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Abstract

What is the optimal size of expert committees? To address this question, I
present a model of a committee of experts with career concerns. Each expert
may observe an argument about the state of the world but be unsure about the
argument’s soundness. Experts may remain silent or compete for the opportunity
to announce an argument. I show that experts become more reluctant to speak
in larger committees. This effect is sufficiently strong to make small groups of
experts optimal. At the same time, a small committee may be superior to an
individual expert.
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Silence is the highest wisdom of a fool as speech is the greatest trial of a

wise man.

Sir Francis Quarles (1592-1644), English poet

1 Introduction

Expert committees are frequently consulted when complex decisions have to be taken.

Examples of such committees include councils of economic advisers as well as other

advisory committees to government authorities. In the United States, the Food and

Drug Administration alone seeks expert advice from 50 committees and panels.1 Given

the prevalence of advisory committees, it is important to ask how they should be

designed, and in particular, how large they should be.

A näıve view inspired by the Condorcet Jury Theorem (Condorcet, 1785) would suggest

that an advisory committee should comprise as many experts as possible provided the

consequences of the decision at hand are far-reaching and potentially severe and the

costs of hiring experts low in comparison. Seeking advice from all available experts

would minimize the chances that some crucial piece of evidence is overlooked. In this

paper, I show that, while larger committees indeed ensure a high probability that

significant information is known to at least one member of the committee, this does

not imply that large committees are always desirable because larger groups may make

individual experts more reluctant to speak up.

To show this, I set up a model, populated by a principal and a group of experts

interested in appearing as competent individuals. Experts privately observe arguments

against the prevailing view regarding an issue to be decided by the principal but are

uncertain whether the arguments will hold up to public scrutiny. When contemplating

making their views public, the experts have to weigh the possible gain in prestige,

should their arguments hold water, against the potential loss in reputation, should

public debate reveal flaws in their arguments.

The potential loss in reputation can be severe enough to induce experts to practice

self-censorship and to withhold information going against conventional wisdom. The

1See http://www.fda.gov/AdvisoryCommittees/default.htm. Retrieved 15 June 2012.

2



relevance of self-censorship in groups is demonstrated in an influential book by Janis

(1972). He studies a host of episodes like the Bay of Pigs Invasion under the Kennedy

administration and argues that a phenomenon he labels “groupthink” can occur, which

causes individuals to suppress arguments against the prevailing view.

In my model, the trade-off between the costs and benefits of speech is influenced by

group size. An individual expert is more likely to be the first to raise an argument

if it is far-fetched and hence not shared by many of his colleagues. As a result, the

ability to present an argument first may in itself be an indication that this argument

is inessential. This effect is powerful in large committees, where it is particularly

unlikely that a substantive argument can be released by a particular expert ahead of

his colleagues. As a consequence, experts on large committees will be reluctant to

reveal their views. I show that this effect is strong enough to make small committees

preferable both in comparison with large ones and a single expert.

The paper is organized as follows: The next section surveys the related literature.

I present the model in Section 3. Results on the optimal behavior of experts, the

equilibria and welfare are derived in Section 4. I discuss several extensions and the

robustness of my findings in Section 5. Section 6 concludes.

2 Related Literature

In the present paper, I consider a committee of experts with private information about

the state of the world. Thus, my paper is related to the vast literature on group deci-

sion making.2 One of the main theoretical justifications for delegating decision-making

to a committee rather than an individual is the Condorcet Jury Theorem (Condorcet,

1785), according to which (i) the quality of committee decision-making increases mono-

tonically with committee size and (ii) the probability of a correct decision becomes one

if committee size goes to infinity. This theorem has been extended in various direc-

tions, e.g. varying voter competencies and dependent votes (see Boland (1989), Berg

(1993), and Ladha (1992)). Austen-Smith and Banks (1996) criticize the assumption of

sincere voting employed by the traditional literature on the Condorcet Jury Theorem

2Recent surveys of the literature on committee decision-making are Gerling et al. (2005), Li and
Suen (2009), as well as Austen-Smith and Feddersen (2009).
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and show that the theorem may fail to hold in a game-theoretic framework.3 Feddersen

and Pesendorfer (1997) as well as Wit (1998) prove that the Condorcet Jury Theorem

survives if equilibria in mixed strategies are taken into account. In contrast to the

bulk of this literature, I consider an advisory committee that delivers information to

a principal who aggregates all information optimally rather than a committee whose

members aggregate information through voting (see Ottaviani and Sørensen (2001),

Visser and Swank (2007), and Hahn (2011) for analyses of debate among experts).

While the Condorcet Jury Theorem implies that committees should be as large as possi-

ble, some papers have identified a rationale for the optimality of small committees that

differs from the one proposed here. If information acquisition is costly to individuals,

there will be free-riding incentives, which are particularly severe for large committees

(see Ben-Yashar and Nitzan (2001) and Mukhopadhaya (2003)).4 As a result, very

large committees may deliver a lower quality of decision-making compared to smaller

committees. In this paper, I show that the optimal size of committees may be finite

even in the absence of free-riding problems induced by costly information acquisition.

My paper differs from most papers on committee decision-making in that members are

motivated by career concerns rather than the decision itself.5 Accordingly, experts aim

to convince outside observers that they are highly competent: Being regarded as highly

competent may be desirable because of improved career opportunities (Holmström,

1999). Moreover, experts may value prestige in its own right.

I assume that the arguments presented by the experts are verifiable.6 This can be

justified by the fact that experts may be able to provide data or detailed explanations

that renders their information hard. Conversely, I make the plausible assumption that

experts cannot prove that they possess no argument. Hence my framework is one of

partially verifiable information.7 Bade and Rice (2009), Mathis (2011), and Schulte

3Feddersen and Pesendorfer (1998) find that the probability of a wrong decision may increase with
the number of committee members if the unanimity rule is used.

