Exercise Sheet 3

Issue date: 14 November 2002
Hand in by 26 November 2002
Exercise class: 28 November 2002

Exercise 3.1: Let $G=(V, E)$ be a connected graph with real-valued edge weights $c(e)$ for $e \in E$. The following describes Borůvka's algorithm.

1. We maintain a set B of blue-coloured edges which is empty at the beginning.
2. Consider the subgraph G_{B} of G induced by the edges B (at the beginning it consists of $|V|$ isolated vertices.)
3. While G_{B} is not connected
(a) Let $C_{1}, \ldots C_{k}$ be the connected components of G_{B}. For each C_{i} choose one edge $e_{i}=\left\{u_{i}, v_{i}\right\}$ such that u_{i} belongs to C_{i} and v_{i} doesn't belong to C_{i}, and $c\left(e_{i}\right)$ is minimal among these edges. Note that for $i \neq j$ not necessarily $e_{i} \neq e_{j}$.
(b) Colour all the edges chosen in (a) blue, i.e. add them to the set B.

Questions:
a) Find an example of a network containing 4 vertices and at least 4 edges such that the graph G_{B} computed by Borůvka's algorithm is a minimum spanning tree of G.
b) Prove the following statement: If a network is connected and the edge weights are pairwise different, then Borůvka's algorithm computes always a minimum spanning tree.
c) Is the condition in b) also necessary?
d) Modify the algorithm such that it computes always a minimum spanning tree, also for networks with possibly not pairwise different edge weights.

Exercise 3.2

a) Find the tree corresponding to the Prüfer sequence $(2,5,5,11,8,8,2,5,11)$.
b) Find the Prüfer sequence of

Exercise 3.3: Calculate the number of spanning trees of the graph given by the following adjacency matrix:

$$
\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

Exercise 3.4: Prove that from the matrix theorem it follows directly that the number of spanning trees on n vertices is n^{n-2}.

