Efficient Firm Dynamics in a Frictional Labor Market

Leo Kaas and Philipp Kircher

Working Paper Series 2011-01

http://www.wiwi.uni-konstanz.de/workingpaperseries
Abstract

The introduction of firm size into labor search models raises the question how wages are set when average and marginal product differ. We develop and analyze an alternative to the existing bargaining framework: Firms compete for labor by publicly posting long-term contracts. In such a competitive search setting, firms achieve faster growth not only by posting more vacancies, but also by offering higher lifetime wages that attract more workers which allows to fill vacancies with higher probability, consistent with empirical regularities. The model also captures several other observations about firm size, job flows, and pay. In contrast to bargaining models, efficiency obtains on all margins of job creation and destruction, both with idiosyncratic and aggregate shocks. The planner solution allows a tractable characterization which is useful for computational applications.

JEL classification: E24; J64; L11

Keywords: Labor market search, multi-worker firms, job creation and job destruction

January 20, 2011
1 Introduction

Search models of the labor market have traditionally treated the production side very simplistically: Either a firm has only one job, or large firms operate with constant marginal product, which is usually equivalent.\(^1\) While successful in many dimensions, these models are silent about all aspects that relate to employer size, even though firm size and firm dynamics are important for wages, job flows and aggregate employment.\(^2\)

To capture the implications of firm heterogeneity in size, age and productivity, a large body of recent work has introduced multi–worker firms with decreasing returns to scale into standard labor search models.\(^3\) Most current contributions rely on a combination of random search together with bilateral bargaining between the firm and each individual worker without commitment over future wages. While this might be viewed as the analogue of standard one–worker–one–firm bargaining for multi–worker settings, it raises several concerns: First, due to random search the probability of filling a job is independent of firm growth, while in the data there is a strong positive relationship indicating that firms grow by filling vacancies faster and not only by posting more vacancies (see Davis, Faberman, and Haltiwanger (2010)). Second, due to the absence of commitment, existing workers in growing firms experience a decline in wages since their bargained wage depends upon marginal product which falls as the firm extends employment. Third and related to the previous point, precisely this decline in wages induces firms to hire inefficiently many workers (Stole and Zwiebel (1996), Smith (1999)). Excessive hiring is due to a within–firm externality: When a firm hires another worker, the decline in marginal product decreases the wages that existing workers obtain in the bargaining process. This is very different from the standard case with constant marginal product\(^4\) where the firm–worker pair takes jointly efficient decisions, and efficiency of overall vacancy creation is a matter of the bargaining power. Indeed, many researchers have focused on decentralizations of the planner’s solution (e.g., Merz (1995), Andolfatto (1996) and Shimer (2005b)).\(^5\) With decreasing returns there has been no similar

\(^1\)For surveys see, e.g., Mortensen and Pissarides (1999) and Rogerson, Shimer, and Wright (2005).

\(^2\)For example, larger firms are more productive, they pay more, and they have lower job flow rates (e.g., Oi and Idson (1999)), Davis, Haltiwanger, and Schuh (1996)); younger firms have higher exit rates and pay higher wages (Haltiwanger, Jarmin, and Miranda (2010), Brown and Medoff (2003)); and Moscarini and Postel-Vinay (2009) find that small and large firms contribute to the business cycle in different ways.

\(^3\)A subset of this work considers, for example, unemployment and efficiency (Bertola and Caballero (1994), Smith (1999), Acemoglu and Hawkins (2006), Mortensen (2009)), labor and product market regulation (Koeniger and Prat (2007), Ebell and Haefke (2009)), business cycles (e.g., Elsby and Michaels (2010), Fujita and Nakajima (2009)), and international trade and its labor market implications (Helpman and Itskholki (2010)).

\(^4\)Pissarides (2000) notes that the standard search and matching model is compatible with decreasing returns to labor if the production function has constant returns in multiple inputs, and the other inputs such as capital can be adjusted instantaneously. In this case the marginal return of labor, after accounting for adjustment of the other factors, is in fact constant (see also Cahuc and Wasmer (2001)).

\(^5\)Hosios (1990) showed that efficiency requires a bargaining power equal to the elasticity of the job–finding
focus due to the current perception that efficiency cannot be obtained in decentralized equilibrium, irrespective of the workers’ bargaining power; inefficiencies arise because each individual firm employs too many workers so as to depress the wages of its existing workforce.

This work proposes and characterizes an alternative framework to think about firm dynamics in a frictional labor market. Firms can commit to long–term wage contracts, and can publicly post these contracts in order to attract unemployed workers (competitive search). Commitment allows firms to offer wage policies that are independent of the hiring of other workers, which remedies within–firm externalities. Posting introduces a competitive element into the labor market. Since workers can choose which contract to search for, those firms that want to hire faster raise the attractiveness of their offer in order to induce more workers to apply for the job. Posting and administering additional vacancies becomes increasingly costly, partially due to the fact that recruitment takes up time of the existing workers (e.g., Shimer (2010)), leading to a slow buildup of the workforce over time.

This view of the hiring process generates equilibrium outcomes that are very different in positive and normative implications from the ones under bargaining described above. For one, the ability to post contracts means that firms fill their vacancies at different speeds depending on the wages that they offer, generating a connection between firm growth rates and job-filling rates. Moreover, commitment implies that wages do not need to fall as a firm grows larger (wages stay constant in our baseline model in Section 3). Finally, these factual implications on firm dynamics are indeed socially optimal: A social planner would choose the same path of job flows for each of the firms. Efficiency arises also in the presence of idiosyncratic and aggregate productivity shocks. Multi–worker firms create and destroy jobs efficiently both on the extensive margin of firm entry/exit and on the intensive margin of firm expansion/contraction. The fact that firms can commit eliminates the intra–firm externalities, and the ability to publicly post contracts leads to inter–firm optimality via a modified Hosios condition. This suggests a plausible environment where a decentralized market achieves efficiency despite decreasing returns to scale and labor market frictions, giving a justification for the study of the planner’s solution and a benchmark against which to judge actual labor market outcomes. In this respect, our work extends the ideas of the competitive theory of Hopenhayn and Rogerson (1993) to an environment with a frictional labor market.

We show analytically that the qualitative properties exhibit many of the empirical connections between firm size, growth and pay. We also demonstrate the applicability of this theory in a calibrated example and show that the model replicates several relevant cross–sectional relationships. It captures the negative relation between firm size and job flows on the extensive as well as the intensive margin, as well as the distribution of employment across firms with different rate, which is assumed in these papers. Others have left the bargaining power a free parameter to be assessed as part of the calibration strategy (e.g., Hall (2005), Hagedorn and Manovskii (2008)).
growth rates. We also find that wages are positively correlated with firm size and firm growth. Faster-growing firms indeed generate more hires through both higher job-filling rates and more vacancy postings.

One major advantage of this theory is that it provides tractability not only in steady state but also in the presence of business-cycle shocks. This is due to the fact that entry of new firms renders the firms’ policy functions independent of the firm distribution. They depend only on the firm’s productivity, its current workforce, and on the aggregate state. This substantially reduces the state space, making it feasible to compute the model without the need to resort to approximation techniques, such as those of Krusell and Smith (1998), that have been applied in the heterogeneous-firm search models of Elsby and Michaels (2010) and Fujita and Nakajima (2009) to analyze aggregate labor market dynamics.

The tractability is related in spirit but different in technique and implications from the notion of block recursivity introduced by Shi (2009) and Menzio and Shi (2009, 2010). In our environment, and in contrast to theirs, firms are not indifferent between contracts, matching rates for different contracts are not pinned down by a free-entry condition, and most contracts are offered only by a small subset of the existing firms. Nevertheless, existing firms compete for workers with new entrants, and workers choose to apply to either new or existing firms, which gives rise to an aggregate arbitrage condition. If firms always enter, this arbitrage ties the hiring of existing firms to the hiring of entrant firms and takes out the dependence on the prevailing firm distribution. Importantly, while the firms’ policy functions are independent of the firm distribution, aggregate labor-market variables such as the workers’ job-finding rate crucially depend on mix between new and old firms. This feature introduces a sluggish response of the job-finding rate to aggregate shocks, which has been documented in the data (e.g. Fujita and Ramey (2007)). In standard labor search models, the job-finding rate is a jump-variable which is perfectly correlated with aggregate productivity.

The basis for this work is the notion of competitive search developed for one-worker-per-firm models by, e.g., Montgomery (1991), Peters (1991), Moen (1997), Acemoglu and Shimer (1999a,b), Burdett, Shi, and Wright (2001), Shi (2001), Shimer (2005a), Eeckhout and Kircher (2010). One original motivation for competitive search was to link firm characteristics such as profitability and capital-labor ratios to hiring rates and wages (e.g., Montgomery (1991)), but initial work was only able to talk about different jobs, lacking a notion of firm size. Our work defines a firm by its production function. It retains the idea that firms offer higher life-time wages when they want to fill a vacancy faster. They can also post more vacancies to increase their numbers of hires, yet firms’ capacity to create more vacancies is limited, for example because

6This is similar to the setup in Menzio and Moen (2010), even though it is otherwise very different in that they restrict attention to two-period-lived firms with linear production and some lack of commitment. We provide more intuition for our aggregate arbitrage condition in Section 4.2.
recruitment takes up labor which makes job creation increasingly expensive. As firms have different recruitment tools on hand, they use both higher wages and more vacancy postings to achieve faster growth. We characterize the dynamics of the workforce adjustment in this setting, and establish a non–trivial positive relation between productivity and vacancy–filling rates.7

Efficiency on the extensive margin of firm entry has long been established in competitive search with one worker per firm, yet efficiency on the intensive margin of output per firm has not been as conclusive: For example Guerrieri (2008) introduces an intensive margin through moral hazard and finds efficiency in steady state but not out of steady state. We show that in our model efficiency on all margins obtains in and out of steady state.8

After a brief review of further related literature, especially Hawkins (2006) and Schaal (2010), we first present in Section 3 a simplified setup without aggregate or idiosyncratic productivity shocks. This allows for a teachable representation, it establishes the most important insights for dynamics of employment, job–filling rates and wage offers, and it demonstrates the efficiency of the decentralized allocation. In Section 4, we lay out the notationally more complex analysis that takes account of aggregate and idiosyncratic shocks, we prove the equivalence between the efficient and the decentralized allocations, and we characterize them using our aggregate arbitrage condition. Beyond the focus on these theoretical contributions, we consider a calibrated numerical example in Section 5 to illustrate the workings of the model and to point at its potential to capture the connections between firm dynamics and the labor market. We conclude in Section 6 with a discussion how risk aversion and worker heterogeneity might be introduced into this framework.

2 Further Related Literature

In the labor search literature with large firms operating under decreasing returns to scale, lack of commitment to future wages has been the prevailing assumption. Our contribution, alongside contemporaneous contributions by Hawkins (2010) and Schaal (2010), is the first to introduce long–term contracts in a search setting where firms face decreasing returns.

In the existing work, three features generate the intra–firm externalities mentioned above: lack of commitment, bilateral bargaining, and random search. If instead the firm either bargains about long–term contracts at the first time it meets a worker (Hawkins (2010)) or if it bargains multilaterally with a union comprising all workers at once (Bauer and Lingens (2010)) it can

7The proof of this relationship is non–trivial in our setting as it relies on value functions being supermodular in firm size and productivity, which does not follow from standard arguments.

8 On an intuitive level, the main difference to Guerrieri (2008) is that future unemployment rates do not have unpriced externalities on current productivity.
overcome this within-firm externality such that the firm and its workers take jointly efficient decisions taking the rest of the labor market as given. Nevertheless, these recent contributions point out that in neither case the market achieves overall efficiency. With long-term bargaining, firms still grow too big under convex vacancy costs: Large firms have small marginal product relative to the average firm on which they induce externalities by posting vacancies. This means that the social benefit of vacancy postings at large firms is smaller, so that efficiency would require them to obtain a smaller share of the surplus which is not possible with a single bargaining power parameter (unless vacancy costs are linear, or unless vacancies are posted in different submarkets resembling a competitive search setup). With union bargaining, there is a hold-up problem since firms’ job-creation costs are sunk at the time of bargaining, generating too little job creation on the intensive margin.

Competitive search dispenses with bargaining weights and generates a surplus split through explicit competition for labor. Its micro-foundations usually combine Bertrand-style contract posting with coordination frictions: sometimes multiple workers apply for the same job and only one of them can be hired (e.g. Peters (1991), Burdett, Shi, and Wright (2001), Galenianos and Kircher (2010)). These micro-foundations can be extended to a multi-worker firm setting if one assumes that excess applicants for one position cannot fill another position at the same firm. This arises if different vacancies relate to different qualifications: for example, vacancies for an electrician cannot be filled by applicants for the position of a mechanic or a carpenter, even though each position yields roughly the same contributions in terms of marginal product (therefore labor input is modeled homogeneously). An alternative interpretation is that workers are literally identical and excess capacity can be substituted from one job to another, which means that posting additional jobs exhibits increasing returns; see Burdett, Shi, and Wright (2001), Hawkins (2006) and Lester (2010) for variations along these lines. In accordance with most work on large firms, we adopt the first interpretation and abstract from possible increasing returns in hiring.

Hawkins (2006) considers a one-shot competitive search model with multi-worker firms and concave production. He assumes that firms employ finitely many workers after receiving a stochastic number of applications. Since the number of applicants is stochastic, he shows that posting a wage alone is not sufficient to induce efficiency. Rather, the posted contract has to condition on the realized number of applicants. These contingencies make the model quite complicated, and results on efficiency and firm dynamics out of steady state are missing.

All worker flows in our model are transitions between unemployment and employment. Work following the lines of Burdett and Mortensen (1998), Postel-Vinay and Robin (2002), Moscarini and Postel-Vinay (2010), Shi (2009), Menzio and Shi (2009, 2010), Garibaldi and Moen (2010) and recently Schaal (2010) focused additionally on worker flows between firms. Except for the last contribution, firm size in these models is not restricted by the operated technology, though,
circumventing considerations induced by the difference between average and marginal product.\footnote{Mortensen (2009) develops a model with on-the-job-search, decreasing-returns production functions, random search and Stole–Zwiebel wage bargaining.}

Closely related to our contribution is the work by Garibaldi and Moen (2010) who also consider a competitive search model with heterogeneous firms, deriving a number of new insights for on-the-job search. As they assume constant-returns in production, the only determinant of firm size arises from convex vacancy creation costs, which are assumed to be independent of firm size or productivity. By implication, the current size of the firm ceases to be a state variable, and therefore firm growth and wages depend only on the productivity type but are independent of firm size. That is, their model is silent about the role of firm size and age for job creation; it also abstracts from idiosyncratic and aggregate productivity shocks.\footnote{Productivity shocks might induce some firms to shed some of their workforce. We note that a linear frontier such as in Garibaldi and Moen (2010) would imply that a firm that fires some workers will fire all of them, unless there are strictly convex firing costs.}

A major tractability result is achieved in Shi (2009) and Menzio and Shi (2009, 2010): They show that under free entry matching rates do not depend on the distribution of workers across jobs. In particular, in equilibrium firms are exactly indifferent regarding which contract to post. This technique extends to our setup only in the special case where recruitment costs are linear: Then all firms share the same preferences over which contracts to offer independently of their size or growth.\footnote{See equation (4) in Section 3 and its discussion for the formal argument.} Schaal (2010) uses this insight to allow for on-the-job search with heterogeneous firms based on the techniques of Menzio and Shi (2009). The drawback of the firms’ indifference is that firm characteristics are not linked to the contracts it offers, implying for example that firm growth is not linked to job-filling rates or to the life-time wages offered. Firms immediately jump to their optimal size without dynamic adjustment. Further, the job-finding rate for unemployed workers is a jump variable, perfectly correlated with aggregate productivity and independent of the firm distribution. In our work, in contrast, firms face limitations to expand the workforce by posting more vacancies, so that they have to rely on posting higher wages if they want grow fast. They are no longer indifferent between contracts, and job-filling rates are linked to firm characteristics. Furthermore, many important aggregate variables, such as unemployment and job-finding rates, do depend on the firm distribution, which induces a sluggish response to business-cycle shocks. The reason is that unemployed workers search for jobs both at existing and at new firms, the hiring rates between these firms differ, and the mix between new and existing firms varies over time.