4See Persico (2004), Martinelli (2007), Koriyama and Szentes (2009), and Gersbach and Hahn
(2011) for analyses of committees where members’ skills or accuracy of information are endogenous.
Gerardi and Yariv (2008) consider the optimal design of a committee with endogenous information
acquisition.

5Ottaviani and Sørensen (2001, 2006), Visser and Swank (2007), Gersbach and Hahn (2008), and
Hahn (2008, 2011) also consider committees with experts who have career concerns.

6The canonical model of cheap talk and thus non-verifiable information is due to Crawford and
Sobel (1982).

7For an early paper including partially verifiable information see Shin (1994).
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(2010) analyze models of verifiable information and voting. However, in their papers

voters are interested in the decision per se, whereas in the present paper experts are

only motivated by career concerns.

Hahn (2011) examines sequential information aggregation by committees of experts

with partially verifiable information. The present paper differs in several respects from

the existing literature and Hahn (2011), in particular. First, I assume here that the

quantity of information that can be observed by experts is limited. Consequently,

the principal would not make a correct decision with certainty even in the first-best

scenario with a very large number of experts. Second, I introduce the novel assumption

that the presentation and discussion of an argument in the presence of other committee

members and outsiders creates new information. In this sense, the information revealed

by the committee is more than just the sum of the pieces of information held by the

individual experts. Third, in the present paper I attempt to capture the realistic feature

that only one expert can elaborate an argument at a time. Experts in my model decide

endogenously whether to compete for the opportunity to raise an argument.8

Finally, my paper is related to the winner’s curse in common value auctions with private

information (see Wilson (1977), Milgrom (1979), and Milgrom and Weber (1982) for

seminal contributions and Bolton and Dewatripont (2005), ch. 7, for an overview). The

winner’s curse describes the observation that a bidder will win the auction exactly in

situations where the other agents’ signals indicate a lower value of the object than

his own signal. Taking this into account, agents bid more cautiously. In my paper,

agents who have observed an argument in private are uncertain about its soundness.

Releasing the argument would be beneficial to their reputation if it was substantive but

harmful if it was inessential. I show that an expert competing with others to present

his argument is more likely to be successful in presenting it in situations where it is

inessential rather than substantive. This effect makes experts more cautious in raising

their arguments.

8While both in Hahn (2011) and in this paper each expert reveals an argument with positive
probability, there are stark differences concerning the optimal size of the committee. In Hahn (2011),
very large committees are desirable: In this paper, very large committees may be costly as larger
committees make individual experts more reticent.
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3 Model

I consider a model with a principal, N ≥ 1 experts, and an additional player, the

market. There are two possible states of the world, σ ∈ {0, 1}, which occur with prior

probabilities πσ ∈]0, 1[, where π0 + π1 = 1. State 0 is a priori more likely to be correct

(π0 > 1/2). Accordingly, I will sometimes refer to state 0 as the prevailing view. The

principal faces a decision d ∈ {0, 1}, whose outcome depends on the state of the world.

The principal’s utility is

uP =

{
1 for d = σ

0 for d 6= σ,
(1)

where 0 and 1 represent convenient normalizations.

Obviously, without additional information the principal would always act in line with

the prevailing view, i.e. she would select d = 0. Before making her decision, the

principal consults a committee of experts for evidence against σ = 0 being the state

of the world. Each expert may have found an argument that may indicate that the

prevailing view is incorrect. For simplicity, I assume that only a single argument may

exist at a time. This argument is either substantive (S) or inessential (I). I use

T ∈ {S, I} to denote the argument’s type (or soundness). Conditional on the state of

the world being σ = 1, there is a probability a (0 < a < 1) of an argument existing

and being substantive. In state σ = 0, no substantive argument ever exists. In both

cases, σ = 1 and σ = 0, the probability of an argument existing and being inessential

is b (0 < b < 1− a).

A few words about these assumptions are in order. First, the literature so far has

focused on the extreme assumption that infinitely many signals can be obtained and

that each additional signal may contain information that is not contained in the other

signals. By contrast, I make the diametrically opposed assumption that the possi-

ble number of arguments is very small. Thus the discovery of duplicate information

represents a severe problem. This allows the effects of the boundaries to acquirable

knowledge to be studied in the simplest possible case and demonstrates that the usual

assumption of infinitely many potentially available signals is not innocuous. Second,

I assume that a substantive argument always supports the a priori less likely state.

This scenario is more interesting than the one where a substantive argument would
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merely confirm an existing bias and hence would not affect the principal’s decision.

To simplify the exposition, I focus on the polar case where a substantive argument

indicates that σ = 1 is correct with certainty. Third, my assumptions imply that an

inessential argument does not affect prior beliefs about the state since an inessential

argument occurs with identical probabilities in both states of the world.

There are two types of experts τ ∈ {H,L}, where H stands for a highly efficient

expert and L a less competent one. Experts’ efficiency types are independent, and the

probability of an individual expert being of type H amounts to the commonly known

probability κ with 0 < κ < 1. Experts do not have superior information regarding

their own efficiency.9 Conditional on an argument existing and being of type T , the

argument is discovered by an expert of type τ with probability qτT . I assume that

qHS > qLS, i.e. a substantive argument can be found more easily by a highly competent

expert than a less competent one. In addition, qLI > qHI holds, which implies that

less efficient experts are more likely to fall for inessential arguments than their more

efficient colleagues. Conditional on the type of argument and the experts’ levels of

competence, all events of experts finding the argument are independent.

Introducing qT := κqHT + (1 − κ)qLT ∀T ∈ {I, S}, which can be interpreted as the

probability of a type T argument being received by an expert of unknown expertise, I

can state an important assumption on the q′s as

qS > qI . (2)

This condition, which I will assume to hold throughout the paper, has the interpretation

that the probability of an argument being found by an expert of unknown expertise,

given that the argument is substantive, is higher than the respective probability for an

inessential argument. In Section 5.2 I explain how this property can be interpreted as

the result of a process of internal reasoning by individual experts.

