UNIVERSITY OF KONSTANZ Department of Computer & Information Science Maria Flavia Mammana / Frank Schulz Algorithmic Graph Theory WS 02/03 www.inf.uni-konstanz.de/algo/lehre/ws02/gt

Exercise Sheet 1

Issue date: 18 October 2002 Hand in by 29 October 2002 Exercise class: 31 October 2002

Exercise 1.1: Consider the following graph G:

Find

- a) |E(G)|
- b) $\Delta(G)$
- c) d(4)
- d) whether G is simple or not

e) a walk that is not a trail, a trail that is not a path, a path that is not a cycle, and a cycle, each of length 5

- f) the distance $d_G(5, 12)$
- g) the adjacency matrix of the graph induced by the vertices $\{1, 4, 5, 6, 8\}$. Is that graph connected?
- h) the largest n such that G contains K_n as a subgraph
- i) a stable set containing 5 vertices

Exercise 1.2:

a) Draw the graph $G_1 = (V_1, E_1)$ defined by the adjacency matrix

(0	0	1	3	0	/
	0	0	2	1	0	
	1	2	0	2	0	I
	3	1	2	0	1	
	0	0	0	1	0	Ϊ

b) Determine for each pair of vertices (i, j) $(1 \le i, j \le 5)$ the number of (i, j)-walks in G_1 of length 2.

Exercise 1.3: Show that every graph has an even number of vertices of odd degree.

Exercise 1.4: Consider the following statement:

At any party with six people there are three mutual acquaintances or three mutual strangers.

- a) Formulate the statement as a graph problem.
- b) Prove that the claim is true.