In further relation to the random-search multi-worker-firm models mentioned in the introduction, it is worth pointing out that current applied work on business cycles only focuses on the intensive margin of hiring by considering a fixed number of firms (Elsby and Michaels (2010), Fujita and Nakajima (2009)). Similarly, Cooper, Haltiwanger, and Willis (2007) assess business
cycle implications for a fixed number of firms, assuming zero bargaining power for workers. Our paper addresses additionally the entry and exit of firms, and this feature is in fact decisive to obtain a tractable solution. The problem that bargaining might introduce unwarranted inefficiencies by assumption has also spurred other solutions than ours. For example, Veracierto (2008) and Samaniego (2008) consider general-equilibrium versions of the Hopenhayn and Rogerson (1993) model with frictionless labor markets and competitive wage setting. These approaches eliminate involuntary unemployment altogether. Veracierto (2009) introduces unemployment in an adaptation of the Lucas–Prescott island model that includes recruitment technologies. In contrast, competitive search allows the market to operate through decentralized wage setting, which attracts workers that optimally choose between search markets and are matched according to a standard matching function.

3 A Stationary Model of Firm Creation and Firm Growth

3.1 The Environment

The model is set in discrete time and is stationary; that is, there are neither idiosyncratic nor aggregate shocks. These will be introduced in Section 4.

Workers and Firms

There is a continuum of workers and firms, and workers are negligibly small relative to firms. That is, every active firm employs a continuum of workers. The mass of workers is normalized to one. Each worker is infinitely-lived, risk-neutral, and discounts future income with factor $\beta < 1$. A worker supplies one unit of labor per period and receives income $b \geq 0$ when unemployed. On the other side of the labor market is an endogenous mass of firms. Firms are also risk neutral and have the same discount factor β. Upon entry, the firm pays a set-up cost $K > 0$ and draws productivity x with probability $\pi_0(x)$ from the finite set X. In this section, productivity stays constant during the life of the firm. In each period, a firm produces output $x F(L)$ with $L \geq 0$ workers, where F is a twice differentiable, strictly increasing and strictly concave function satisfying $F'(\infty) = 0$. Firms die with exogenous probability $\delta > 0$ in which case all its workers are laid off into unemployment. Furthermore, each employed worker quits the job with exogenous probability $s \geq 0$. Thus, workers’ separation probability is exogenous at $\eta \equiv 1 - (1 - \delta)(1 - s)$.

12Although the set of individuals has the same cardinality as the set of firms, it is helpful to think of the set of firms as a closed interval in \mathbb{R}, and the set of workers as a two-dimensional subset of \mathbb{R}^2. When both sets are endowed with the Lebesgue measure, an active firm employs a continuum of workers, albeit of mass zero.
Recruitment

Search for new hires is a costly activity. A firm with current workforce L that posts V vacancies incurs recruitment cost $C(V, L, x)$. An often used benchmark is the case where firms pay some monetary recruitment cost $C(V, L, x) = k(V)$ that is strictly increasing and strictly convex, but independent of the current size or productivity (for applications of this specific case, see e.g. Cooper, Haltiwanger, and Willis (2007), Koeniger and Prat (2007), Garibaldi and Moen (2010)). The convexity captures adjustment costs that prevent the firm from immediately growing large just by posting many vacancies. A deeper micro–foundation for the convexity arises when recruitment costs are in terms of labor rather than goods, as proposed in Shimer (2010). This naturally leads to strictly convex costs even if the inputs into recruitment are linear. For example, if each vacancy costs $c \geq 0$ units of output but also requires $h > 0$ units of recruitment time from existing workers, then the total recruitment costs $C(V, L, x) = xF(L) - xF(L - hV) + cV$, comprising lost output and pecuniary costs, are strictly convex.13 Taking no stance on either specification, we allow recruitment costs of the form $C(V, L, x) = xF(L) - xF(L - hV) + k(V)$ with at least one of the inequalities $h \geq 0$ and $k''(V) \geq 0$ strict. Our results can be extended to other cost functions as long as they obey the concavity and cross-partial restrictions that we outline in the proofs and that arise naturally for this specification.

Search and Matching

A recruiting firm announces a flat flow wage income w to be paid to its new hires for the duration of the employment relation. The assumption that the firm offers the same wage to all its new hires is no restriction. Indeed, it is straightforward to show that it is profit maximizing for the firm to post vacancies with identical wages at a given point in time.14 Further, because of risk neutrality, only the net present value that a firm promises to the worker matters. Flat wages are one way of delivering these promises.15

There is no search on the job. Unemployed workers observe the vacancy postings and direct their search towards wages promising the highest expected lifetime income. In the tradition of the competitive search literature, each worker decides which submarket (w, λ) to search in,
where a submarket is indexed by wage w and unemployment–vacancy ratio λ.16 The latter is an equilibrium object that depends on how attractive this wage is relative to the other wages that are offered. In any of these submarkets, unemployed workers and vacant jobs are matched according to a constant–returns matching technology, and the associated wage is paid every period that the worker is employed. The matching probabilities depend on the unemployment–vacancy ratio λ: a vacancy is matched with a worker with probability $m(\lambda)$ and a worker finds a job with probability $m(\lambda)/\lambda$. The function m is differentiable, strictly increasing, strictly concave, and it satisfies $m(0) = 0$ and $m(\lambda) \leq \min(1, \lambda)$ for all $\lambda \in [0, \infty)$. In particular, this means that a market that attracts more workers per vacancy induces higher matching rates for the firms and lower matching rates for workers.

As discussed in the previous section, we follow most of the literature by assuming that each vacancy has its independent matching rate. Then the law of large numbers convention together with the assumption that workers are small relative to firms ensures that firms know with certainty that they hire $m(\lambda)V$ workers when they post V vacancies in some submarket with worker–job ratio λ.17

\textbf{Timing}

Every period is divided into four stages. First, new firms are created and draw their productivity. Second, production and search activities take place. Third, vacancies and unemployed workers are matched, and a fraction s of workers leave their firm. And fourth, a share δ of firms dies. Newly hired workers may never work (and receive no wage income) in the unlucky event that their employer exits the market at the end of the period.

\section{Equilibrium}

Given that there are no aggregate shocks, we characterize a stationary equilibrium where a constant number of firms enters the market in every period and where the workers’ reservation wage is constant over time.

\textbf{Workers’ Search Problem}

In a stationary environment, a worker who is looking for a job in a particular submarket in one period is willing to search in that submarket in every period. Consider a worker who is

16 Following most of the literature, workers are restricted to search in only one submarket per period. Galenianos and Kircher (2010) and Kircher (2009) allow for search in multiple submarkets, and even though results differ, there are large segments of wages in which the market essentially resembles the restricted one-submarket search models.

17 Note that we view each vacancy as a separate job requiring individual skills. See the discussion on increasing returns to hiring in Section 2.
always searching for a job in a submarket characterized by wage \(w \) and unemployment–vacancy ratio \(\lambda \). Within this market the worker follows a simple sequential search process which has been analyzed extensively going back to McCall (1965). Standard arguments give rise to the following equation determining the workers’ reservation wage:\(^{18}\)

\[
R = b + \beta \frac{m(\lambda)}{\lambda} (w - R) \frac{1 - \delta}{1 - \beta(1 - \eta)} \equiv \rho.
\]

This means that the reservation wage equals the current period payoff from unemployment together with an option value from searching, denoted by \(\rho \). The search value is the probability of finding a job to the next period multiplied with the worker’s job surplus, which is the present discounted value of flow gains \(w - R \).

Workers have a choice which submarket they want to search in. In equilibrium all markets have to deliver the same search value \(\rho \). If a market would be more attractive than others, then more workers would join that market and drive up the unemployment–vacancy ratio, making the market less attractive. Similarly, if a market is less attractive than others and still has \(\lambda > 0 \), workers would leave this market, reducing the unemployment–vacancy ratio and making this market more attractive. Therefore, when workers choose between all combinations \((w, \lambda) \in \Omega\) where \(\Omega \) is the set of equilibrium submarkets, all markets have the same search value \(\rho \) if they attract applicants. Rearranging means that \((w, \lambda) \in \Omega\) has to fulfill

\[
w = R + \frac{\lambda}{m(\lambda)} \frac{1 - \beta(1 - \eta)}{1 - \delta} \rho \quad \text{whenever} \quad \lambda > 0.
\]

This condition says that a firm can only recruit workers when its wage offer matches the workers’ reservation wage plus a premium which is needed to attract workers into a submarket with job-finding probability \(m(\lambda)/\lambda \). This premium is increasing in \(\lambda \). This is a crucial insight. If a firm wants to attract more workers per vacancy in order to fill its vacancy at a faster rate, it has to offer a higher wage. This means that wages are always monotonically related to the job-filling rate. The relationship between worker-job ratios and wage offers is standard in the competitive search literature (e.g., Moen (1997), Acemoglu and Shimer (1999b)).

Firms’ Recruitment Policy

Let \(J^x(L, W) \) be the profit value of a firm with productivity \(x \), an employment stock of \(L \) workers and a commitment to a total wage bill of \(W \). An entrant firm’s profit value is then \(J^x(0,0) \). The firm’s recruitment choice involves deciding the number of posted vacancies \(V \) as

\(^{18}\)Bellman equations for employed and unemployed workers are \(W = w + \beta[(1 - \eta)W + \eta U] \) and \(U = b + \beta[\lambda m(\lambda) \lambda^{-1}(1 - \delta)W + (1 - m(\lambda)\lambda^{-1}(1 - \delta))U] \). Equation (1) follows with \(R = (1 - \beta)U \).
well as the submarket where these vacancies are posted, characterized by the tuple \((w, \lambda)\). Its recursive profit maximization problem is expressed as

\[
J^x(L, W) = \max_{(w, \lambda, V)} \ xF(L) - W - C(V, L, x) + \beta(1 - \delta)J^x(\hat{L}, \hat{W}) ,
\]

s.t. \(\hat{L} = L(1 - s) + m(\lambda)V \), \(\hat{W} = W(1 - s) + m(\lambda)Vw \),
\[
\lambda \geq 0, \ V \geq 0 , \text{ and condition (2) .}
\]

The first line reflects the value of output minus wage and hiring costs, plus the discounted value of continuation with an adjusted workforce and its associated wage commitment. The second line captures that employment next period consists of the retained workers and the new hires. For the wages, since separations are random they reduce the wage bill proportionally, and new commitments are added for the new hires. The last line connects the offered wage to the worker–vacancy ratio through the workers’ search problem.

The solutions to problem (3) are characterized by one intra–temporal and one inter–temporal optimality condition, equations (4) and (5) below, that we derive in the Appendix (proof of Proposition 1). We also show that the firm’s recruitment strategy is independent of past wage commitments and can be described by two policy functions: \(\lambda^x(L) \) denotes the number of applicants that a firm of size \(L \) and productivity \(x \) wants to attract per vacancy. This directly determines the wage it has to post according to (2). Given a choice of \(\lambda \), the firm decides on the number of posted vacancies. We denote this policy function by \(V^x(L, \lambda) \).

The intra–temporal optimality condition describes the choice between the two recruitment tools of the firm within a period: the number of posted vacancies \(V \) on the one hand, and the worker–job ratio \(\lambda \) (and thus the posted wage \(w \)) on the other:

\[
C_1(V, L, x) \geq \beta \rho m(\lambda) \frac{\lambda m'(\lambda)}{m(\lambda)} , \ V \geq 0 ,
\]

with complementary slackness. This condition can be derived by minimizing the sum of recruitment costs and wage costs conditional on the requirement of hiring a given amount \(H = m(\lambda)V \) of workers this period. The left–hand side gives the marginal cost of posting one more vacancy. When a firm posts more vacancies, it can lower its wage offer and the associated hiring rate while keeping the total number of hires constant. The net present value of wage savings are represented by the right–hand side, an increasing function of \(\lambda \). From the assumptions on \(C \) follows that the left side is (weakly) decreasing in \(L \) and strictly increasing in \(V \). Hence the implicit solution to this equation yields the policy function \(V = V^x(L, \lambda) \) which is increasing in \(\lambda \) and (weakly) increasing in \(L \). Intuitively, with higher \(\lambda \) the probability to fill a vacancy increases, and hence the firm is willing to bear higher marginal recruitment costs by advertising more jobs. And with higher \(L \), marginal recruitment costs fall and hence the firm is inclined to post more vacancies. Clearly, if costs are linear in vacancies and independent of the other variables, then the optimal
job-filling rate according to (4) is independent of any firm or size characteristics. In that case the model loses the connection between the desire to expand and the attractiveness of the job offers that are posted, because any adjustment can be achieved through vacancy creation on which there are no bounds even for the smallest firms. Equation (4) also provides an intuition why it is never optimal for a firm to offer different wages at a given point in time: the firm compares the wage costs against the vacancy costs, and there is a unique value that balances this trade-off.

The inter-temporal optimality condition describes how the firm grows over time. For a firm which hires in the current and in the next period \((\lambda, \hat{\lambda} > 0)\), we obtain the Euler equation

\[
x F'(\hat{L}) - C_2(\hat{V}, \hat{L}, x) - R = \frac{\rho}{1 - \delta} \left[\frac{1}{m'(\lambda)} - \frac{\beta(1 - \eta)}{m'(\hat{\lambda})} \right].
\]

(5)

Here \(\hat{L}, \hat{V}, \hat{\lambda}\) are next period’s values of employment, vacancy postings and worker-job ratio. Since next period’s employment and vacancy creation are fully determined by the worker-job ratios in this and the next period (through (4) and the first constraint in (3)), this condition links the worker-job ratio and the related hiring rate inter-temporally. The left-hand side of this equation captures the marginal benefit of a higher workforce in the next period. If this is high, then the firm rather hires more workers now than to wait and hire them next period. This is captured by the right-hand side, which is increasing in the current worker-job ratio but decreasing in next period’s worker-job ratio. In particular, this means that a more productive firm wants to achieve fast growth by offering a more attractive contract, thus raising the worker-job ratio and the job-filling rate.

The following proposition and its corollaries provide comparative statics results for the job-filling rate and the growth rate of firms. The job-filling rate is linked to the earnings offer, so that these comparative statics carry over to the offered net present value of wages to new hires. These characterization results depend crucially on the supermodularity of the value function, which renders this proof non-trivial. While standard techniques (Amir (1996)) can be applied when the cost function is independent of firm size and productivity, this is no longer true in the more general setting.

Proposition 1: For any value \(\rho > 0\), the firm’s value function \(J^x(L, W)\) is strictly increasing and strictly concave in \(L\), increasing in \(x\), strictly supermodular in \((x, L)\), and continuous and decreasing in \(\rho\). The firm’s policy functions are independent of wage commitments \(W\). For a hiring firm the policy function \(\lambda^x(L)\) is strictly increasing in \(x\) and strictly decreasing in \(L\). Posted vacancies \(V^x(L, \lambda)\) are increasing in \(L\) and strictly increasing in \(\lambda\).

Proof: Appendix.

Since these results hold for any search value \(\rho\), they also apply when this value is determined in general equilibrium. These results directly imply
Corollary 1: Conditional on size, more productive firms pay higher wages and have a higher job–filling rate. Conditional on productivity, younger (and smaller) firms pay higher wages and have a higher job–filling rate.

In the Appendix, we also prove

Corollary 2: If parameter h in the recruitment technology is sufficiently small, more productive firms have a higher growth rate, conditional on size; and larger firms have a lower growth rate, conditional on productivity.