After observing the argument, each expert can decide to be silent or attempt to release

the argument. If more than one expert tries to publish the argument, a single expert is

selected from this group to present the argument. Each expert has the identical proba-

bility of being selected. The identity of the selected expert becomes commonly known,

9This assumption is also made in Ottaviani and Sørensen (2001), Visser and Swank (2007), and
Hahn (2011). The alternative assumption of known own ability is discussed in Section 5.4.
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whereas the identities of the other experts who attempted to release the argument

remain unknown.

I offer three approaches to motivate this selection process. First, if experts start to talk

during a short period in time (where cognitive limits prevent Bayesian updating), the

one who begins will the be the one who presents the argument.10 Second, a chairperson

might select one of the experts at random. Third, my approach for selecting the expert

who has the opportunity to present his argument can be represented by a contest

success function that can be characterized completely by the axioms introduced in

Skaperdas (1996) and an additional axiom that is natural in the framework studied in

this paper. The axiomatic characterization will be provided in Section 5.3.

Experts who have not observed the argument can only remain silent. While experts

can always decide not to present the argument and thus to withhold information, they

cannot pretend to have an argument when in fact they have none. Hence my model is

one of partially verifiable information.

Upon the release of the argument by an expert, the argument’s soundness is publicly

scrutinized. One way of interpreting this is that there may be a thorough discussion

of the argument by all experts and possibly some outsiders. To keep the exposition as

simple as possible, I do not model this discussion process explicitly but assume that

the type of argument is completely revealed it once has been published by an expert.11

While the discussion process completely reveals the type of argument, an individual

expert cannot privately assess the soundness of his argument before releasing it.12 If

no expert attempts to release the argument, the principal does not observe whether an

argument exists and, if so, whether it is substantive.

The main motivation for the assumption of the argument’s type being observable upon

publication is to ensure that, if the argument is released, no further information about

the state of the world can be gleaned from the distribution of observations made by

10Section 5.5 reveals that this paper’s findings would not be affected if other experts had the
opportunity to speak after the first expert has presented the argument.

11An interesting extension to my model would allow for the possibility of this discussion revealing
additional information about the experts’ levels of competence. Because I want to concentrate on the
incentive to release private information, I do not allow for this possibility.

12Section 5.2 describes a variant of the model where experts can detect inessential arguments with
some positive probability.
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other experts. This ensures that the discussion procedure considered in this paper

can, in principle, reveal all information about the state that is available to individual

agents.13

The sole function of the market in my model is to assess the competence of experts after

the debate has concluded. This assessment is based on which expert has released the

argument (if an argument has been released) and whether the argument was substantive

or inessential. The market cannot directly observe the state of the world14 or the set

of experts who may have attempted to present an argument. However, I assume that

the market can observe the existence of the argument and its soundness even if the

argument has not been raised by a member of the committee of experts. One possible

justification is that the market makes its decision at the final stage of the game, after

the principal has taken her decision. The adoption of the principal’s decision may

reveal additional information and, in particular, the argument that could have been

released during the debate. An alternative justification is that the argument may leak

out eventually, even if experts try to withhold it. The assumption that the market

always knows of the argument’s existence and type simplifies the analysis but does not

drive my results.

Experts are only interested in a favorable evaluation of their individual competence by

the market. Formally, their utility is given by the probability that the market assigns

them type H. This can be motivated in several ways. More competent experts may

receive higher wages (Holmström, 1999) or may have more attractive future career

opportunities. Moreover, they may draw utility from the prestige derived from being

considered highly competent.

I complete the description of the model by specifying the sequence of events:

1. Nature chooses the state of the world σ ∈ {0, 1}, where πσ is the probability of

σ being selected.

2. Nature chooses the levels of competence of individual experts. Each expert is of

type H with probability κ and of type L otherwise.

13Suppose, for example, that the type of argument could not be observed perfectly. Then additional
information about the state of the world could be inferred from the number of experts who have
observed the argument.

14However, the observation of a substantive argument immediately reveals that the state of the
world is 1.
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3. Nature decides upon the argument’s existence and type:

(a) If σ = 0, Nature decides with probability b that an inessential argument

exists. With the complementary probability 1 − b, Nature decides that

there is no argument.

(b) If σ = 1, an inessential argument exists with probability b, as in the previous

case where σ = 0. Alternatively, Nature chooses a substantive argument

with probability a (a < 1 − b). With probability 1 − a − b, no argument

exists.

4. If there is an argument, then, conditional on the type of the argument T ∈ {S, I}
and the expert’s competence τ ∈ {H,L}, each expert i = 1, ..., N will observe the

argument with probability qτT . If there is no argument, all experts will observe

nothing.

5. All experts who have observed the argument can simultaneously try to speak.

6. If more than one expert attempts to raise the argument, one of them is selected

randomly, where each expert has identical probability of being selected. If no

expert attempts to speak, no argument is released.

7. Provided that an argument has been released, the identity of the expert who has

successfully released it and the soundness of the argument become commonly

known.

8. Based on the information revealed in the debate, the principal makes her decision

d ∈ {0, 1}.

9. The market assesses the probability of each individual expert being of type H.

The solution concept is perfect Bayesian Nash equilibrium. In line with the ex-ante

symmetry of experts, I focus on symmetric equilibria in (possibly) mixed strategies.

I will characterize the set of all equilibria in pure strategies (including those that are

asymmetric) in Section 5.1.
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4 Analysis

I start the analysis by deriving some general results. In particular, I characterize the

principal’s optimal behavior and the first-best. Additionally, I prove that it is more

difficult to announce a substantive argument successfully over and against an inessential

argument.

