UNIVERSITY OF KONSTANZ Department of Computer & Information Science Maria Flavia Mammana / Frank Schulz Algorithmic Graph Theory WS 02/03 www.inf.uni-konstanz.de/algo/lehre/ws02/gt

Exercise Sheet 3

Issue date: 14 November 2002 Hand in by 26 November 2002 Exercise class: 28 November 2002

Exercise 3.1: Let G = (V, E) be a connected graph with real-valued edge weights c(e) for $e \in E$. The following describes Borůvka's algorithm.

- 1. We maintain a set B of blue-coloured edges which is empty at the beginning.
- 2. Consider the subgraph G_B of G induced by the edges B (at the beginning it consists of |V| isolated vertices.)
- 3. While G_B is not connected
 - (a) Let C_1, \ldots, C_k be the connected components of G_B . For each C_i choose one edge $e_i = \{u_i, v_i\}$ such that u_i belongs to C_i and v_i doesn't belong to C_i , and $c(e_i)$ is minimal among these edges. Note that for $i \neq j$ not necessarily $e_i \neq e_j$.
 - (b) Colour all the edges chosen in (a) blue, i.e. add them to the set B.

Questions:

- a) Find an example of a network containing 4 vertices and at least 4 edges such that the graph G_B computed by Borůvka's algorithm is a minimum spanning tree of G.
- b) Prove the following statement: If a network is connected and the edge weights are pairwise different, then Borůvka's algorithm computes always a minimum spanning tree.
- c) Is the condition in b) also necessary?
- d) Modify the algorithm such that it computes always a minimum spanning tree, also for networks with possibly not pairwise different edge weights.

Exercise 3.2

- a) Find the tree corresponding to the Prüfer sequence (2,5,5,11,8,8,2,5,11).
- b) Find the Prüfer sequence of

Exercise 3.3: Calculate the number of spanning trees of the graph given by the following adjacency matrix:

1	0	0	1	0	
	0	0	1	1	
	1	1	0	1	
ĺ	0	1	1	0	J

Exercise 3.4: Prove that from the matrix theorem it follows directly that the number of spanning trees on n vertices is n^{n-2} .