A useful illustration how firms grow over time can be provided in a special case. Consider a firm with productivity x that enters in some period τ. Its job creation policy is then described by a sequence $(L_t, \lambda_t, V_t)_{t \geq \tau}$ starting from $L_\tau = 0$. Posted vacancies $V_t = V^x(L_t, \lambda_t)$ are the implicit solution of equation (4). The employment stock accumulates according to

$$L_{t+1} = (1 - s)L_t + m(\lambda_t)V^x(L_t, \lambda_t).$$

(6)

In the example with recruitment cost $C(V, L, x) = xF(L) - xF(L - hV) + cV$, equations (5) and (4) can be further simplified to an equation which is independent of L_t:

$$\beta \rho \left[m(\lambda_{t+1}) - \lambda_{t+1}m'(\lambda_{t+1}) \right] - [Rh + c]m'(\lambda_{t+1}) = \frac{\rho h}{1 - \delta} \left[\frac{m'(\lambda_{t+1})}{m'(\lambda_t)} - \beta (1 - \eta) \right].$$

(7)

In Lemma 3 of the Appendix, we show that this equation has a unique steady state $\lambda^* > 0$ if recruitment costs are low enough, and λ_t converges to λ^* from any initial value $\lambda_\tau > 0$. Figure 1 shows the phase diagram for the system (6) and (7). The curve where the employment stock is constant ($L_t = L_{t+1}$) is downward sloping since (4) implies that $V^x(L, \lambda)/L$ is increasing in L. If the condition

$$xF'(0) > R + \frac{\rho [1 - \beta (1 - \eta)]}{(1 - \delta) m'(\lambda^*)}$$

holds, there exists a unique stationary employment level $L^* > 0$. The corresponding dynamics imply further that there is a downward–sloping saddle path converging to the long–run employment level. Graphically, the firm’s policy function $\lambda^x(L)$ traces this saddle path.

It follows from these considerations that the firm’s recruitment policy is characterized by a path of declining wage offers and job–filling rates along the transition to the firm’s long–run employment level. Concavity of the firm’s production function implies that the firm wants to spread out its recruitment costs across several periods. This statement remains true for other forms of the recruitment technology. Only when recruitment costs are linear in vacancies, $C(V) = cV$, the firm would choose a constant λ^* (and hence post the same wage in all periods). In that case, it would immediately jump to its optimal size by recruiting L^* workers in the entry period and then keep the employment level constant. As soon as recruitment costs are strictly convex, such a policy is not optimal, and it may not be feasible due to the capacity constraint.
Figure 1: The firm’s optimal recruitment policy follows the declining saddle path.

on labor input in recruitment. A further insight of this example is that the stationary firm size depends positively on x: a more productive firm grows larger and offers higher lifetime wages on its transition to the long-run employment level.

Firm Creation

No entrant makes a positive profit when the expected profit income of a new firm equals the entry cost, that is,

$$
\sum_{x \in X} \pi(x)J^x(0, 0) = K .
$$

This condition implicitly pins down the worker’s job surplus ρ and therefore, via the firm’s optimal recruitment policy, worker-job ratios in all submarkets. In a stationary equilibrium, a constant mass of N_0 firms enters the market in every period, so that there are $N_a = N_0(1 - \delta)^a$ firms of age a in any period. Let $(L^x_a, \lambda^x_a, V^x_a, w^x_a)_{a \geq 0}$ be the employment/recruitment path for a firm with productivity x. Then, a firm of age a with productivity x has L^x_a employed workers, and $\lambda^x_a V^x_a$ unemployed workers are searching for jobs in the same submarket where this firm searches for workers, offering wage w^x_a. Therefore, the mass of entrant firms N_0 is uniquely pinned down from aggregate resource feasibility:

$$
1 = \sum_{a \geq 0} N_0(1 - \delta)^a \sum_{x \in X} \pi(x)[L^x_a + \lambda^x_a V^x_a] .
$$
This equation says that the unit mass of workers is either employed or unemployed.

General Equilibrium

We now define a stationary equilibrium with positive firm entry. When K is large enough, there may also be an uninteresting equilibrium without firms which is ignored in the following.

Definition: A stationary competitive search equilibrium is a list

\[
\left(\rho, R, N_0, (L_a^x, \lambda_a^x, V_a^x, w_a^x)_{x \in X, a \geq 0} \right)
\]

such that

(a) Unemployed workers’ job search strategies maximize utility. That is, the reservation wage R satisfies (1) and the relationship between wages and worker-job ratios satisfies (2) for all submarkets (w_a^x, λ_a^x).

(b) Firms’ recruitment policies are optimal. That is, given ρ and R, and for all $x \in X$, $(L_a^x, \lambda_a^x, V_a^x)_{a \geq 0}$ describes the firm’s growth path, obtained from the policy functions solving problem (3).

(c) There is free entry of firms, equation (8).

(d) The number of entrant firms is consistent with aggregate resource feasibility, equation (9).

Since firms’ behavior has already been characterized, it remains to explore equilibrium existence and uniqueness.

Proposition 2: A stationary competitive search equilibrium exists and is unique. There is strictly positive firm entry provided that K is sufficiently small and $F'(0)$ is sufficiently large.

Proof: Appendix.

It is worthwhile to briefly summarize some cross-sectional implications of our theory. Different firms in the equilibrium cross-section (x, L) have different recruitment and wage policies. Corollaries 1 and 2 point out that job-filling rates and firm growth rates depend positively on x and negatively on L. Hence, when recruitment time input h is small enough, firm growth rates correlate positively with job-filling rates. Such a relationship has been documented by Davis, Faberman, and Haltiwanger (2010) who find that firms that grow faster do so through a higher job-filling rate on top of expanding the number of vacancies. Furthermore, since job-filling rates relate directly to the earnings of new hires, the two corollaries also imply that faster-growing firms offer higher lifetime wages. Belzil (2000) documents such patterns after controlling for size
and worker characteristics; he shows that wages, particularly those of new hires, are positively related to a firm’s job creation. Lastly, a well established fact in labor economics is the positive relationship between size, productivity and pay (e.g., Brown and Medoff (1989), Oi and Idson (1999)). In our model, wages of new hires depend positively on x and negatively on L. Since more productive firms grow larger, a positive wage–size relation emerges in our model if the dispersion in productivity is large enough.\footnote{We note that enough productivity dispersion is also required in random–search models with bargaining, and even more so because wages of all workers decline in a growing firm. In our model with wage commitment, more productive firms have grown faster in the past, and hence pay higher lifetime wages to their existing workers.} Moreover, such a relation also obtains if sufficiently many firms are close to their long–run employment level (which happens if the exit rate δ is rather low): Among those firms with nearly constant employment, the larger (and more productive) firms need to hire more to keep their workforce constant. Therefore, among the cross–section of established firms the larger ones offer higher life-time wages.\footnote{Equations (4) and (5), evaluated at the stationary employment level, imply that V and λ are positively related (provided that $k'' > 0$). It follows that the worker–job ratio increases in the number of hires $m(\lambda)V$.}

3.3 Efficiency

The social planner decides at each point in time about firm creation, job creation and worker–job ratios in different submarkets of the economy. The planner takes as given the numbers of firms that were created in some earlier period, as well as the employment stocks of all these firms. Formally, the planner’s state vector is

$$\sigma = (N_a, L^x_a)_{a \geq 1, x \in X},$$

where N_a is the mass of firms of age $a \geq 1$, and L^x_a is employment of a firm with productivity x and age a. It is no restriction to impose that all firms of a given type (a, x) are equally large. The planner maximizes the present value of output net of opportunity costs of employment and net of the costs of firm and job creation. With $\hat{\sigma}$ to denote the state vector in the next period, the recursive formulation of the social planning problem is

$$S(\sigma) = \max_{N_0, (V^x_a, \lambda^x_a)_{a \geq 0}} \left\{ \sum_{a \geq 0} N_a \sum_{x \in X} \pi(x) \left[xF(L^x_a) - bL^x_a - C(V^x_a, L^x_a, x) \right] - KN_0 + \beta S(\hat{\sigma}) \right\}$$

s.t. $L^x_0 = 0$, $\hat{L}^x_{a+1} = (1 - s) L^x_a + m(\lambda^x_a)V^x_a$, $a \geq 0$, $x \in X$, \hspace{1cm} (10)

$$\hat{N}_{a+1} = (1 - \delta)N_a, \hspace{0.5cm} a \geq 0,$$

$$\sum_{a \geq 0} N_a \sum_{x \in X} \pi(x) \left(L^x_a + \lambda^x_a V^x_a \right) \leq 1.$$

The last condition is the economy’s resource constraint. It states that the mass of of all individuals that are attached to some firm of type (a, x), either as workers L^x_a or as unemployed workers
queuing up for a job at this firm $\lambda^x_a V_a^x$, may not exceed one. We say that a solution to problem (10) is socialy optimal.

Proposition 3: The stationary competitive search equilibrium is socially optimal.

Proof: Appendix.

The efficiency of equilibrium can be linked to a variant of the well-known Hosios (1990) condition. It says that efficient job creation requires that the share of the surplus that firms get upon matching with a worker is equal to the elasticity of the job-finding rate with respect to the job–worker ratio $1/\lambda$ (which is one minus the elasticity of m). For a hiring firm ($V > 0, \lambda > 0$) we can exploit the first-order conditions for problem (3) (equations (54) and (55) in the Appendix) to obtain

$$C_1(V, L, x) = \left[1 - \frac{\lambda m'(\lambda)}{m(\lambda)} \right] m(\lambda)(1 - \delta) \beta \left\{ J^x_1(\hat{L}, \hat{W}) - \frac{R}{1 - \beta(1 - \eta)} \right\} .$$

This equation compares the marginal cost of a vacancy on the left-hand side to the marginal benefit on the right-hand side. The term in squared brackets captures the surplus share accruing to the firm, and the last terms capture the expected discounted total surplus of a vacancy. With probability $m(\lambda)(1 - \delta)$, the vacancy is filled and survives to the next period. The term in curly brackets represent the marginal surplus of a filled job, which is the difference between the expected discounted marginal increase in net output, $J^x_1(\hat{L}, \hat{W})$, and the discounted value of the worker’s opportunity cost for the duration of the job. Overall, the equation states that firms create vacancies exactly to the point where their marginal benefit coincides with the value specified by the appropriate Hosios condition for large firms.\(^\text{21}\)

4 Productivity Shocks and Firm Dynamics

We now extend the previous model to include both idiosyncratic (firm–specific) and aggregate productivity shocks. This extension allows us to explore not only two margins of job creation (firm entry and firm growth), but also the two margins of job destruction (firm exit and firm contraction). Output of a firm with L workers is $xzF(L)$ where $x \in X$ is idiosyncratic productivity and $z \in Z$ is aggregate productivity. Both x and z follow Markov processes on finite state spaces X and Z with respective transition probabilities $\pi(x_+|x)$ and $\psi(z_+|z)$. An entrant firm pays fixed cost K and draws an initial productivity level $x_0 \in X$ with probability $\pi_0(x_0)$. For a firm of age $a \geq 0$, let $x^a = (x_0, \ldots, x_a) \in X^{a+1}$ denote the history of idiosyncratic productivity,

\(^{21}\)See also the derivation of the Hosios condition in a bargaining context in Hawkins (2010).
and let \(z^t = (z_0, \ldots, z_t) \) be the history of aggregate shocks at time \(t \). Write \(\psi(z^t) \) and \(\pi(x^a) \) for the unconditional probabilities of aggregate and idiosyncratic productivity histories.

We assume that an active firm incurs a fixed operating cost \(f \geq 0 \) per period. This parameter is required to obtain a non–trivial exit margin.\(^{22}\) In this section we are as agnostic as possible about the recruitment cost function; we only assume that \(C \) is strictly increasing and convex in posted vacancies. Firms exit with exogenous probability \(\delta_0 \geq 0 \) which is a lower bound for the actual exit rates \(\delta \geq \delta_0 \). Similarly, workers quit a job with exogenous rate \(s_0 \geq 0 \) which provides a lower bound for the actual separation rates \(s \geq s_0 \).\(^{23}\)

The timing within each period is as follows.\(^{24}\) First, aggregate and idiosyncratic productivities are revealed, new firms enter, and all firms decide about separations and exit. Second, firms decide about recruitment, and recruiting firms are matched with unemployed workers. An unemployed worker who has just left another job (due to firm exit, quit or layoff) can search for reemployment within the same period. And third, production takes place. In the following, we first describe the planning problem before we show its equivalence to a competitive–search equilibrium in Section 4.4.

4.1 The Planning Problem

The planner decides at each point in time about firm entry and exit, layoffs and job creation, as well as worker–job ratios in different submarkets. In a given aggregate history \(z^t \), we denote by \(N(x^a, z^t) \) the mass of firms of age \(a \) with idiosyncratic history \(x^a \). Similarly, \(L(x^a, z^t) \) is the employment stock of any of these firms. At every history node \(z^t \) and for every firm type \(x^a \), the planner decides an exit probability \(\delta(x^a, z^t) \geq \delta_0 \), a separation rate \(s(x^a, z^t) \geq s_0 \), vacancy postings \(V(x^a, z^t) \geq 0 \), and a worker–job ratio \(\lambda(x^a, z^t) \) for the submarket in which vacancies of that firm are matched with unemployed workers.\(^{25}\) The numbers of firm types change between

\(^{22}\) A non–trivial exit margin could also obtain in the presence of firing costs when \(f = 0 \).

\(^{23}\) Although this model ignores many important worker flows, such as those between jobs and the flows in and out of the labor force, parameter \(s_0 \) also represents a measure of exogenous worker turnover, as in Fujita and Nakajima (2009).

\(^{24}\) The timing is slightly different from the previous section. With shocks arriving at the start of the period, it seems more sensible to allow firms to exit right after the shock, and also to allow workers to immediately find reemployment after separations have taken place. In the previous section, the different timing clearly distinguishes between the current recruitment costs and the future benefits in production. The characterization and efficiency results can be proven for either environment.

\(^{25}\) To save on notation, we do not allow the planner to discriminate between workers with different firm tenure. Given that there is no learning-on-the-job, there is clearly no reason for the planner to do so. Nonetheless, the competitive search equilibrium considered in 4.4 allows firms to treat workers in different cohorts differently, which is necessary because firms offer contracts sequentially and are committed to these contracts. See the proof of Proposition 6 for further elaboration of this issue.
periods $t - 1$ and t according to

$$N(x^a, z^t) = [1 - \delta(x^a, z^t)]\pi(x_a|x_{a-1})N(x^{a-1}, z^{t-1}), \quad (11)$$

and the employment stock at any of these firms adjusts to

$$L(x^a, z^t) = [1 - s(x^a, z^t)]L(x^{a-1}, z^{t-1}) + m(\lambda(x^a, z^t))V(x^a, z^t). \quad (12)$$

To simplify notation, we define $L(x^a, z^t) \equiv [1 - s(x^a, z^t)]L(x^{a-1}, z^{t-1})$ as the employment stock after separations and before recruitment, which is an argument of the firm’s recruitment cost function $C(V, L, x)$.