After these preliminary steps, I focus on the optimal size of committees. As it is

impossible to derive an analytical characterization of committee performance for ar-

bitrary committee size, I proceed as follows. I derive the equilibria and the resulting

utility of the principal for committees comprising one or two experts analytically. For

larger committees, I present numerical results. By letting committee size go to in-

finity, I then obtain analytical findings about committee performance for very large

committees. Next I present the main proposition of the paper (Proposition 1), which

proves that finite committees may be optimal. The proof relies on the analytical re-

sults about committees comprising one, two or a large number of experts to show that

a two-member committee dominates both a single expert and a very large committee

in terms of performance. This, in turn, unambiguously implies that the optimal com-

mittee size is finite, although it is impossible to find an analytical expression for the

optimal size of the committee in general. Finally, I conclude this section by illustrating

my previous results with an example.

4.1 General Results

It is straightforward to characterize the principal’s optimal decision (for a proof see

Appendix A):

Lemma 1

The following strategy of the principal strictly dominates all other strategies:

d =

{
1 if a substantive argument has been released,

0 otherwise.
(3)

If all experts attempt to announce their argument with identical probability λ, provided

that they have observed one, and the principal follows strategy (3), her ex-ante expected

utility will be

E[uP ] = π0 + π1a
(
1− (1− qSλ)N

)
. (4)
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Hence, the release of a sound argument induces the principal to go against the prevailing

view and to pick d = 1. In all other cases, the principal sticks to the prevailing view

and selects d = 0.

The expression on the right-hand side of (4) gives the probability of a correct decision.

In state σ = 0, which materializes with probability π0, the correct decision is always

taken. Conditional on the state being σ = 1, the principal’s decision will only be correct

if at least one expert releases a sound argument, which occurs with the probability

a(1− (1− qSλ)N).

There are three reasons why the principal may make a wrong decision if σ = 1. First, a

substantive argument simply may not exist. Second, such an argument may exist but

may not have been noticed by the experts. Third, a substantive argument may exist

and may have been observed by at least one expert, but the respective expert(s) may

have chosen to keep it secret. The first source of error is unavoidable in my model.

The second source can be reduced by enlarging the committee. How the severity of the

third source of error is affected by committee size and how this impacts on the optimal

committee size is unclear as yet and will be explored in the rest of this paper.

The next lemma characterizes the first-best, i.e. the case where all experts reveal their

information truthfully:

Lemma 2

Suppose the principal could observe the private information of every agent and pursued

strategy (3). The principal’s utility would increase strictly with committee size and

the optimal committee size would be infinity. The principal’s expected utility would

be

E[uP ] = π0 + π1a(1− (1− qS)N) (5)

for a finite committee of size N and

E[uP ] = π0 + π1a (6)

for N →∞.

Note that the probability of a correct decision would be π0 +π1a and thus smaller than

one, even if there were infinitely many experts certain of releasing their argument. This
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is due to the fact that error is unavoidable in my model when the state is σ = 1 but

no substantive argument exists, which occurs with probability π1(1− a).

The next lemma highlights a crucial feature of the model. Loosely speaking, it is easier

to publish inessential than substantive arguments. This will have the important con-

sequence that experts may be reluctant to attempt to reveal their arguments because

the probability of their revealing an argument successfully is higher in the event of this

argument being inessential.

Lemma 3

Consider an individual expert i ∈ {1, ..., N} who has observed an argument. Assume

that he attempts to release the argument. Moreover, suppose that all other experts try

to release the argument with probability λ ∈ [0, 1], provided that they have observed it.

Irrespective of the committee size N , the probability of expert i being able to present

his argument successfully will be weakly higher if the argument is inessential than if it

is substantive. This inequality will be strict if λ > 0.

The proof, which is given in Appendix B, relies on the assumption that the probability

of a substantive argument being found by an expert of unknown competence exceeds

the one for an inessential argument (see (2)). As a consequence, the number of experts

who are endowed with an argument will be low if the argument is inessential compared

to when it is substantive. This makes it more difficult to present substantive arguments

than inessential ones, which constitutes the winner’s curse in my model.

To rule out the existence of uninteresting equilibria where all experts never release

their arguments, irrespective of the size of the committee, it will be useful to introduce

the following variable:

ρ :=
b(qI − qHI)
π1a(qHS − qS)

(7)

In Appendix C, I prove

Lemma 4

There will be no perfect Bayesian Nash equilibrium in which all experts withhold

information with certainty iff

ρ < 1. (8)
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I will assume henceforth that (8) holds. This condition has the following interpretation.

It can be easily shown that it is equivalent to

κ(π1aqHS + bqHI)

π1aqS + bqI
> κ.

The right-hand side gives the probability that an expert attaches to the event of his

being highly efficient, before he has the opportunity to observe an argument. The left-

hand side gives the same probability, after the expert has observed an argument. Thus

condition (8) ensures that observing an argument makes the expert more confident in

his competence.

4.2 One or Two Experts

Having derived preliminary results that hold for arbitrary committee size, I now focus

on committees of one or two experts. In these cases, it is possible to solve the model

analytically.

Lemma 5

If the committee consists of one or two experts (N ∈ {1, 2}), exactly one perfect

Bayesian Nash equilibrium will exist. In this equilibrium, experts will attempt to

announce their arguments with certainty if they observe an argument. The principal

will adopt the strategy described in Lemma 1. In equilibrium, the principal’s expected

utility will be

E[uP ] =

{
π0 + π1aqS for N = 1

π0 + π1aqS(2− qS) for N = 2.
(9)

I obtain as a corollary that two experts are always preferable to one. Therefore the

optimal committee size is always strictly larger than one.

4.3 Numerical Results

In this section, I analyze the model for committees with more than two members.

As it is impossible to obtain analytical results for arbitrary committee sizes, I rely

on numerical computations. I start by establishing the uniqueness of equilibrium (for

details see Appendix E).
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Numerical Finding 1

If

ρ >
qI
qS
, (10)

then exactly one perfect Bayesian Nash equilibrium with symmetric strategies of ex-

perts will exist.

