## Exercise Sheet 1

Issue date: 18 October $2002 \quad$ Hand in by 29 October 2002
Exercise class: 31 October 2002

Exercise 1.1: Consider the following graph $G$ :

Find
a) $|E(G)|$
b) $\Delta(G)$
c) $d(4)$

d) whether $G$ is simple or not
e) a walk that is not a trail, a trail that is not a path, a path that is not a cycle, and a cycle, each of length 5
f) the distance $d_{G}(5,12)$
$\mathrm{g})$ the adjacency matrix of the graph induced by the vertices $\{1,4,5,6,8\}$. Is that graph connected?
h) the largest $n$ such that $G$ contains $K_{n}$ as a subgraph
i) a stable set containing 5 vertices

## Exercise 1.2:

a) Draw the graph $G_{1}=\left(V_{1}, E_{1}\right)$ defined by the adjacency matrix

$$
\left(\begin{array}{lllll}
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 2 & 1 & 0 \\
1 & 2 & 0 & 2 & 0 \\
3 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

b) Determine for each pair of vertices $(i, j)(1 \leq i, j \leq 5)$ the number of $(i, j)$-walks in $G_{1}$ of length 2 .

Exercise 1.3: Show that every graph has an even number of vertices of odd degree.

Exercise 1.4: Consider the following statement:
At any party with six people there are three mutual acquaintances or three mutual strangers.
a) Formulate the statement as a graph problem.
b) Prove that the claim is true.