At time $t = 0$, the planner takes as given the numbers of firms that entered the economy in some earlier period, as well as the employment stock of each of these firms. Hence, the state vector at date 0, prior to the realization of productivities, is summarized by the initial firm distribution $(N(x^{a-1},.),L(x^{a-1},.))_{a \geq 1,x^{a-1} \in \mathbb{X}^a}$. In a given history z^t, the planner also decides the mass of new entrants $N_0(z^t) \geq 0$, so that

$$N(x_0, z^t) = [1 - \delta(x_0, z^t)]\pi_0(x_0)N_0(z^t) \text{ and } L(x_0, z^t) = m(\lambda(x_0, z^t))V(x_0, z^t). \quad (13)$$

The planning problem is

$$\max_{\delta,s,V,\lambda,N_0} \sum_{t \geq 0, z^t} \beta^t \psi(z^t) \left\{ - KN_0(z^t) + \sum_{a \geq 0, x^a} N(x^a, z^t) \left[x_a z_t F(L(x^a, z^t)) - bL(x^a, z^t) - f - C(V(x^a, z^t), L(x^a, z^t), x_a) \right] \right\} \quad (14)$$

subject to the dynamic equations for N and L, namely (11), (12) and (13), and subject to the resource constraints, for all $z^t \in Z^{t+1}$,

$$\sum_{a \geq 0, x^a} N(x^a, z^t) \left[L(x^a, z^t) + \lambda(x^a, z^t)V(x^a, z^t) \right] \leq 1. \quad (15)$$

This constraint says that the labor force (employment plus unemployment) cannot exceed the given unit mass of workers. The first part of the sum, namely

$$\sum_{a \geq 0, x^a} N(x^a, z^t)L(x^a, z^t),$$

are the workers that are employed in some firm after separations have taken place. The remaining part of the sum are unemployed workers queuing up for employment in one of the active firms posting $V(.)$ vacancies in submarkets with worker-job ratios $\lambda(.)$. For instance, there are $N(x^a, z^t)$ active firms with productivity history x^a, each of which posts $V(x^a, z^t)$ vacancies that meet $\lambda(x^a, z^t)V(x^a, z^t)$ unemployed workers in a particular submarket. We summarize a solution to the planning problem by a vector $(N, L, V, \lambda, s, \delta)$, with $N = (N(x^a, z^t))_{a,t \geq 0}$ etc.
4.2 Characterization of the Planning Solutions

There is a convenient characterization of a planning solution which says that exit, layoff, and hiring decisions follow a recursive equation at the level of the individual firm. Let $\beta^t \psi(z^t) \mu(z^t) \geq 0$ be the multiplier on the resource constraint (15) in history node z^t. Intuitively, $\mu(z^t)$ is the social value of a worker in history z^t. Let $G_t(L, x, z^t)$ denote the social value of an existing firm with employment stock L, idiosyncratic productivity x and aggregate productivity history z^t. The sequence G_t obeys the recursive equations

$$
G_t(L, x, z^t) = \max_{\delta, s, V, \lambda} (1 - \delta) \left\{ xz_t F(\hat{L}) - b\hat{L} - \mu(z^t)(1 - s)L + \lambda V - C(V, (1 - s)L, x) - f + \beta \sum_{\hat{x} \in X} \sum_{z_{t+1} \in Z} \pi(\hat{x}|x) \psi(z_{t+1}|z_t) G_{t+1}(\hat{L}, \hat{x}, z^{t+1}) \right\}
$$

(16)

s.t. $\hat{L} = (1 - s)L + m(\lambda)V$,

$$
\delta \in [\delta_0, 1], \ s \in [s_0, 1], \ \lambda \geq 0, \ V \geq 0
$$

The interpretation of these equations is rather straightforward. The planner wants a firm with characteristics (L, x) to stay active in aggregate history z^t whenever the term in braces is non-negative, otherwise he sets $\delta = 1$. The term in braces gives the value of an active firm. In the current period, this value encompasses the firm’s output net of the opportunity cost of employment, net of fixed costs and recruitment costs, and net of the social cost of workers tied to the firm in this period; these workers include those that are retained from the previous period, namely $(1 - s)L$, and also λV unemployed workers who aim to find a job at the firm (of which $m(\lambda)V \leq \lambda V$ eventually find a job).

Proposition 4:

(a) For given multipliers $\mu(z^t)$, there exist value functions $G_t: \mathbb{R}_+ \times X \times Z^{t+1} \rightarrow \mathbb{R}, t \geq 0$, satisfying the system of recursive equations (16).

(b) If $X = (N, L, V, \lambda, s, \delta)$ is a solution of the planning problem (14) with multipliers $\mu = (\mu(z^t))$, then the corresponding firm policies also solve problem (16) and the complementary-slackness condition

$$
\sum_{x \in X} \pi_0(x)G_t(0, x, z^t) \leq K, \ N_0(z^t) \geq 0
$$

(17)

is satisfied for all z^t. Conversely, if X solves for every firm problem (16) with multipliers μ, and if condition (17) and the resource constraint (15) hold for all z^t, then X is a solution of the planning problem (14).
Whilst Proposition 4 is a useful characterization of planning solutions, it cannot be applied for computational purposes. The difficulty is that the multipliers $\mu(z^t)$ are non-stationary and depend on the initial firm distribution. However, a much more powerful characterization can be obtained under the provision that firm entry is positive in all states of the planning solution, so that the first inequality in (17) is binding. When this is the case, the firm-level value functions and the social value of a worker are independent of the firm distribution. This is our aggregate-arbitrage property, which we discuss in the introduction and which relates to the concept of block recursivity introduced by Shi (2009) and Menzio and Shi (2009, 2010).

To gain intuition for the independence from the distribution of existing firms, envision only a single period. The planner can assign unemployed workers either to existing firms or to new firms. If there are many existing firms, there are fewer workers left to be assigned to new firms. Nevertheless, the social value of any worker that is assigned to a new firm does not change: Each new firm has an optimal size, and if less workers are assigned to new firms, then proportionally less new firms will be created, leaving the marginal value of each worker unchanged. Therefore, as long as any new firms are created, efficient hiring by existing firms requires their marginal social benefit of hiring to be equal to the social benefit at the new firms. This logic extends to the case with many periods. A new firm today may also hire workers tomorrow, but its marginal social benefit of tomorrow’s hires has to equal the marginal benefit of hiring at tomorrow’s new firms, which depends on the next aggregate state but is again independent of the firm distribution. Thus, the social value of assigning a worker to any firm is tied to the social benefit created at new firms which depends on the aggregate state alone. While this ensures that job creation and destruction policies of individual firms are independent of the distribution of existing firms, the firm distribution does matter for the dynamics of aggregate labor market variables, such as the workers’ job finding probability: If there are more existing firms, then more of the workers queue for their jobs and obtain a different probability of getting hired.

To see the independence of value functions from the firm distribution formally, suppose there are n aggregate states z_i, $i = 1, \ldots, n$, and let $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{R}^n_+$ be a vector of social values in these states. Let $G_i(L, x, \mu)$ be the social value of a firm with employment stock L, idiosyncratic productivity x and aggregate productivity z_i, for $i = 1, \ldots, n$. $G = (G^i) : \mathbb{R}_+ \times X \times \mathbb{R}^n_+ \rightarrow \mathbb{R}^n_+$ satisfy the Bellman equations

$$G^i(L, x, \mu) = \max(1 - \delta) \left\{ x z_i F(\hat{L}) - b \hat{L} - f - \mu_i [(1 - s)L + \lambda V] - C(V, L(1 - s), x) + \beta \sum_{\hat{x} \in X} \sum_{z_j \in Z} \pi(\hat{x}) \psi(z_j | z_i) G^j(\hat{L}, \hat{x}, \mu) \right\} ,$$

where maximization is subject to the same constraints as in problem (16). Positive entry in all
aggregate states requires that the expected social value of a new firm is equal to the entry cost,

$$\sum_{x \in X} \pi_0(x) G^i(0, x, \mu) = K.$$ \hspace{1cm} (19)

This characterization of planning solutions by $\{G^i, \mu_i\}_{i=1}^n$ is particularly helpful for numerical applications. Despite considerable firm heterogeneity, the model can be solved by a recursive problem on a low-dimensional state space (18) and the (simultaneous) solution of a finite-dimensional fixed point problem (19). Importantly, the distribution of firms is irrelevant for this computation. After the corresponding policy functions have been calculated, the actual number of entrant firms $N_0(z^t)$ is obtained as a residual of the economy’s resource constraint in a simulation of the model, and thus it does depend on the distribution of existing firms. Therefore, the evolution of aggregate employment, output and job flows depend on the firm distribution as well.

Although it cannot be guaranteed that the planning solution has positive entry in all state histories, in quantitative applications this possibility should not be relevant. Analytically, we prove that any solution of (18)–(19) which gives rise to positive entry in all state histories coincides with a solution to the planner’s problem. We also find that a unique solution of these equations exists for small aggregate shocks.

Proposition 5:

(a) Suppose that a solution of (18) and (19) exists which defines an allocation $X = (N, L, V, \lambda, s, \delta)$ satisfying $N(z^t) > 0$ for all z^t. Then X is a solution of the planning problem (14).

(b) If K, f, and b are sufficiently small and if $z_1 = \ldots = z_n = z$, equations (18) and (19) have a unique solution $G(L, x, \mu)$ with $\mu_1 = \ldots = \mu_n$. Moreover, if the transition matrix $\psi(z_j|z_i)$ is strictly diagonally dominant and if $|z_i - z|$ is sufficiently small for all i, equations (18) and (19) have a unique solution.

4.3 Recruitment and Layoff Strategies

The reduction of the planning solution to problem (18) permits a straightforward characterization of the optimal layoff and hiring strategies. A firm with productivity x and employment stock L should dismiss workers (that is, $s > s_0$) in state $i = 1, \ldots, n$ iff

$$xz_i F'(L(1 - s_0)) - b - \mu_i + \beta \sum_{\hat{x}} \sum_{z_j} \pi(\hat{x}|x) \psi(z_j|z_i) G^j_i(L(1 - s_0), \hat{x}, \mu) < 0.$$ \hspace{1cm} (20)

This expression is the marginal social surplus of a worker at the employment stock $L(1 - s_0)$ after worker turnover. If marginal worker surplus is negative, the firm lays off some workers until the marginal worker surplus is nil.
Conversely, for the firm to recruit workers, it must be that \(\lambda > 0 \) and \(V > 0 \). In that case, it follows from the first–order conditions for \(\lambda \) and \(V \) that:

\[
C_1(V, L(1 - s_0), x) = \mu_i \lambda \left(\frac{m(\lambda)}{\lambda m'(\lambda)} - 1 \right) .
\]

As in the previous section, it follows from concavity of \(m \) and convexity of \(C \) that there is an increasing relation between the worker–job ratio and the number of posted vacancies at the firm. With higher \(\lambda \), the probability to fill a vacancy increases, and hence the planner is willing to post more vacancies at higher marginal recruiting cost. Denote the solution to equation (21) by \(V = V_i(\lambda, L, x) \), which is positive for \(\lambda > \lambda_i(L, x) \). The planner’s optimal choice of \(\lambda \) for firm \((L, x)\) in aggregate state \(i \) satisfies:

\[
xz_i F'(\hat{L}) - b + \beta \sum_{\hat{x}} \sum_{z_j} \pi(\hat{x}|x) \psi(z_j|z_i) G^i_1(\hat{L}, \hat{x}, \mu) = \frac{\mu_i}{m'(\lambda)} ,
\]

with \(\hat{L} = L(1 - s_0) + m(\lambda)V_i(\lambda, L, x) \). Therefore, the firm recruits workers, if and only if:

\[
xz_i F'(L(1 - s_0)) - b + \beta \sum_{\hat{x}} \sum_{z_j} \pi(\hat{x}|x) \psi(z_j|z_i) G^i_1(L(1 - s_0), \hat{x}, \mu) > \frac{\mu_i}{m'(\lambda_i(L, x))} .
\]

The two conditions (20) and (22) illustrate how the firm’s strategy depends on its characteristics \((L, x)\). Small and productive firms recruit workers and grow, whereas large and unproductive firms dismiss workers and shrink. Depending on the functional forms of \(C(\cdot) \) and \(m(\cdot) \), there can also be an open set of characteristics where firms do not adjust their workforce. Such inactivity states exist if marginal adjustment costs are strictly positive; this is either the case when \(C_1(0, L, x) > 0 \) or when \(m'(0) < 1 \). The latter condition says that matching frictions do not vanish asymptotically when \(\lambda \to 0 \).

4.4 Decentralization

We now describe a competitive search equilibrium and demonstrate that competitive search gives rise to the same allocation as the planning solution characterized in Proposition 4. Firms offer workers a sequence of state–contingent wages, to be paid for the duration of the match. They also commit to cohort–specific and state–contingent separation probabilities. Contracts are contingent on the idiosyncratic productivity history of the firm at age \(k \), \(x^k \), and on the aggregate state history \(z^t \) at time \(t \). Formally, a contract offered by a firm of age \(a \) at time \(T \) takes the form:

\[
C_a = \left(w_a(x^k, z^t), \varphi_a(x^k, z^t) \right)_{k \geq a, t = T + k - a} ,
\]

26 This equation is straightforward to derive and analogous to (4).

27 Such inactivity states exist if marginal adjustment costs are strictly positive; this is either the case when \(C_1(0, L, x) > 0 \) or when \(m'(0) < 1 \). The latter condition says that matching frictions do not vanish asymptotically when \(\lambda \to 0 \).
where \(w_a(x^k, z^t) \) is the wage paid to the worker in firm history \((x^k, z^t)\), conditional on the worker being still employed by the firm in that instant. \(\varphi_a(x^k, z^t) \geq \delta_0 + (1 - \delta_0)s_0 \), for \(k > a \), is the probability of a job separation prior to the production stage in history \(x^k \). In the hiring period, a separation cannot occur, so \(\varphi_a(x^a, z^T) = 0 \) by definition.

The Workers’ Search Problem

Let \(U(z^t) \) be the utility value of an unemployed worker in history \(z^t \), and let \(W(C_a, x^k, z^t) \) be the utility value of a worker hired by a firm of age \(a \) in contract \(C_a \) who is currently employed at that firm in history \(x^k \), with \(k \geq a \). The latter satisfies the recursive equation

\[
W(C_a, x^k, z^t) = \varphi_a(x^k, z^t)U(z^t) + (1 - \varphi_a(x^k, z^t))\left[w_a(x^k, z^t) + \beta \sum_{x_{k+1}} \sum_{z_{t+1}} \pi(x_{k+1}|x_k)\psi(z_{t+1}|z_t)W(C_a, x^{k+1}, z^{t+1})\right].
\]

An unemployed worker searches for contracts which promise the highest expected utility, considering that more attractive contracts are less likely to sign. The worker observes all contracts \(C_a \) and he knows that the probability to sign a contract is \(m(\lambda)/\lambda \) when \(\lambda \) is the worker–job ratio in the submarket where the contract is offered. That is, potential submarkets are parameterized by the tuple \((\lambda, C_a) \). Unemployed workers enter those submarkets where expected surplus is maximized:

\[
\rho(z^t) = \max_{(\lambda, C_a)} \frac{m(\lambda)}{\lambda} \left[W(C_a, x^a, z^t) - b - \beta E_{z_t}U(z^{t+1})\right].
\]

Because an unemployed worker gets one chance to search in every period, his Bellman equation reads as

\[
U(z^t) = b + \rho(z^t) + \beta E_{z_t}U(z^{t+1}).
\]

The Firms’ Problem

A firm of age \(a \) in history \((x^a, z^t)\) takes as given the employment stocks of workers hired in some earlier period, \((L_{\tau})_{\tau=0}^{a-1}\), as well as the contracts signed with these workers, \((C_{\tau})_{\tau=0}^{a-1}\). The firm chooses an exit probability \(\delta \) and cohort–specific layoff probabilities \(s_{\tau} \). For these probabilities to be consistent with separation probabilities specified in existing contracts, it must hold that \(\delta \leq \varphi_{\tau}(x^a, z^t) \) for all \(\tau \leq a - 1 \), and \(s_{\tau} = 1 - (1 - \varphi_{\tau}(x^a, z^t))/(1 - \delta) \) when \(\delta < 1 \), with arbitrary choice of \(s_{\tau} \) when \(\delta = 1 \). The firm also decides new contracts \(C_a \) to be posted in \(V \) vacancies in a submarket with worker–job ratio \(\lambda \). It is no restriction to presuppose that the firm offers only one type of contract and searches in only one submarket. When \(J_a \) is the value function of a
firm of age a, the firm’s problem is written as

$$J_a[(C'_\tau)_{\tau=0}^{a-1}, (L'_\tau)_{\tau=0}^{a-1}; x^a, z^t] = \max_{(\delta, \lambda, V, \tau, x_a)} (1 - \delta) \left\{ x_a z_t F \left(\sum_{\tau=0}^{a} \hat{\lambda}_\tau \right) - W - C(V, L, x_a) \right\}$$

$$- f + \beta E_{x_a, z_t} J_{a+1}[(C'_\tau)_{\tau=0}^{a}, (L'_\tau)_{\tau=0}^{a+1}, x^{a+1}, z^{t+1}]$$

s.t. \(\hat{L}_a = m(\lambda) V, \lambda \geq 0, V \geq 0, \hat{L}_\tau = L_\tau \frac{1 - \varphi_\tau (x^a, z^t)}{1 - \delta}, \tau \leq a - 1 \),

$$\delta \in [\delta_0, \min_{0 \leq \tau \leq a-1} \varphi_\tau (x^a, z^t)], s_0(1 - \delta) \leq (1 - \varphi_\tau (x^a, z^t)),$$

$$W = \sum_{\tau=0}^{a} w_\tau (x^a, z^t) \hat{L}_\tau, \quad \bar{L} = \sum_{\tau=0}^{a-1} \hat{L}_\tau,$$

$$W(C_a, x^a, z^t) = b + \beta E_{x_t} U(z^{t+1}) + \frac{\lambda \rho(z^t)}{m(\lambda)} \text{ when } \lambda > 0.$$

The last condition is the workers’ participation constraint; it specifies the minimum expected utility that contract C_a must promise in order to attract a worker queue of length λ per vacancy.