Next I examine the behavior of an individual expert as a function of the number of

committee members (for details see Appendix F).

Numerical Finding 2

Suppose (10) holds and consider the perfect Bayesian Nash equilibria with symmetric

strategies of experts for different values of N (N ≥ 3). In these equilibria, the prob-

ability λ of individual experts trying to release an argument, conditional on having

observed one, is a weakly monotonically decreasing function of committee size N .

Importantly, experts are getting more reticent as the committee becomes larger.15 This

follows from the fact that, in large committees, it is comparably unlikely that an expert

can successfully announce an argument that is substantive, given that substantive ar-

guments are observed with higher probability than inessential ones (see Condition (2)).

By contrast, in very small committees, it is quite probable that an expert is the only

expert who has observed an argument at all. In this case, the opportunity to announce

the argument ahead of the other committee members is not indicative of the argument

being inessential.

4.4 Large Committees

Analytical results can be obtained for very large committees. These findings are con-

tained in the following lemma:

15This finding is reminiscent of Feddersen and Pesendorfer (1997), who show that, even in the
absence of costs of information collection, the fraction of informative votes may go to zero as the
committee size becomes large.
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Lemma 6

Suppose (10) holds and consider the perfect Bayesian Nash equilibria with symmetric

strategies of experts for different values of N . Then, for large N , the probability of an

individual expert trying to speak can be approximated as

λ =
α

N
+O

(
1

N2

)
, (11)

where α is a strictly positive constant that is independent of N . For N → ∞, the

principal’s expected utility converges to

E[uP ] = π0 + π1a
(
1− e−qSα

)
. (12)

The proof is given in Appendix G. In this appendix, I also specify how α can be

computed.

Although the probability of an individual expert attempting to release an argument

converges to zero (see (11)), the probability of a substantive argument being announced

by some expert converges to a finite value. As a consequence, it is unclear by now

whether the optimal committee size is finite. This question is addressed in the following.

4.5 Optimal Size

Finally, I am in a position to derive the main finding of the paper.

Proposition 1

If

ρ >
1− e−qS
1− e−qI

· qI
qS

(13)

holds, then

1. the optimal committee size will be finite and strictly larger than one, and

2. a single expert will be preferable to an infinitely large committee.

The proof is given in Appendix H. Importantly, the proof does not rely on the numerical

findings used to characterize committees of intermediate size. I show in Appendix I

that (8) and (13) can be fulfilled simultaneously.
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Figure 1: ∆ for N = 1, 2, ..., 10 (from top to bottom) as a function of λ.

While (13) is a sufficient condition for the optimal committee size to be finite, sharper

sufficient conditions can be formulated. Because these conditions would be more te-

dious to derive and the only point of Proposition 1 is to show that a finite committee

size can be optimal in my model, I refrain from specifying these conditions.16

4.6 Example

In this section, I illustrate my findings with an example. I assume qHS = 0.25, qS =

0.14, qI = 0.1, and qHI = 0,17 which implies qHS > qLS and qLI > qHI . Moreover,

a, b, and π1 are assumed to be such that b/(aπ1) = 1.05. Obviously, qS > qI , i.e.

assumption (2), is fulfilled. With the help of (7), one can easily verify ρ ≈ 0.95 and

thus ρ < 1 (Assumption (8)). In addition, qI/qS ≈ 0.71 < ρ, which entails that the

condition stated in Numerical Findings 1 and 2 as well as in Lemma 6 holds. Finally,

it is easy to check that (13) is violated.

In Appendix C, I define the variable ∆. It is directly proportional to the expected

gain in utility achieved by an expert who attempts to release his argument instead

of withholding it, given the probability that is commonly assigned to the events of

individual experts attempting to release their arguments, λ.18 So ∆ > 0 for some λ

16For example, one could derive a condition that guarantees that two experts lead to a higher
probability of announcing a substantive argument than infinitely many experts.

17This constellation would result from κ = 1/2, qHS = 0.25, qLS = 0.03, qHI = 0, and qLI = 0.2,
for example.

18This means that the market and the principal believe that all experts release their arguments
with probability λ. Moreover, the expert under consideration believes that his colleagues release their
arguments with probability λ.
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Figure 2: The probability of an individual expert attempting to release his argument
λ as a function of N .

means that it is strictly optimal for an individual expert to compete to announce their

argument, given that it is generally believed that all experts follow the mixed strategy

characterized by λ. Conversely, ∆ < 0 for some λ entails that the expert will find it

strictly optimal to remain silent.

In Figure 1, I display ∆ as a function of λ for different values of N ≥ 1 and with the

value of N increasing from top to bottom.19 Several remarks are in order: First, all

graphs meet at λ = 0. This is plausible because, if all other experts are certain to be

silent, an expert’s incentive to reveal his argument will not depend on how many other

experts are on the committee.20 Second, ∆ > 0 holds at the point where the graphs

meet. This fact follows from Assumption (8), which rules out parameter constellations

for which equilibria with λ = 0 exist. Third, ∆ is strictly positive for N ≤ 5 irrespective

of the value of λ. As a result, a unique equilibrium exists in these cases with λ = 1.

For N > 5, ∆ is a decreasing function of λ and intersects the horizontal axis exactly

once. These points correspond to unique equilibria in mixed strategies.

The equilibrium values of λ are displayed in Figure 2. While λ is constant and equal

to one for N ≤ 5, it decreases in committee size for N > 5. Thus the larger the

committee, the more reticent individual experts become.21 As explained before, this

19It is important to stress that ∆ is not a linear function of λ, although this may seem to be the
case in the figure.

20The figure also confirms the observation made in Appendix D that ∆ increases in λ for N = 1
and N = 2. Moreover, the fact that ∆ is a decreasing function of λ for N > 2 is in line with results
found in Appendix E.

