as, the prob-
ability of switching of individuals within communities, the probability of links within and
across communities, the expected number of communities given an observed number of
observations in time, and the sizes of the communities relative to the size of the pop-
ulation. These parameters can be estimated using the dynamic community detection
model proposed by Chayant et al. [8]. We can use the parameters estimated by the
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Figure 2: Degree distribution of skewed community structure

dynamic community detection model to synthetically generate similar networks using
the generative model proposed here and measure how well the real–world dynamics of
interactions and group formation can be replicated.

4 Conclusion

Research in computational generative modeling of networks has, over more than a
decade, tried to build as realistic models as mathematically and statistically possible.
However, for the most part they have failed to capture the complexity of multiplicity of
properties exhibited by such networks. In this work, we propose a generative model for
dynamic networks based on the notion of distribution of communities within the popula-
tion that split and merge over time. Thus, this model not only emulates the dynamics of
individual level interactions within communities but it also incorporates the structural
changes of the communities themselves.
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