Definition: A competitive search equilibrium is a list

$$[U(z^t), \rho(z^t), C_a(x^a, z^t), \lambda(x^a, z^t), V(x^a, z^t), \delta(x^a, z^t), J_a(\cdot), L_\tau(x^a, z^t), N(x^a, z^t), N_0(z^t)],$$

for all $t \geq 0$, $a \geq 0$, $x^a \in X^{a+1}$, $z^t \in Z^{t+1}$, $0 \leq \tau \leq a$, and for a given initial firm distribution, such that

(a) Firms’ exit, hiring and layoff strategies are optimal. That is, J_a is the value function and $C_a(\cdot), \delta(\cdot), \lambda(\cdot)$, and $V(\cdot)$ are the policy functions for problem (26)–(30).

(b) Employment evolves according to

$$L_\tau(x^a, z^t) = L_\tau(x^{a-1}, z^{t-1}) \frac{1 - \varphi_\tau (x^a, z^t)}{1 - \delta(x^a, z^t)} , \quad 0 \leq \tau \leq a - 1 ,$$

$$L_a(x^a, z^t) = m(\lambda(x^a, z^t)) V(x^a, z^t) , \quad a \geq 0 .$$

(c) Firm entry is optimal. That is, the complementary slackness condition

$$\sum_{x} \pi_0(x) J_0(x, z^t) \leq K , \quad N_0(z^t) \geq 0 \quad (31)$$

holds for all z^t, and the number of firms evolves according to (11) and (13).
(d) Workers’ search strategies are optimal, i.e. \((\rho, U)\) satisfy equations (24) and (25).

(e) Aggregate resource feasibility; for all \(z^t\),

\[
\sum_{a \geq 0, x^a} N(x^a, z^t) \left[\lambda(x^a, z^t) V(x^a, z^t) + \sum_{\tau=0}^{a-1} L_{\tau}(x^a, z^t) \right] = 1 .
\]

(32)

Proposition 6: A competitive search equilibrium is socially optimal.

Proof: Appendix.

Discussion of Wages and Employment Commitment

It is not hard to see that a wage commitment is sufficient for a firm to implement its desired policy, even if it cannot commit to separation rates. Given risk neutrality, the firm can set the wages following any future history exactly equal to the reservation wage which is the sum of unemployment income and the worker’s shadow value \(b + \mu(z^t)\). It can achieve any initial transfer to attract workers through a hiring bonus. In this decentralization, the costs of an existing worker are always equal to his social value in the alternative: unemployment and search for another job. Since the flow surplus for any retained worker equals his shadow value, the firm’s problem in this case coincides with the planner’s problem (16), so that firing and exiting will be exactly up to the socially optimal level even though the firm does not commit to separation rates. Workers do not have any incentive to quit the job unilaterally, either, because they are exactly compensated for their social shadow value from searching.

Similarly, given employment commitment the wage–tenure profiles for individual workers are arbitrary because of risk–neutrality. As we show in the proof of Proposition 6, firms do not need to discriminate in separation rates between workers in different cohorts. Nonetheless, such equilibria are also possible; then workers with higher separation rates will be compensated through higher wage transfers, whereas workers with more stable jobs earn lower wages. Put differently, this model cannot say anything about individual wage–tenure profiles. It only pins down the surplus split between workers and firms.

In our numerical examples, we consider the benchmark case where wage profiles are not dispersed within the firm. That is, all workers within firm \((L, x)\) in history \(z^t\) earn the same flow wage \(w(L, x, z^t)\). In a competitive–search equilibrium, such a wage profile can be easily calculated using (23) and condition (30).
5 A Calibrated Example

We study the implications of this model by calibrating it to the U.S. labor market. The calibration proceeds in two steps. First, we choose model parameters to match selected long–run features of the U.S. labor market. Second, we feed this model with aggregate productivity shocks replicating the standard deviation and persistence of empirical labor productivity. For illustration purposes we adopt as basic a specification as possible for the firm productivity process and for the vacancy cost function, even though in their general form they allow substantial additional degrees of freedom whose exploration might be useful in future applications.

We choose the period length to be one month and set $\beta = 0.996$ so that the annual interest rate is about 5 percent. We assume a CES matching function $m(\lambda) = (1 + k\lambda^{-r})^{-1/r}$ and set the two parameters k and r to target a monthly job–finding rate of 0.45 (Shimer (2005b)) and an elasticity of the job–finding rate with respect to the vacancy–unemployment ratio of 0.5 which belongs within the range of reasonable values reported in Petrongolo and Pissarides (2001). Since we also target the aggregate vacancy–unemployment ratio at $1/\lambda = 0.72$, we calculate the parameters k and r to attain the two targets at $\lambda = 1/0.72$.

Table 1: Parameter choices.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.996</td>
<td>Discount factor</td>
<td>Annual interest rate 5%</td>
</tr>
<tr>
<td>k</td>
<td>1.623</td>
<td>Matching fct. scale</td>
<td>Job–finding rate</td>
</tr>
<tr>
<td>r</td>
<td>1.475</td>
<td>Matching fct. elasticity</td>
<td>Pissarides and Petrongolo (2001)</td>
</tr>
<tr>
<td>α</td>
<td>0.7</td>
<td>Prod. fct. elasticity</td>
<td>Labor share</td>
</tr>
<tr>
<td>c</td>
<td>0.1</td>
<td>Vacancy cost parameter</td>
<td>Hiring cost 14% of quarterly wage</td>
</tr>
<tr>
<td>x_{min}</td>
<td>0.31</td>
<td>Lowest productivity</td>
<td>Firm size (mean relative to min)</td>
</tr>
<tr>
<td>π</td>
<td>0.65</td>
<td>Transition probability</td>
<td>Job–creation rate</td>
</tr>
<tr>
<td>b</td>
<td>0.2</td>
<td>Flow value of leisure</td>
<td>Vacancy–unemployment ratio = 0.72</td>
</tr>
<tr>
<td>K</td>
<td>13.09</td>
<td>Entry cost</td>
<td>Job creation at opening firms</td>
</tr>
<tr>
<td>f</td>
<td>0.6</td>
<td>Flow operating cost</td>
<td>Job destruction at closing firms</td>
</tr>
<tr>
<td>δ_0</td>
<td>0.0011</td>
<td>Exogenous exit rate</td>
<td>Job destruction at closing large firms</td>
</tr>
<tr>
<td>s_0</td>
<td>0.02</td>
<td>Quit rate</td>
<td>Monthly quit rate</td>
</tr>
</tbody>
</table>

The production technology is Cobb–Douglas with xL^α and a simple Markov process for idiosyncratic productivity. Particularly, we let idiosyncratic productivity attain one of ten equally distant values in the range $[x_{min}, 1]$, uniformly drawn upon entry. The transition process is such that idiosyncratic productivity changes from one month to the next with probability π and
switches to a neighboring state with identical probabilities. Parameter α is set to 0.7 which gives rise to a labor share of $2/3$. The parameters x_{min} and π are chosen to match two targets. Given that labor is a continuous variable in our model, we identify the labor input of one worker with the minimum firm size in the sample distribution, and we target the ratio between the mean firm size and the minimum firm size at 21.6, which is the average number of workers per firm in the Business and Employment Dynamics (BED) data set of the Bureau of Labor Statistics (BLS). Second, we target quarterly firm–level rates of job creation and job destruction of around 6.5% which is the average in BED data for the period 1990–2005, see Helfand, Sadeghi, and Talan (2007).

We deliberately choose a quadratic vacancy cost function $C(V) = cV^2$ and we set parameter c so that recruiting cost per hire are about 14 percent of quarterly wage income, following Hall and Milgrom (2008) and Elsby and Michaels (2010). We set the opportunity cost of employment (parameter b) to target a vacancy–unemployment ratio of 0.72 which is the number chosen by Pissarides (2009), based on the Job Openings and Labor Turnover Survey (JOLTS). We set the entry cost parameter K and the operating flow cost parameter f to target the extensive margins of job creation and job destruction. Based on BED data between 1990 and 2005, 16.6% of all quarterly job gains occur at opening firms and 17.2% of all job losses occur at closing firms (see Helfand, Sadeghi, and Talan (2007)). With this choice of parameters, all firms with the lowest idiosyncratic productivity $x = x_{\text{min}}$ leave the market, whereas all others stay. By implication, only the smallest firms (those at the lowest four productivity levels) can make a transition to the lowest productivity state (and thus leave the market) from one quarter to the next. Nonetheless, in BED data 0.33 percent of jobs are lost at firms whose employment is larger than mean employment (i.e. 20 workers or more). Hence we set the exogenous monthly exit rate at $\delta_0 = 0.0011$ to account for job destruction at exiting larger firms. The exogenous worker quit rate is set at $s_0 = 0.02$, which is roughly the monthly quit rate in JOLTS (Davis, Faberman, and Haltiwanger (2006)). Table 1 summarizes these parameter choices.

Due to the non–linearity of the model, we cannot match all targets exactly, but the fit is rather close (see Table 2). The job–finding rate is a bit lower than the target which is due to the fact that the matching function is concave and vacancy–unemployment ratios are dispersed across submarkets.

Figure 2 shows value and policy functions (separations and recruitment policies) for firms in the nine active productivity states $x > x_{\text{min}}$. These policy functions confirm the insights from Section 3: conditional on size, more productive firms advertise more vacancies and fill any of them with a higher rate. And conditional on productivity, smaller firms recruit faster and create more jobs. The figure also shows that, for any productivity, there is a range of employment

\footnote{The respective shares at the establishment level are somewhat larger (20.9% and 20.1%).}
Table 2: Data moments and model statistics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job-creation rate (quarterly)</td>
<td>6.7%</td>
<td>6.9%</td>
</tr>
<tr>
<td>Job-destruction rate (quarterly)</td>
<td>6.3%</td>
<td>6.9%</td>
</tr>
<tr>
<td>Labor share</td>
<td>0.67</td>
<td>0.68</td>
</tr>
<tr>
<td>Workers per firm</td>
<td>21.6</td>
<td>21.3</td>
</tr>
<tr>
<td>Hiring cost (share of quart. wage)</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Share of JC at openings (quarterly)</td>
<td>16.6%</td>
<td>17.5%</td>
</tr>
<tr>
<td>Share of JD at closings (quarterly)</td>
<td>17.2%</td>
<td>16.0%</td>
</tr>
<tr>
<td>Vacancy–unemployment ratio</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>Job–finding rate (monthly)</td>
<td>45%</td>
<td>44%</td>
</tr>
</tbody>
</table>

Notes: The model statistics are calculated as a stationary firm distribution obtained from a simulation of 10000 entrant firms where each firm is subject to the idiosyncratic shock process and exits at productivity $x = x_{\text{min}}$. This gives a total of about $8 \cdot 10^5$ observations.

In a simulated stationary firm distribution, we find positive relations between firm growth and the two means of recruitment, vacancy postings and vacancy fill rates. The two relationships are shown in Figure 3(a) for the vacancy rate (i.e., vacancies as a share of employment) and in Figure 3(b) for the monthly job–filling rate (hires per vacancy). Qualitatively, these graphs correspond to the findings of Davis, Faberman, and Haltiwanger (2010) who also document a positive relationship between employer growth, the monthly vacancy rate and the job–filling rate in JOLTS data. In their study, vacancy postings seem to play a smaller role in accounting for differences in employment growth, whereas they are a more important factor in our simulation. As discussed earlier, convexity in the recruitment technology is the key factor for a positive relationship between firm growth and job–filling rates; with a linear recruitment technology, this relationship disappears.\(^{29}\)

The model performs reasonably well in matching the dispersion of employment growth rates across firms. Using the Longitudinal Business Database (1992–2005), Davis, Haltiwanger, Jarmin, and Miranda (2006) obtain a cross–sectional dispersion (employment–weighted standard deviation) of annual employment growth rates for continuing firms of 0.37 (see Figure 8 in their paper). In our simulated stationary distribution, this dispersion measure is somewhat larger.

\(^{29}\)When we choose a more general function $C(V) = cV^a$, we confirm that differences in job–filling rates vanish for values of a close to one. On the other hand, the spread does not become much larger when we choose values of a greater than two. Hence we decided to simply use a quadratic function.
at 0.44. Table 3 also shows that the model does a good job in matching the distribution of employment growth rates.

Because our calibration of idiosyncratic productivity does not target the cross-sectional employment distribution, it does not replicate the large variance and skewness of the firm-size distribution. Nonetheless, when we rank firms along the percentiles in the employment distribution, the model reproduces the negative relation between firm size (as measured by the rank in the size distribution) and rates of job creation and job destruction, and it also captures the negative relation between firm size and the rates of job creation and destruction at the extensive margin; see Figure 5.

We can also compare wages between firms, using the wage profiles where all workers within a firm earn the same. We find that wage dispersion across firms is rather small, with a standard deviation of log wages equal to 3.6%, in line with other work that abstracts from on-the-job search

Figure 2: The firms’ value functions (upper left), and the policy functions for separation rates s (upper right), for vacancies (lower left), and for job-filling rates $m(\lambda)$ (lower right).
Figure 3: Vacancy rates (vacancies relative to employment) and job-filling rates (monthly hires per vacancy) across firm growth rates. **Notes:** The curves are calculated from a simulated firm distribution with $8 \cdot 10^5$ observations and 20 equally spaced intervals of the firm growth distribution, with firm growth defined as $2(L_t - L_{t-1})/(L_{t-1} + L_t)$.

Table 3: Distribution of employment growth

<table>
<thead>
<tr>
<th>Growth rate interval</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 (exit)</td>
<td>0.7</td>
<td>0.55</td>
</tr>
<tr>
<td>(-2, -0.2]</td>
<td>7.5</td>
<td>9.6</td>
</tr>
<tr>
<td>(-0.2, -0.05]</td>
<td>16.5</td>
<td>7.6</td>
</tr>
<tr>
<td>(-0.05, -0.02]</td>
<td>9.6</td>
<td>14.9</td>
</tr>
<tr>
<td>(-0.02, 0.02)</td>
<td>30.9</td>
<td>22.8</td>
</tr>
<tr>
<td>[0.02, 0.05]</td>
<td>9.9</td>
<td>14.0</td>
</tr>
<tr>
<td>[0.05, 0.2]</td>
<td>16.7</td>
<td>21.9</td>
</tr>
<tr>
<td>[0.2, 2)</td>
<td>7.5</td>
<td>8.0</td>
</tr>
<tr>
<td>2 (entry)</td>
<td>0.7</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Notes: The table reports employment shares for intervals of quarterly employment growth rates. The empirical distribution is taken from Table 2 of Davis, Faberman, Haltiwanger, and Rucker (2008). The model statistics are calculated from a stationary firm distribution with $8 \cdot 10^5$ observations.

(see e.g. Hornstein, Krusell, and Violante (2009)). The model does link wage dispersion to firm size and firm growth. For instance, the wage difference between firms with log employment one standard deviation above average to those with log employment one standard deviation below average is 2.5% percent. Differences in firm growth account for more variation in wages: the
Figure 4: Quarterly job creation and job destruction rates (total and extensive margins) across firm sizes (percentiles of the employment distribution). Notes: The dashed curves are based on the nine reported firm–size classes in the BED. The solid curves are calculated from a simulated firm distribution with $8 \cdot 10^5$ observations and 20 equally spaced intervals of the employment distribution. When firms change size classes, job flows are attributed according to the dynamic–size allocation of the BLS (see Moscarini and Postel–Vinay (2009)).