21This is reminiscent of Mukhopadhaya (2003), who finds that experts are less likely to pay atten-
tion, the larger the committee. In his model, this effect is due to costly information acquisition, which
induces free-riding.
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Figure 3: The probability of at least one expert trying to speak, conditional on a
substantive argument existing, as a function of N .

follows from the fact that experts are more likely to be successful in presenting their

argument if this argument is inessential as opposed to substantive. This effect, which

makes individual experts more cautious, is particularly strong for large committees.

The observation that λ is a monotonic function of N confirms Numerical Finding 2.

Having constructed the equilibrium values of λ, I can compute the probability of an

argument being released by at least one expert, conditional on the argument being

substantive. This probability, which can be formally expressed as (1 − (1 − qSλ)N),

directly yields the principal’s expected utility (see (4)).

According to Figure 3, the probability under consideration, and thus also the principal’s

expected utility, increases with committee size for N ≤ 5. This is an immediate

consequence of the observations that λ = 1 for all N ≤ 5 and that a larger committee

size makes it more likely that at least one expert observes any given argument. For N

larger than 5, the probability of an individual expert trying to speak, λ, decreases so

strongly that the probability of the argument being raised by one committee member

decreases with N . As a result, N = 5 represents the optimal committee size from the

principal’s perspective.

This is true although the sufficient condition for the optimal committee size to be finite,

which is stated in Proposition 1, fails to hold, as can be readily verified (see (13)).

Interestingly, a committee of optimal size delivers a substantive argument only with

probability 0.53. This is substantially smaller than in the first-best solution described
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in Lemma 2. In the first-best scenario, a very large committee would be optimal and

would reveal a substantive argument with probability one, provided that it existed.

Finally, I would like to note that the probability of a substantive argument being

released converges to approximately 0.29 as N → ∞, which can be computed with

(11), (12), and (39). Hence a very large committee is superior to a single expert, who

only releases a substantive argument with the probability qS = 0.14.22

5 Robustness and Extensions

In the following, I discuss the robustness of my findings and several extensions to

my framework. More specifically, I focus on equilibria in pure strategies, a rationale

for the crucial Assumption (2), an axiomatic characterization of the process used to

determine which expert may speak, variants of my framework with known own ability,

the possibility of more than one expert raising an argument, the existence of more than

one argument, and the relationship of the mechanism proposed here to the endogenous-

information-acquisition approach.

5.1 Equilibria in pure strategies

In this section, I explain how the full set of equilibria in pure strategies can be con-

structed. I have already identified the set of symmetric equilibria for different commit-

tee sizes N . For committees weakly smaller than a threshold level N∗, these symmetric

equilibria exist in pure strategies. In these cases, it can be easily shown that the sym-

metric equilibria I have characterized represent the only equilibria in pure strategies.

For larger N , it is straightforward to show that all equilibria in pure strategies involve

N∗ experts releasing their argument with certainty, whereas the remaining experts are

silent. Thus, when we consider equilibria in pure strategies, the principal’s utility in-

creases with committee size up to N∗. For larger committees, committee size does

not affect her utility. In this sense, committees of finite size N∗ are weakly optimal.

The optimality of finite committees would be strict if I introduced some small costs of

hiring experts.

22Recall that (13), which guarantees the claim of Proposition 1, does not hold for the parameter
constellation considered in this example. By contrast, if (13) held, then Proposition 1 could be applied
and a single expert would be preferable to a very large committee.

20



5.2 Possible foundation of assumption (2)

In this section, I provide a possible foundation of assumption (2), which has the cru-

cial implication of the winner’s curse (see Lemma 3). For this purpose, consider the

following sequential procedure, in which experts obtain their arguments.

1. The expert observes the argument with probability πτ ∈ (0, 1), which depends

on his competence τ ∈ {H,L}.

2. If the expert has observed an inessential argument, he will recognize its type with

probability ξτ ∈ (0, 1) and then dismiss it.

This process can be used to provide a foundation for the probabilities qτT for all τ ∈
{H,L}, T ∈ {I, S} by noting that this two-stage process yields:

qHI = πH(1− ξH), qHS = πH ,

qLI = πL(1− ξL), qLS = πL.

These equations immediately imply condition (2). Hence (2) can be motivated by a

two-step procedure where experts observe arguments in a first step and have some

positive probability of identifying inessential arguments in a second step.

5.3 Axiomatic characterization of the selection process

In the following I demonstrate that the process which is used to select which expert may

speak can be described by a contest success function that can be fully characterized

by a set of axioms.23

In my model, each expert i can be thought of as choosing one out of two effort levels,

ei = e > 0 (attempt to speak) and ei = 0 (no attempt to speak). The probability of i

being selected can be described by a contest success function that maps the set of all

possible effort combinations of experts {0, e}N into combinations of success probabilities

[0, 1]N . I use csfi({ej}Nj=1) to denote the probability of i’s success.

Skaperdas (1996) introduces the following axioms. (A1)
∑N

i=1 csfi({ej}Nj=1) = 1 and

csfi({ej}Nj=1) ≥ 0 for all i = 1, ..., N and all {ej}Nj=1 ∈ {0, e}N ; if ei > 0 then

23See Skaperdas (1996) for a seminal contribution on the axiomatic characterization of contest
success functions.

21



csfi({ej}Nj=1) > 0. (A2) For all i ∈ 1, ..., N , csfi({ej}Nj=1) increases in ei and de-

creases in ek for all k 6= i. (A3) For any permutation P of (1, ..., N) (i.e., a bijection

N : {1, ..., N} → {1, ..., N}) we have csfi({ej}Nj=1) = csfP(i)(eP(1), eP(2), ..., eP(N))∀i =

1, .., N .