The differential between wages at firms that grow by more than 20 percent and those that do not grow or shrink is 6.7 percent (almost two standard deviations).

To explore the impact of aggregate shocks, we first compute the model’s impulse response to a permanent productivity increase. We find that our model accounts for a sluggish response of labor market aggregates. In a reduced–form vector autoregression, Fujita and Ramey (2007) show that the vacancy–unemployment ratio is much more persistent than labor productivity and that productivity shocks propagate gradually to market tightness and employment. Fujita and Ramey (2007) and Shimer (2005b) argue that standard search and matching models cannot replicate this pattern because market tightness is a jump variable which correlates perfectly with aggregate productivity. Our model with heterogenous firms and convex recruitment costs yields some propagation of unemployment and vacancies. Figure 5 shows the impulse response to a permanent one–percent increase in aggregate labor productivity. As higher productivity makes entry more attractive, wages must rise sufficiently to balance the gains from entry to its cost. We find that the reservation wage rises by 1.4% (and hence by more than productivity) which implies that optimal firm size falls, which induces a larger number of firms to enter. The impact response to the productivity and wage increase is that existing firms shed some of their workers so that unemployment rises in the first quarter. Over time, however, more and more firms

\[30\] The impact response of unemployment would be dampened or even reversed if entry costs increase together
enter and vacancies rise gradually to a higher level, following a hump–shaped pattern. After the first three months, unemployment sluggishly declines to a permanently lower level. Figure 5(c) also shows that the job–finding rate responds only gradually to the aggregate productivity shock. After the initial decline (due to the rise in unemployment), the job–finding rate takes about a year to adjust to the permanently higher level. We emphasize again that this sluggish response is entirely driven by the convex recruitment costs at the firm level. With linear vacancy costs, the job finding rate would immediately jump to its new steady–state level. This result is different from Elsby and Michaels (2010) who obtain a less sluggish response of the job–finding rate in a random search model with linear recruitment costs. It also crucially differs from the competitive search model with linear vacancy costs of Schaal (2010) who finds that the job–finding rate is a jump variable.

To study the model’s business cycle properties, we presuppose that entry is positive in all periods and solve the model as explained in Section 4.2. Aggregate productivity attains five equally distant values in the interval \([z_{min}, 2 - z_{min}]\), and the Markov process for \(z\) is a mean–reverting process with transition probability \(ψ\), as described in Appendix C of Shimer (2005b). The two parameters \((z_{min}, ψ)\) are set to target a quarterly standard deviation and autocorrelation of labor productivity around trend of 0.02 and 0.85. Starting from a stationary firm distribution, we simulate the evolution of these firms over 2000 months, using the policy functions from the numerical solution of (18) and (19). In every simulation period, the number of firm entrants is obtained as a residual of the economy’s resource constraint. We compare two calibrations. In the first, the entry cost \(K\) does not vary with aggregate productivity. With this specification, firm entry turns out to be more than 10 times as volatile as in the data. Therefore, we consider a second calibration where the entry costs are allowed to vary procyclically to match the empirical standard deviation of job creation at opening firms. To match this target, we set the elasticity of \(K\) with respect to \(z\) to 0.44.

Table 4 shows the outcome of this exercise for volatility and comovement with aggregate output. For both calibrations, the model clearly has too low amplification: all labor market variables are less volatile than in the data, as is the case in Shimer’s (2005b) calibration of the search and matching model with homogeneous (constant return) firms and socially efficient job creation. One way to understand low amplification is the gap between productivity and the opportunity cost of work; the larger this gap is, the smaller should be the response of job creation to productivity shocks (see Hagedorn and Manovskii (2008), Hall and Milgrom (2008)). In fact, with productivity.

\[^{31}\text{Equation (21) implies that } λ\text{ is a function of the aggregate state } µ_i\text{ alone if marginal vacancy costs are constant.}\]

\[^{32}\text{There are many possibilities why entry costs vary with the business cycle, e.g. procyclical rental rates or capital prices. In our framework, entry costs would be procyclical if firms are created by entrepreneurs whose opportunity costs (e.g. market work) are higher in upswings.}\]
in our calibration, aggregate labor productivity (which is obviously identical to the employment–weighted average product of labor across firms) is 0.45 and the employment–weighted marginal product is 0.315, so that the opportunity cost of work (parameter b) is just 44% of average product and 66% of marginal product. When we double parameter b to 0.4 (and adjust the operating cost to $f = 0.19$ so as to make sure that again only firms with $x = x_{\text{min}}$ leave the market), average firm size falls, the average and marginal products of labor increase (albeit by a factor less than two), so that b is at 55% of average product and at 78% of marginal product. In the calibration with variable entry costs, the relative volatility of the vacancy–unemployment ratio nearly doubles (from 1.2 to 2.1). In alternative search and matching models with large firms and intra–firm bargaining, Krause and Lubik (2007) and Faccini and Ortigueira (2010) also find little amplification of neutral technology shocks, whereas Elsby and Michaels (2010)
obtain more volatility. Their models differ from ours in several dimensions. Which of those is the reason for the variation between the results remains the subject of future research.

Despite low amplification, our model generates a correlation pattern with aggregate output which is consistent with the data. On the one hand, the model captures a downward–sloping Beveridge curve, that is, a strong negative comovement of unemployment and vacancies. This is despite the feature that job destruction is endogenous in this model. On the other hand, in the calibration with procyclical entry costs, the job–finding rate is strongly procyclical and more volatile than the separation rate which correlates negatively with output.

Table 4: Business cycle statistics

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model (Fixed entry cost)</th>
<th>Model (Variable entry cost)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relative volatility</td>
<td>Corr. w. output</td>
<td>Relative volatility</td>
</tr>
<tr>
<td>Productivity</td>
<td>0.764</td>
<td>0.686</td>
<td>0.969</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>7.665</td>
<td>-0.888</td>
<td>0.948</td>
</tr>
<tr>
<td>Vacancies</td>
<td>7.333</td>
<td>0.762</td>
<td>1.016</td>
</tr>
<tr>
<td>Job–finding rate</td>
<td>4.398</td>
<td>0.819</td>
<td>0.568</td>
</tr>
<tr>
<td>Separation rate</td>
<td>2.685</td>
<td>-0.646</td>
<td>0.537</td>
</tr>
</tbody>
</table>

Notes: All variables are logged and HP filtered with parameter 10^5. Relative volatility measures the standard deviation of a variable divided by the standard deviation of output. Data are for the U.S. labor market (1948Q1–2007Q1, Vacancies: 1951Q1–2006Q3); the job–finding rate and separation rate series were constructed by Robert Shimer (see Shimer (2007) and his webpage http://sites.google.com/site/robertshimer/research/flows). The model statistics are obtained from a simulation of $4 \cdot 10^5$ firms over a period of 2000 months where the first 40 months are discarded. Monthly series are converted into quarterly series by time averaging.

6 Conclusion

The introduction of multi–worker firms into labor–search models bridges the separate literatures on firm dynamics and labor market frictions. It has the potential to address issues in both fields, and most importantly to create new insights into the interplay between firm heterogeneity, worker and job flows, and the levels and fluctuations in employment. This particular project proposes a wage formation process for such environments that incorporates standard competitive elements adjusted for the fact that search frictions prevent perfect market clearing. The model turns out to be tractable, it matches several stylized facts regarding firm growth, pay and recruitment
strategies, and it implements socially efficient allocations both in and out of steady state. It can be viewed as a benchmark against which to judge actual labor market allocations.

To conclude, it is worthwhile to note that this framework is flexible for extensions. On the one hand, it is easy to allow for variable capital investment, as long as the firm–level production functions retain decreasing returns in all variable inputs. On the other hand, it is straightforward to introduce worker heterogeneity provided that vacancies are specific to the type of worker that the firm searches for.\(^{33}\) An extension along this line would yield insights into the sorting of different worker types across heterogeneous firms and the interactions between the employment dynamics of different worker types. Another interesting extension concerns the emergence of endogenous worker heterogeneity due to on–the–job learning. When workers build up human capital on the job, firms (and the planner) are no longer indifferent between firing workers with longer or with shorter job tenure, as they are in this paper. Workers hired in later stages of a firm’s life must then be compensated for the higher risk of job loss in the event of a downturn.

A further extension is to allow for risk aversion and incomplete markets in our framework. In constant–return environments with exogenous separation rates, Acemoglu and Shimer (1999a) and Rudanko (2010) introduce long–term contracting and analyze the implications for risk sharing, unemployment insurance and labor market dynamics. Our model with exogenous separations could also be augmented along these lines. If workers are risk averse and have no access to capital markets, risk neutral firms offer flat wage contracts. Similar to our exposition in Section 3, firms solve a recursive problem subject to a workers’ participation constraint which takes into account \(u(w)\) instead of \(w\). But different from our results, equilibrium ceases to be socially efficient, provided that the planner is allowed to redistribute income to the unemployed. Lack of unemployment insurance induces workers to search too much for low–paying but easy–to–get jobs (as in Acemoglu and Shimer (1999a)), and should lead to excess employment in low–productivity firms and therefore to a misallocation of labor between heterogeneous firms. Overall, the current setup still provides the relevant benchmark: if perfect risk sharing is available, workers care only about expected income values as analyzed in this paper and competitive search equilibrium achieves socially efficient firm dynamics.

\(^{33}\)Cahuc, Marque, and Wasmer (2008) analyze such a model with random search and bargaining.
Appendix

Proof of Proposition 1: Note that our cost function fulfills the conditions $C_1 > 0$, $C_{11} > 0$, $C_{12} \leq 0$, and $C_{13} \geq 0$, and that $xF(L) - C(V, L, x)$ is concave in (V, L) and supermodular in (L, x). Additional requirements that are listed in Lemma 2 below are also satisfied for our cost function.

The observation that the firm’s objective and constraints in problem (3) are separable in L and W and linear in W suggests that the value function takes the form $J^x(L, W) = -BW + G(L, x; \rho)$ for some constant $B > 0$. The envelope condition with respect to W yields

$$B = 1 + \beta(1 - \eta)B,$$

which implies $B = 1/[1 - \beta(1 - \eta)]$. Further, $G(L, x; \rho)$ satisfies the recursive problem

$$G(L, x; \rho) = \max_{(\lambda, V)} xF(L) - C(V, L, x) - \beta[\lambda \rho + (1 - \delta)Bm(\lambda)R(\rho)]V + \beta(1 - \delta)G(\hat{L}, x; \rho)$$

s.t. $\hat{L} = L(1 - s) + m(\lambda)V$, $V \geq 0,$

where $R(\rho)$ makes explicit that the reservation value R depends on ρ via (1). This problem is equivalently defined on a compact state space $L \in [0, \bar{L}]$ where \bar{L} is so large that it never binds. This is possible because of the Inada condition $\lim_{L \to \infty} F'(L) = 0$. The RHS in problem (34) defines an operator T which maps a continuous function $G_0(L, x; \rho)$, defined on $[0, \bar{L}] \times [0, \bar{x}] \times [0, \bar{\rho}]$ into a continuous function $G_1(L, x; \rho) = T(G_0)(L, x; \rho)$ defined on the same domain. This operator is a contraction and it maps functions which are increasing in L and x and decreasing in ρ into functions with the same property. Moreover, the fixed point must be decreasing in ρ and strictly increasing in x, which follows from differentiation of G with respect to ρ and x. Differentiability follows from straightforward application of the approach by Benveniste and Scheinkman.

To prove concavity and supermodularity of the value function, we rewrite (34) in terms of hirings $H = m(\lambda)V$, noting that for a given level of hiring only the second and third term on the right hand side of (34) depend on the remaining choice variables and capture the hiring costs. Dropping argument ρ from G, we can equivalently write (34) as

$$G(L, x) = \max_H xF(L) - C(H, L, x) + \beta(1 - \delta)G(L(1 - s) + H, x)$$

where

$$C(H, L, x) \equiv \min_\lambda C \left(\frac{H}{m(\lambda)}, L, x \right) + \beta(1 - \delta)BRH + \beta \rho \frac{\lambda}{m(\lambda)}H.$$

As will become clear, the per period return $xF(L) - C(H, L, x)$ is supermodular in (L, H) but for $h > 0$ (which implies $C_{13} > 0$) strictly submodular in (H, x) and in (\hat{L}, x) when one writes
$H = \hat{L} - (1 - s)L$, which renders standard tools to prove supermodularity (e.g., Amir (1996)) inapplicable. To proceed, the optimality condition for problem (36) is

$$C_1 \left(\frac{H}{m(\lambda)}, L, x \right) = \beta \rho \frac{m(\lambda) - \lambda m'(\lambda)}{m'(\lambda)}.$$ (37)

Differentiate this equation to obtain

$$\frac{d\lambda}{dH} = \frac{C_{11}}{C_{11} H m' - \frac{\beta \rho m'' m'^2}{(m')^2}} > 0 ,$$ (38)

$$\frac{d\lambda}{dL} = \frac{C_{12} m}{C_{11} H m' - \frac{\beta \rho m'' m'^2}{(m')^2}} = \frac{C_{12} m}{C_{11}} \frac{d\lambda}{dH} \leq 0 ,$$ (39)

$$\frac{d\lambda}{dx} = \frac{C_{13} m}{C_{11} H m' - \frac{\beta \rho m'' m'^2}{(m')^2}} = \frac{C_{13} m}{C_{11}} \frac{d\lambda}{dH} \geq 0 .$$ (40)

Therefore, we can express the derivatives of cost function C as

$$C_1 = \frac{\beta \rho}{m'(\lambda)} + \beta(1 - \delta) BR ,$$
$$C_2 = C_2 ,$$
$$C_{11} = -\frac{\beta \rho m''}{(m')^2} \frac{d\lambda}{dH} = \frac{C_{11}}{C_{12} m} C_{12} > 0 ,$$ (41)

$$C_{12} = -\frac{\beta \rho m''}{(m')^2} \frac{d\lambda}{dL} \leq 0 ,$$ (42)

$$C_{22} = C_{22} - C_{12} \frac{H m'}{m^2} \frac{d\lambda}{dL} = C_{22} - \frac{C_{12}}{C_{11}} C_{12} + \frac{m C_{12}}{C_{11}} C_{12} ,$$ (43)

$$C_{13} = -\frac{\beta \rho m''}{(m')^2} \frac{d\lambda}{dx} = \frac{C_{13}}{C_{12}} C_{12} \geq 0 ,$$ (44)

$$C_{23} = C_{23} - C_{12} \frac{H m'}{m^2} \frac{d\lambda}{dx} = C_{23} - \frac{C_{12}}{C_{11}} \left[C_{13} - m C_{13} \right] ,$$ (45)

Lemma 1: The recursive problem (35) defines a value function $G(L, x)$ which is

(a) concave in L if the following condition holds:

$$C_{12}^2 + C_{11} [xF'' - C_{22}] \leq 0 .$$ (46)

(b) supermodular in (x, L) if the following condition holds:

$$C_{12} C_{13} + C_{11} [F' - C_{23}] \geq 0 .$$ (47)
Lemma 2:

(a) Condition (46) holds under the following condition on the original cost function C:

$$C_{12}^2 + C_{11}[xF'' - C_{22}] \leq 0.$$ \hfill (48)

(b) Condition (47) holds under the following condition on the original cost function C:

$$C_{12}C_{13} + C_{11}[F' - C_{23}] \geq 0.$$ \hfill (49)

Proof of Lemma 1: Write (35) as $G(L, x) = (TG)(L, x)$ where T is an operator mapping continuous functions on $[0, L] \times R_+$ into another continuous function on the same domain, which has the same properties as the one described above.

Part (a). Suppose that G is a concave function of L, and differentiate TG twice with respect to L to obtain

$$\frac{d^2(TG)}{dL^2} = xF'' - C_{22} + \beta(1 - \eta)(1 - s)G_{11} + \left[-C_{12} + \beta(1 - \eta)G_{11} \right] \frac{dH}{dL}. \hfill (50)$$

Differentiate the FOC $C_1 = \beta(1 - \delta)G_1$ with respect to L to obtain

$$\frac{dH}{dL} = \frac{\beta(1 - \eta)G_{11} - C_{12}}{C_{11} - \beta(1 - \delta)G_{11}}. \hfill (51)$$

Substitute this into (50) to obtain

$$\frac{d^2(TG)}{dL^2} = xF'' - C_{22} + \frac{\beta(1 - \eta)(1 - s)G_{11}C_{11} + C_{12}^2 - 2\beta(1 - \eta)G_{11}C_{12}}{C_{11} - \beta(1 - \delta)G_{11}}.$$

In the last term, the denominator is positive and larger than C_{11}. In the numerator, all terms involving G_{11} are negative; hence the numerator is smaller than C_{12}^2. Therefore,

$$\frac{d^2(TG)}{dL^2} \leq xF'' - C_{22} + \frac{C_{12}^2}{C_{11}},$$

which is non–positive under (46). Hence, T maps a concave function into a concave function, and therefore the unique fixed point is concave.

Part (b). Suppose that G is a supermodular function of (L, x), and differentiate TG twice with respect to L and x to obtain

$$\frac{d^2(TG)}{dLdx} = F' - C_{23} + \beta(1 - \eta)G_{12} + \left[-C_{12} + \beta(1 - \eta)G_{11} \right] \frac{dH}{dx}. \hfill (52)$$

Differentiate the FOC $C_1 = \beta(1 - \delta)G_1$ with respect to x to obtain

$$\frac{dH}{dx} = \frac{\beta(1 - \delta)G_{12} - C_{13}}{C_{11} - \beta(1 - \delta)G_{11}}. \hfill (53)$$
Substitute this into (52) to obtain
\[\frac{d^2(TG)}{dLdx} = F' - C_{23} + \frac{\beta(1 - \eta)G_{12}C_{11} + C_{12}C_{13} - \beta(1 - \delta)G_{12}C_{12} - \beta(1 - \eta)G_{11}C_{13}}{C_{11} - \beta(1 - \delta)G_{11}}. \]

In the last term, the denominator is positive and larger than \(C_{11} \). In the numerator, all terms involving \(G_{11} \) and \(G_{12} \) are non-negative; hence the numerator is greater than \(C_{12}C_{13} \leq 0 \). Therefore,
\[\frac{d^2(TG)}{dLdx} \geq F' - C_{23} + \frac{C_{12}C_{13}}{C_{11}}, \]
which is non-negative under (46). Hence, \(T \) maps a supermodular function into a supermodular function, and therefore the unique fixed point is supermodular.

Proof of Lemma 2:

Part (a): Rewrite (46) using (41), (42) and (43) to obtain the equivalent condition
\[\frac{C_{11}}{C_{12}m}C_{12}\left[xF'' - C_{22} + C_{12}^2\right] / C_{11} \leq 0. \]
Because of \(C_{11} > 0, C_{12} \leq 0 \) and \(C_{12} \leq 0 \), this condition is equivalent to (48).

Part (b): Rewrite (47) using (41), (42), (44) and (45) to obtain the equivalent condition
\[\frac{C_{11}}{C_{12}m}C_{12}\left[F' - C_{23} + C_{12}C_{13}/C_{11} \right] \geq 0. \]
Because of \(C_{11} > 0, C_{12} \leq 0 \) and \(C_{12} \leq 0 \), this condition is equivalent to (49).

It follows from Lemma 1 and 2 that the value function \(G(L, x) \) is concave in \(L \) and supermodular in \((L, x)\) because our cost function satisfies both (48) and (49).

Because of strict concavity of problem (34), policy functions \(\lambda^x(L) \) and \(V^x(L, \lambda^x(L)) \) exist. To derive (4) and (5), consider the first–order conditions for problem (34) with respect to \(V \) and \(\lambda \),
\[C_1(V, L, x) \geq \beta(1 - \delta)\left\{ m(\lambda)G_1(\hat{L}, x) - B\left[\lambda\rho\frac{1 - \beta(1 - \eta)}{1 - \delta} + m(\lambda)R \right] \right\}, \ V \geq 0 , \quad (54) \]
\[0 \geq m'(\lambda)V G_1(\hat{L}, x) - \left[\rho\frac{1 - \beta(1 - \eta)}{1 - \delta} + m'(\lambda)R \right] VB, \ \lambda \geq 0, \quad (55) \]
which are both satisfied with complementary slackness. The envelope condition for problem (34) is
\[G_1(L, x) = xF'(L) - C_2(V, L, x) + \beta(1 - \eta)G_1(\hat{L}, x) , \quad (56) \]
It is without loss of generality to impose (55) as equality,\(^\text{34}\) and substituting it into (54) and using (33) directly yields the complementary–slackness condition (4). Condition (5) follows immediately from (55) and (56).

\(^\text{34}\)If \(V \) is zero then (55) trivially holds with equality. If \(V > 0 \) then (54) implies \(\lambda > 0 \) and again (55) has to hold with equality.
To see how $\lambda^x(L)$ depends on L, use (39) and (51) to get
\[
\frac{d\lambda^x(L)}{dL} = \frac{d\lambda(H, L, x)}{dL} + \frac{d\lambda(H, L, x)}{dH} \frac{dH}{dL} = \frac{d\lambda}{dH} \left[\frac{C_{12} m}{C_{11}} + \frac{\beta(1 - \eta)G_{11} - C_{12}}{C_{11} - \beta(1 - \delta)G_{11}} \right].
\]
Because of
\[
\frac{C_{12} m}{C_{11}} = \frac{C_{12}}{C_{11}} \leq \frac{C_{12}}{C_{11} - \beta(1 - \delta)G_{11}},
\]
the term in $[.]$ is negative, and so is $d\lambda^x/(dL)$.

To verify that λ is increasing in x, use (40) and (53) to get
\[
\frac{d\lambda^x(L)}{dx} = \frac{d\lambda(H, L, x)}{dx} + \frac{d\lambda(H, L, x)}{dH} \frac{dH}{dx} = \frac{d\lambda}{dH} \left[\frac{C_{13} m}{C_{11}} + \frac{\beta(1 - \delta)G_{12} - C_{13}}{C_{11} - \beta(1 - \delta)G_{11}} \right].
\]
Because of
\[
\frac{C_{13} m}{C_{11}} = \frac{C_{13}}{C_{11}} \geq \frac{C_{13}}{C_{11} - \beta(1 - \delta)G_{11}},
\]
the term in $[.]$ is positive, and so is $d\lambda^x/(dx)$.

Proof of Corollary 2: Because of exogenous separations, the growth rate of a firm, $[(m(\lambda)V - sL)/L]$ is perfectly correlated with the job–creation rate,
\[
\text{JCR}(x, L) = m(\lambda^x(L)) \frac{V^x(L, \lambda^x(L))}{L}.
\]
Differentiation of the job–creation rate with respect to x implies
\[
\frac{d\text{JCR}}{dx} = m' \frac{d\lambda^x}{dx} \frac{V^x}{L} + \frac{m(\lambda^x)}{L} \frac{dV^x}{dx} + \frac{m(\lambda^x)}{L} \frac{dV^x}{d\lambda^x} \frac{d\lambda^x}{dx}.
\]
In this expression, the first and the third term are strictly positive. The second term is zero when $h = 0$, and negative but small if h is small. Thus, $d\text{JCR}/(dx)$ is positive if h is sufficiently small.

Differentiation of the job–creation rate with respect to L implies
\[
\frac{d\text{JCR}}{dL} = m' \frac{d\lambda^x}{dL} \frac{V^x}{L} + \frac{m(\lambda^x)}{L} \frac{dV^x}{dL} + \frac{m(\lambda^x)}{L} \frac{dV^x}{d\lambda^x} \frac{d\lambda^x}{dL} - m \frac{V^x}{L^2}.
\]
In this expression, the first, the third and the fourth term are strictly negative. The second term is zero when $h = 0$, and positive but small if h is small. Thus, $d\text{JCR}/(dL)$ is negative if h is sufficiently small.

Lemma 3: Equation (7) has a unique steady state solution $\lambda^* > 0$ if, and only if,
\[
h < \frac{\beta(1 - \delta)m}{1 - \beta(1 - \eta)}, \quad (57)
\]

41
with \(\overline{m} = \lim_{\lambda \to \infty} m(\lambda) - \lambda m'(\lambda) > 0 \). Under this condition, any sequence \(\lambda_t > 0 \) satisfying this equation converges to \(\lambda^* \).

Proof of Lemma 3: A steady state \(\lambda^* \) must satisfy the condition

\[
\beta \rho [m(\lambda) - \lambda m'(\lambda)] = \frac{\rho h[1 - \beta(1 - \eta)]}{1 - \delta} + [Rh + c]m'(\lambda) .
\]

(58)

The LHS is strictly increasing and goes from 0 to \(\beta \rho \overline{m} \) as \(\lambda \) goes from 0 to \(+\infty \). The RHS is decreasing in \(\lambda \) with limit \(\rho h(1 - \beta(1 - \eta))/(1 - \delta) \) for \(\lambda \to \infty \). Hence, a unique steady state \(\lambda^* \) exists iff (57) holds. Furthermore, differentiation of (7) at \(\lambda^* \) implies that

\[
\left. \frac{d\lambda_{t+1}}{d\lambda_t} \right|_{\lambda^*} = \frac{h}{\beta(1 - \delta)m(\lambda^*) + h\beta(1 - \eta)} ,
\]

which is positive and smaller than one iff

\[
h < \frac{\beta(1 - \delta)m(\lambda^*)}{1 - \beta(1 - \eta)} .
\]

But this inequality must be true because (58) implies

\[
h = \frac{\beta \rho [m(\lambda^*) - \lambda^* m'(\lambda^*)] - cm'(\lambda^*)}{\rho[1 - \beta(1 - \eta)]/1 - \delta} < \frac{\beta(1 - \delta)m(\lambda^*)}{1 - \beta(1 - \eta)} .
\]

Therefore, the steady state \(\lambda^* \) is locally stable. Moreover, equation (7) defines a continuous, increasing relation between \(\lambda_{t+1} \) and \(\lambda_t \) which has only one intersection with the 45-degree line. Hence, \(\lambda_{t+1} > \lambda_t \) for any \(\lambda_t < \lambda^* \) and \(\lambda_{t+1} < \lambda_t \) for any \(\lambda_t > \lambda^* \), which implies that \(\lambda_t \) converges to \(\lambda^* \) from any initial value \(\lambda_r > 0 \). \(\square \)

Proof of Proposition 2:

It remains to prove existence and uniqueness. From Proposition 1 follows that the entrant’s value function \(J^x(0, 0) \) is decreasing and continuous in \(\rho \). Hence the expected profit prior to entry,

\[
\Pi^*(\rho) = \sum_{x \in X} \pi(x) J^x(0, 0)
\]

is a decreasing and continuous function of \(\rho \). Moreover, the function is strictly decreasing in \(\rho \) whenever it is positive. This also follows from the proof of Proposition 1 which shows that \(G(0, x; \rho) \) is strictly decreasing in \(\rho \) when the new firm \(x \) recruits workers \((V^x(0, \lambda) > 0) \). If no new firm recruits workers, expected profit of an entrant cannot be positive. Hence, equation (8) can have at most one solution for any \(K > 0 \). This implies uniqueness, with entry of firms if (8) can be fulfilled or without entry of firms otherwise. A solution to (8) exists provided that \(K \) is sufficiently small and \(F'(0) \) is sufficiently large. To see this, if \(F'(0) \) is sufficiently large, \(\Pi^*(0) \) is
strictly positive: some entrants will recruit workers since the marginal product \(G_1(m(\lambda)V, x; \rho) \) is sufficiently large relative to the cost of recruitment and relative to the wage cost which are, for \(\rho = 0 \), equal to \(m(\lambda)Vb \) (see equation (34)). But when \(\Pi^*(0) > 0 \), a sufficiently small value of \(K \) guarantees that (8) has a solution since \(\lim_{\rho \to \infty} \Pi^*(\rho) = 0 \). □

Proof of Proposition 3:

We will show that the first-order conditions that uniquely characterize the decentralized allocation are also first order conditions to the planner’s problem. The same auxiliary problem that we employ in the proof of Proposition 4 part (b) then establishes that the planner cannot improve upon this allocation. We denote by \(S_{N,a} \) the derivative of \(S \) with respect to \(N_a \) and by \(S_{L,a,x} \) the derivative of \(S \) with respect to \(L_a^x \). The multiplier on the resource constraint is \(\mu \geq 0 \). First-order conditions with respect to \(N_0, V_a^x, \) and \(\lambda_a^x, a \geq 0, \) are

\[
\sum_{x \in X} \pi(x) \left[xF(0) - C(V_0^x, 0, x) \right] - K + \beta(1 - \delta)S_{N,1} - \mu \sum_{x \in X} \pi(x)\lambda_a^x V_0^x = 0 , \tag{59}
\]

\[
-N_a \pi(x) \left[C_1(V_a^x, L_a^x, x) + \mu \lambda_a^x \right] + \beta S_{L,a+1,x} m(\lambda_a^x) \leq 0 , \quad V_a^x \geq 0 , \tag{60}
\]

\[
\beta S_{L,a+1,x} m'(\lambda_a^x) - \mu N_a \pi(x) = 0 . \tag{61}
\]

Here condition (60) holds with complementary slackness. The envelope conditions are, for \(a \geq 1 \) and \(x \in X, \)

\[
S_{L,a,x} = N_a \pi(x) \left[xF'(L_a^x) - C_2'(V_a^x, L_a^x, x) - b - \mu \right] + \beta(1 - s)S_{L,a+1,x} , \tag{62}
\]

\[
S_{N,a} = \sum_{x \in X} \pi(x) \left[xF(L_a^x) - C(V_a^x, L_a^x, x) - bL_a^x \right] - \mu \sum_{x \in X} \pi(x) \left(L_a^x + \lambda_a^x V_a^x \right) + \beta(1 - \delta)S_{N,a} . \tag{63}
\]

Use (61) to substitute \(S_{L,a,x} \) into (62) to obtain

\[
x F'(L_{a+1}^x) - C_2(V_{a+1}^x, L_{a+1}^x, x) - b - \mu = \frac{\beta}{(1 - \delta) m'(\lambda_a^x)} \left[\frac{1}{\mu} - \frac{\beta(1 - s)}{m'(\lambda_a^x)} \right] .
\]

This equation describes the planner’s optimal recruitment policy; it coincides with equation (5) for \(\mu = R - b = \beta \rho \). This is intuitive: when the social value of an unemployed worker \(\mu \) coincides with the surplus value that an unemployed worker obtains in search equilibrium, the firm’s recruitment policy is efficient. Next substitute (61) into (60) to obtain the socially optimal vacancy creation, for \(a \geq 0 \) and \(x \in X, \)

\[
C_1(V_a^x, L_a^x, x) \geq \mu \left[\frac{m(\lambda_a^x)}{m'(\lambda_a^x)} - \lambda_a^x \right] , \quad V_a^x \geq 0 . \tag{64}
\]

Again for \(\mu = \beta \rho \), this condition coincides with the firm’s choice of vacancy postings in competitive search equilibrium, equation (4). Lastly, it remains to verify that entry is socially efficient
when the value of a jobless worker is $\mu = R - b$. The planner’s choice of firm entry, condition (59), together with the recursive equation for the marginal firm surplus $S_{N,a}$, equation (63), shows that

$$K = \sum_{a \geq 0} \beta (1-\delta)^a \sum_{x \in X} \pi(x) \left[xF(L_a^x) - bL_a^x - C(V_a^x, L_a^x, x) - \mu(L_a^x + \lambda^x_a V_a^x) \right].$$

On the other hand, the expected profit value of a new firm is

$$\sum_{x \in X} \pi(x) J^x(0,0) = \sum_{a \geq 0} [\beta (1-\delta)^a] \sum_{x \in X} \pi(x) \left[xF(L_a^x) - W_a^x - C(V_a^x, L_a^x, x) \right].$$

Hence, the free-entry condition in search equilibrium, equation (8), coincides with condition (65) for $R = b + \mu$ if, for all $x \in X$,

$$\sum_{a \geq 0} [\beta (1-\delta)^a] (b + \mu)L_a^x + \mu \lambda^x_a V_a^x - W_a^x = 0. \tag{66}$$

Now after substitution of

$$L_a^x = \sum_{k=0}^{a-1} (1-s)^{a-k} m(\lambda^x_k) V_a^x, \quad \text{and}$$

$$W_a^x = \sum_{k=0}^{a-1} (1-s)^{a-k} V_a^x \left[\frac{\rho \lambda^x_k}{(1-\delta)B} + m(\lambda^x_k) R \right]$$

into (66), it is straightforward to see that the equation is satisfied for $\mu = R - b = \beta \rho$. \hfill \Box

Proof of Proposition 4:

Part (a): The RHS in the system of equations in (16) defines an operator T which maps a sequence of bounded functions $G = (G_t)_{t \geq 0}$, with $G_t : [0, \mathbb{L}] \times X \times Z^t \to \mathbb{R}$ such that $\|G\| \equiv \sup_t \|G_t\| < \infty$, into another sequence of bounded functions $\tilde{G} = (\tilde{G}_t)_{t \geq 0}$ with $\|\tilde{G}\| = \sup_t \|\tilde{G}_t\| < \infty$. Here \mathbb{L} is sufficiently large such that the bound $\tilde{L} \leq \mathbb{L}$ does not bind for any $L \in [0, \mathbb{L}]$. The existence of \mathbb{L} follows from the Inada condition for F: the marginal product of an additional worker $xzF'(\tilde{L}) - b$ must be negative for any $x \in X$, $z \in Z$, for any $\tilde{L} \geq \mathbb{L}$ with sufficiently large \mathbb{L}; hence no hiring will occur beyond \mathbb{L}. Because the operator satisfies Blackwell’s sufficient conditions, it is a contraction in the space of bounded function sequences G. Hence, the operator T has a unique fixed point which is a sequence of bounded functions.