Axiom (A1) guarantees that csfi has the properties of a probability distribution and

that positive effort results in a positive value of csfi. Moreover, (A2) stipulates that a

higher effort should increase one’s probability of success and simultaneously lower all

others’ success probabilities. Finally, (A3) ensures anonymity, i.e. an agent’s probabil-

ity of success does not depend on his identity but only on the effort levels chosen by

him and the other experts.

I introduce a fourth axiom that is natural in my model because an expert who

does not wish to speak cannot be forced to do so: (A0) If ei = 0 for some i,

then csfi(e1, e2, ..., ei, ..., eN) = 0 for all possible (N − 1)-dimensional vectors

(e1, ...., ei−1, ei+1, ..., eN) ∈ {0, e}N−1 of other experts’ effort levels. Axiom (A0) is at

odds with axiom (A1) if all experts choose zero effort. Accordingly, I modify (A1) to

allow for
∑

i csfi({ej}Nj=1) = 0 if ek = 0 ∀k = 1, ..., N but leave it otherwise unchanged.

This defines axiom (A1’).

It is now immediate to see

Lemma 7

(A0), (A1’), (A2), and (A3) characterize a unique contest success function. It is given

by

csfi({ej}Nj=1) =

{
ei∑N

j=1 ej
if
∑N

j=1 ej > 0

0 if
∑N

j=1 ej = 0.

This contest success function is the exact function used in this paper for the probability

of experts being able to raise the argument.

5.4 Known own ability

A model of a committee of experts where experts know their own ability is more difficult

to analyze than the case of unknown own ability, which is considered in this paper.

Nevertheless I will attempt to indicate some results that a more thorough treatment of
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this extension could plausibly reveal. In particular, one might conjecture that an expert

who knows his efficiency to be high would always release his argument to demonstrate

his high ability. In this case, my main finding about finite optimal committee size

would break down and infinitely large committees would be optimal.

To address this important issue, note that even if an expert knew his own competence

to be high, the expert could not be sure that his argument would be substantial, which

follows from qHI > 0. Moreover, it is natural to guess that the probability of an

expert releasing his argument in equilibrium would be weakly higher for experts of

type H compared to type L. In combination with (2) and qHS > qHI , this has the

important consequence that the probability of successfully releasing one’s argument

would be higher for inessential arguments and hence the winner’s curse would also

occur in a variant of my model with known own ability.24 The winner’s curse would

still be particularly strong in large committees. This, in turn, would make even highly

efficient experts reluctant to speak in sufficiently large committees. As a result, in a

variant of my model where experts know their types, the optimal committee size is

plausibly larger than for unknown own expertise but finite nevertheless.

5.5 More than one expert may raise the argument

I have assumed so far that only one expert has the opportunity to present his argument.

How would my results be affected if I allowed other experts to present the argument?

For this purpose, I extend the basic framework by making the following assumptions.

First, once the argument has been released and discussed, it can be presented by all

experts. This is plausible because experts should be able to understand the argument

and be able to repeat it. Second, after an argument has been presented, other experts

have the opportunity to present the same argument. Clearly, under these assumptions,

presenting the argument after it has already been released represents cheap talk and

does not reveal additional information about the state of the world or the experts’

levels of competence. Hence, my results would be unaffected by this extension.

24This can be easily shown by adapting the proof of Lemma 3.
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5.6 Different arguments

Another intriguing extension would involve the possibility of more than one argument

being observed. The most straightforward model in which this could be studied would

feature a high degree of expert specialization To be more specific, suppose that the

problem could be divided into m subtasks (m finite) and that each subtask involves

searching for a particular argument. Then the principal could partition the committee

into m disjoint subcommittees, each of which would be assigned one specific subtask.

Obviously, my analysis would imply that the optimal size of each subcommittee would

be finite, which would entail a finite optimal size of the whole committee.

A model in which each expert could be endowed with more than one argument would

be substantially more complex. However, as long as an assumption analogous to (2)

holds, a winner’s curse would arise, which would be more severe in larger committees

than in smaller ones. This might also lead to the optimality of finite committees in

such a model.

5.7 Relationship to the mechanism relying on costly informa-
tion acquisition

As has been explained in Section 2, costly information acquisition and free-riding are

at the heart of the alternative approach to explaining why finite committees may be

optimal. This alternative approach and the one proposed in this paper have similar

implications as both predict that individual experts will contribute less in larger com-

mittees. However, the underlying mechanism is different. In the approach based on

endogenous information acquisition, agents are actually less well-informed in larger

committees and consequently can only release less precise information. According to

the explanation advanced in this paper, agents’ quality of information is independent of

committee size. However, experts tend to release less information when part of larger

committees to preserve their reputation. Both channels are not mutually exclusive and,

in fact, may reinforce each other.
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6 Conclusions

In this paper, I have presented a model of committee decision-making with three novel

features. First, experts do not raise arguments simultaneously (like in Visser and

Swank (2007)) or in an exogenously given order (like in Hahn (2011)) but compete for

the opportunity to speak. This competition shapes incentives to reveal truthfully or

withhold private information because winning is informative of an argument’s sound-

ness. Second, the amount of information that can be collected by experts is limited.

In particular, information may be redundant, as when two experts may observe the

same argument. This contrasts with standard analyses of juries where an additional

juror is always endowed with a signal that contains information on top of the other

signals. Third, the public release of an argument triggers a debate, which, in turn,

creates additional information. The combination of these features entails that experts

become more reticent when part of a larger committee and thus helps to explain why

small committees may be optimal.
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A Proof of Lemma 1

I note that an arbitrary combination of mixed strategies of experts can be written as

(λi)
N
i=1 ∈ [0, 1]N , where λi denotes the probability of expert i attempting to release his

argument, provided that he has one. In the following, I consider the three different

outcomes of the experts’ debate separately and derive the principal’s optimal response

in each case.

First, the release of a substantive argument indicates σ = 1 with certainty. In line with

(1), it is therefore strictly optimal for the principal to choose d = 1, irrespective of the

agents’ strategies (λi)
N
i=1 ∈ [0, 1]N .