Part (b): Take first a solution \mathbf{X} of the planning problem, and write $\beta^t \psi(z^t) \mu(z^t) \geq 0$ for the multipliers on constraints (15). Then \mathbf{X} maximizes the Lagrange function

$$\mathcal{L} = \max_{t \geq 0, z^t} \beta^t \psi(z^t) \left\{ -KN_0(z^t) + \sum_{a \geq 0, x^a} N(x^a, z^t) \left[x_iz^t_t F(L(x^a, z^t)) - bL(x^a, z^t) \right] - f - C(V(x^a, z^t), L(x^a, z^t), x_a) - \mu(z^t) \left[(1-s(x^a, z^t))L(x^{a-1}, z^{t-1}) + \lambda(x^a, z^t)V(x^a, z^t) \right] \right\}$$

44
For each individual firm, this problem is the sequential formulation of the recursive problem (16) with multipliers \(\mu(z^t) \). Hence, firm policies also solve the recursive problem; furthermore, the maximum of the Lagrange function is the same as the sum of the social values of entrant firms plus the social values of firms which already exist at \(t = 0 \), namely,
\[
\mathcal{L} = \max_{N_0(\cdot), t, z^t} \beta^t \psi(z^t)N_0(z^t)\left[-K + \sum_x \pi_0(x)G_t(0, x, z^t)\right] \\
+ \sum_{z \in Z} \psi(z^0) \sum_{a \geq 1, a^a - 1, x_a} \pi(x_a|x_{a-1})N(x^{a-1},.)G_0(L(x^{a-1},.), x_a, z^0).
\]
This also proves that the complementary–slackness condition (17) describes optimal entry.

To prove the converse, suppose that \(X \) solves for every firm the recursive problem (16) with multipliers \(\mu(z^t) \), and that (17) and the resource constraints (15) are satisfied. Define an auxiliary problem (AP) as an extension of the original planning problem (14) which allows the planner to rent additional workers (or to rent out existing workers) at rental rate \(\mu(z^t) \) in period \(t \). Formally, the (AP) differs from the original problem in that the resource constraint (15) is replaced by
\[
\sum_{a \geq 0, x_a} N(x^a, z^t)\left[L(x^a, z^t) + \lambda(x^a, z^t)V(x^a, z^t)\right] \leq M(z^t), \tag{67}
\]
with \(M(z^t) - 1 > 0 \) workers hired or \(M(z^t) - 1 < 0 \) workers hired out. Further, the rental cost (rental income) term \(-\mu(z^t)[M(z^t) - 1]\) is added into the braces in the objective function (14). Then it follows immediately that the multiplier on constraint (67) is equal to \(\mu(z^t) \). We further claim that allocation \(X \) solves problem (AP), and hence also solves the original planning problem. To see this, suppose that there is an allocation \((X', M)\) which is feasible for problem (AP) and which strictly dominates \(X \). Write
\[
O(x^a, z^t) \equiv x_a z_t F\left(L(x^a, z^t) \right) - bL(x^a, z^t) - f - C(V(x^a, z^t), \bar{L}(x^a, z^t), x_a)
\]
for the net output created by firm \((x^a, z^t)\) in allocation \(X \) and write \(O'(x^a, z^t) \) for the same object in allocation \(X' \). Further, write \(S' \) for the total surplus value in allocation \((X, 1)\) and write \(S' > S \) for the surplus value in allocation \((X', M)\). Then
\[
S' = \sum_{t \geq 0, z^t} \beta^t \psi(z^t)\left\{-KN_0'(z^t) + \sum_{a \geq 0, x_a} N'(x^a, z^t)O'(x^a, z^t) - \mu(z^t)[M(z^t) - 1]\right\}
\\leq \sum_{t \geq 0, z^t} \beta^t \psi(z^t)\left\{-KN_0'(z^t) + \mu(z^t)\right\}
\\quad + \sum_{a \geq 0, x_a} N'(x^a, z^t)\left[O'(x^a, z^t) - \mu(z^t)\left(L'(x^a, z^t) + \lambda(x^a, z^t)V'(x^a, z^t)\right)\right] \right\} \tag{67}
\]
45
\begin{align*}
\leq & \sum_{t \geq 0, z^t} \beta^t \psi(z^t) N_0(z^t) \left[-K + \sum_x \pi_0(x) G_t(0, x, z^t) \right] \\
& + \sum_{z \in Z} \psi(z^0) \sum_{a \geq 1, x^{a-1}, x_a} \pi(x_a|x_{a-1}) N(x^{a-1},.) G_0(L(x^{a-1},.),x_a,z^0) + \sum_{t,z^t} \beta^t \psi(z^t) \mu(z^t) \\
\leq & \sum_{t \geq 0, z^t} \beta^t \psi(z^t) N_0(z^t) \left[-K + \sum_x \pi_0(x) G_t(0, x, z^t) \right] \\
& + \sum_{z \in Z} \psi(z^0) \sum_{a \geq 1, x^{a-1}, x_a} \pi(x_a|x_{a-1}) N(x^{a-1},.) G_0(L(x^{a-1},.),x_a,z^0) + \sum_{t,z^t} \beta^t \psi(z^t) \mu(z^t) = S.
\end{align*}

Here the first inequality follows from resource constraint (67). The second inequality follows since the discounted sum of surplus values for an individual new firm, namely
\[\sum_{\tau \geq t} \beta^{\tau-t} E_t \left[O'(x^{\tau-t},z^{\tau}) - \mu(z^{\tau}) \left[\bar{L}(x^{\tau-t},z^{\tau}) + \lambda'(x^{\tau-t},z^{\tau}) V'(x^{\tau-t},z^{\tau}) \right] \right], \]
is bounded above \(G_t(0, x_0, z_t) \) (for new firms) or by \(G_0(L(x^{a-1},.),x_a,z^0) \) (for firms existing at \(t = 0 \)) by definition of \(G_t \). The third inequality follows from the complementary–slackness condition (17): either the term \(-K + \sum_x \pi_0(x) G_t(0, x, z^t)\) is zero in which case the first summand is zero on both sides of the inequality; or it is strictly negative in which case \(N_0(z^t) = 0 \) and \(N_0'(z^t) \geq 0 \). The last equality follows from the definition of surplus value \(S \) and the assumption that allocation \(X \) solves problem (16) at the level of each individual firm. This proves \(S' \leq S \) and hence contradicts the hypothesis \(S' > S \). \hfill \Box

Proof of Proposition 5:

Part (a): For the multipliers defined by \(\mu(z^t) = \mu_i \) for \(z_t = z_i \), the unique solution of (16) coincides with the one of (18), i.e. \(G_t(L,x,z^t) = G^i(L,x,\mu) \) for \(z_t = z_i \), and also the firm–level policies coincide. If they give rise to an allocation \(X \) with positive entry in all aggregate states \(z^t \), (19) implies that (17) holds for all \(z^t \). Hence Proposition 4(b) implies that \(X \) is a solution of the planning problem.

Part (b): Solving (18) in the stationary case involves to find a single value function \(G(L,x,\mu) \). Application of the contraction mapping theorem implies that such a solution exits, is unique, and is continuous and non–increasing in \(\mu \) and strictly decreasing in \(\mu \) when \(G(.) > 0 \).

Therefore, the function \(\Gamma(\mu) \equiv \sum_x \pi_0(x) G(0,x,\mu) \geq 0 \) is continuous, strictly decreasing when positive, and zero for large enough \(\mu \). Furthermore, when \(f \) and \(b \) are sufficiently small, \(\Gamma(0) > 0 \); hence when \(K > 0 \) is sufficiently small, there exists a unique \(\mu \geq 0 \) satisfying equation (19).

For any given vector \((\mu_1, \ldots, \mu_n) \in \mathbb{R}_+^n \), the system of recursive equations (18) has a unique solution \(G = (G^i) \). Again this follows from the application of the contraction–mapping theorem.
Furthermore, G is differentiable in μ, and all elements of the Jacobian $(dG^i/(d\mu_j))$ are non–positive. The RHS of (18) defines an operator mapping a function $G^i(L, x, \mu)$ with a strictly diagonally dominant Jacobian matrix $(dG^i/(d\mu_j))$ into another function \tilde{G}_j whose Jacobian matrix $(d\tilde{G}_i/(d\mu_j))$ is diagonally dominant. This follows since the transition matrix $\psi(z_j|z_i)$ is strictly diagonally dominant and since all elements of $(d\tilde{G}_i/(d\mu_j))$ have the same (non–positive) sign. Therefore, the unique fixed point has a strictly diagonally dominant Jacobian. Now suppose that (z_1, \ldots, z_n) is close to (z, \ldots, z) and consider the solution $\mu_1 = \ldots = \mu_n = \mu$ from part (a). Since the Jacobian matrix $dG^i(0, x, \mu)/(d\mu_j)$ is strictly diagonally dominant, it is invertible. By the implicit function theorem, a unique solution to equation (19) exits. \square

Proof of Proposition 6: The proof proceeds in two steps. First, substitute the participation constraint (30) into the firm’s problem and make use of the contracts’ recursive equations (23) to show that the firms’ recursive profit maximization problem is identical to the maximization of the social surplus of a firm. Second, show that the competitive equilibrium is socially optimal.

First, define the social surplus of a firm with history (x^a, z^t) and with predetermined contracts and employment levels as follows:

$$G_a\left[(C_{\tau})_{\tau=0}^{a-1}, (L_{\tau})_{\tau=0}^{a-1}, x^a, z^t\right] \equiv J_a\left[(C_{\tau})_{\tau=0}^{a-1}, (L_{\tau})_{\tau=0}^{a-1}, x^a, z^t\right] + \sum_{\tau=0}^{a-1} L_{\tau} \left[W(C_{\tau}, x^a, z^t) - U(z^t)\right].$$

(68)

Using (23) with $\varphi_a(x^a, z^t) = 0$ and the participation constraint (30), the wage in the hiring period can be expressed as

$$w_a(x^a, z^t) = b + \beta E_{z_t} U(z_{t+1}) + \frac{\lambda \rho(z^t)}{m(\lambda)} - \beta E_{x_a,z_t} W(C_a, x^{a+1}, z^{t+1}).$$

Now substitute this equation, (23) and (26) into (68), and write

$$S \equiv \left[(C_{\tau})_{\tau=0}^{a-1}, (L_{\tau})_{\tau=0}^{a-1}, x^a, z^t\right]$$

and

$$\tilde{S} \equiv \left[(C_{\tau})_{\tau=0}^{a}, (\tilde{L}_{\tau})_{\tau=0}^{a}, x^{a+1}, z^{t+1}\right],$$

with \tilde{L}_{τ} as defined in (27), to obtain

$$G_a(S) = \max_{\delta, \lambda, V, C_a} (1 - \delta) \left\{ x_a z_t F(L) - f - C(V, L, x) \right\}$$

$$- \sum_{\tau=0}^{a-1} \frac{1 - \varphi_{\tau}(x^a, z^t)}{1 - \delta} L_{\tau} w_{\tau}(x^a, z^t) - m(\lambda) V \left[b + \beta E_{z_t} U(z_{t+1}) + \frac{\lambda \rho(z^t)}{m(\lambda)} \right]$$

$$+ \beta E_{x_a,z_t} \left[J_{a+1}(\tilde{S}) + m(\lambda) V W(C_a, x^{a+1}, z^{t+1}) \right]$$

$$+ \sum_{\tau=0}^{a-1} L_{\tau} \left[1 - \varphi_{\tau}(x^a, z^t) \right] \left[w_{\tau}(x^a, z^t) - U(z^t) + \beta E_{x_a,z_t} W(C_{\tau}, x^{a+1}, z^{t+1}) \right]$$

(69)
\[
\max_{\delta, \lambda, V, C} \left((1 - \delta) \left\{ x_\delta z_t F(\hat{L}) - b\hat{L} - f - \rho(z^t)\lambda V - \rho(z^t) \sum_{\tau = 0}^{a-1} L_\tau (1 - \varphi_\tau(x^\delta, z^t)) \right. \right.
\]
\[
\left. - C(V, \bar{L}, x) + \beta E_{x_\delta, z_t} \left[J_{a+1}(\hat{S}) + \sum_{\tau = 0}^{a} \hat{L}_\tau \left(W(C_\tau, x^{a+1}, z^{t+1}) - U(z^{t+1}) \right) \right] \right\}
\]
\[
= \max_{\delta, \lambda, V, C} \left((1 - \delta) \left\{ x_\delta z_t F(\hat{L}) - f - C(V, \bar{L}, x) - \rho(z^t) \left[\lambda V + \hat{L} - m(\lambda) V \right] - b\hat{L} \right. \right.
\]
\[
\left. + \beta E_{x_\delta, z_t} G_{a+1}(\hat{S}) \right\}.
\]

Here maximization is subject to (27) and (28), and the second equation makes use of (25). This shows that the firm solves a surplus maximization problem which is identical to the one of the planner specified in (16) provided that \(\rho(z^t) = \mu(z^t) \) holds for all \(z^t \), where \(\mu \) is the social value of an unemployed worker as defined in section 4.2. The only difference between the two problems is that the firm commits to cohort-specific separation probabilities, whereas the planner chooses an identical separation probability for all workers (and he clearly has no reason to do otherwise). Nonetheless, both problems have the same solution: they are dynamic optimization problems of a single decision maker in which payoff functions are the same (with \(\rho(z^t) = \mu(z^t) \)) and the decision sets are the same. Further, time inconsistency is not an issue since there is no strategic interaction and since discounting is exponential. Hence solutions to the two problems, with respect to firm exit, layoffs and hiring strategies, are identical. In both problems the decision maker could discriminate between different cohorts in principal. Because such differential treatment does not raise social firm value, there is also no reason for competitive search to produce such an outcome. Nonetheless, there can be equilibria where different cohorts have different separation probabilities, but these equilibria must also be socially optimal because they maximize social firm value.

It remains to verify that competitive search gives indeed rise to socially efficient firm entry. When \(\mu(z^t) = \rho(z^t) \), \(G_0(x, z^t) \) as defined in (68) coincides with \(G_0(0, x, z^t) \), as defined in (16). Hence, the free-entry condition (31) coincides with the condition for socially optimal firm creation (17). Because of aggregate resource feasibility (32), the planner’s resource constraint (15) is also satisfied. Since the allocation of a competitive search equilibrium satisfies all the requirements of Proposition 4(b), it is socially optimal.
References