Second, an inessential argument reveals no information about the state; independently

of (λi)
N
i=1 ∈ [0, 1]N . Thus, the posterior probability of σ = 0 being the correct state

of the world is equal to the prior π0, which is strictly larger than 1/2. As a result,

selecting d = 0 is strictly optimal for the principal when an inessential argument has

been released. This holds for all combinations of experts’ strategies (λi)
N
i=1 ∈ [0, 1]N .

Third, the case where no argument has been released is more intricate. I note that,

conditional on the state being σ = 0, there is always a weakly higher probability of

no argument being released over and against the situation where σ = 1.25 This is due

to the assumption that each expert has a strictly higher probability of receiving an

argument for σ = 1 than for σ = 0 (recall that, for σ = 0, only inessential arguments

can arise, whereas for σ = 1 inessential and substantive arguments may occur). As

a result, upon no argument being released, the posterior probability of σ = 0 being

correct is even higher than the respective prior π0, which exceeds 1/2 by assumption.

This implies that the principal strictly prefers d = 0. �

B Proof of Lemma 3

Using λ for the probability of experts attempting to release their argument, I introduce

ψTn for the probability of exactly n out of N − 1 experts trying to speak, given the

25The inequality holds strictly if at least one expert tries to release his argument with strictly
positive probability, i.e., the inequality holds strictly for all (λi)

N
i=1 ∈ [0, 1]N for which λj > 0 for at

least one j ∈ {1, ..., N}.
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argument’s type T ∈ {I, S}:

ψTn :=

(
N − 1

n

)
(qTλ)n(1− qTλ)N−1−n (14)

Next, consider an individual expert i ∈ {1, ..., N}. Given that he attempts to speak

and that n out of his N − 1 colleagues also attempt to speak, the probability that he

will successfully raise the argument is 1/(1 + n). This reflects my assumption that all

experts attempting to raise the argument will be successful with equal probability.

Now I can formulate the probability of an expert being able to raise an argument of

type T ∈ {I, S} as

φT :=
N−1∑
n=0

1

1 + n
· ψTn. (15)

Proving the lemma amounts to showing that

φI ≥ φS, (16)

where the inequality is strict if λ > 0. Inequality (16) follows from the observation that,

due to (2), the distribution of the number of experts in {1, ..., N}\{i} trying to release

an argument, given that T = S, first-order stochastically dominates the respective

distribution for T = I. The fact that 1/(1 + n) strictly monotonically decreases in n

therefore establishes (16) (see Mas-Colell et al. (1995), p. 195). �

C Proof of Lemma 4

In this appendix, I demonstrate that Condition (8) ensures that no equilibrium exists

in which all experts withhold their arguments with certainty. For this purpose, I will

derive formal expressions for the competence the market assigns to individual experts

as well as an expression for the utility gain an expert can achieve by announcing his

argument rather than withholding it.

Suppose an expert has successfully announced an argument of type T ∈ {I, S}. Which

probability will the market assign to the event of this expert being highly competent?

The probability of the expert being highly competent and observing an argument of

type T ∈ {I, S} is qHT . Moreover, the probability of an expert of unknown competency
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observing an argument of type T is qT . The ratio of these expressions thus gives the

probability of the expert being of type H. I use κT , T ∈ {I, S}, to denote these

probabilities:

κI =
qHI
qI
κ (17)

κS =
qHS
qS

κ (18)

Next I have to specify probabilities of an expert being highly competent for the case

where someone else has raised an argument of type T , which will be denoted as κoT

T ∈ {I, S} (“o” stands for “other”), and for the case where no-one has raised the

argument although it existed and was of type T . The latter probability will be denoted

κ∅T , T ∈ {I, S}. The different values for κ are

κoI =
1− ψI0(1− qHIλ)− qHIλφI

1− ψI0(1− qIλ)− qIλφI
κ, (19)

κoS =
1− ψS0(1− qHSλ)− qHSλφS

1− ψS0(1− qSλ)− qSλφS
κ, (20)

κ∅S =
1− λqHS
1− λqS

κ, (21)

κ∅I =
1− λqHI
1− λqI

κ, (22)

where λ is the probability of an individual expert attempting to release his argument

and ψTn and φT (T ∈ {I, S}) are given by (14) and (15).26

After these preliminary steps, I am in a position to determine the conditions under

which it will be optimal for an expert to attempt to release his argument. If an expert

attempts to release his argument, his expected utility will be

π1aqS
π1aqS + bqI

[φSκS + (1− φS)κoS] +
bqI

π1aqS + bqI
[φIκI + (1− φI)κoI ] , (23)

26Computing these probabilities is somewhat involved. As an example, I will explain (19) in
more detail. Following Bayes’ rule, κoI , which is the probability of the member under consideration
being of type H, conditional on “oI,” is the ratio of (i) the probability of another member releasing an
argument and the member being of type H, conditional on an argument of type I existing, and (ii) the
respective probability for a member of arbitrary type. Probability (i) is given by κ(1−ψI0(1−qHIλ)−
qHIλφI). This can be seen by noting that there are two different cases where another member may
release the inessential argument (constellation “oI”): First, the member under consideration may be
competent, have received the argument, and have tried to release it in vain. The respective probability
is κλqHI(1− φI). Second, the member may be competent, may not have attempted to speak (either
because he did not observe the argument or because he chose to keep it secret), and another expert
may have raised the argument. The probability of this happening is κ(1− λqHI)(1− ψI0). The sum
of κλqHI(1 − φI) and κ(1 − λqHI)(1 − ψI0) gives probability (i). Probability (ii) can be derived by
noting that it is equal to the sum of probability (i) and the respective probability for a member of
type L.
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where I have used the fact that, given the expert’s knowledge of an argument existing,

the argument is of type S with probability (π1aqS)/(π1aqS + bqI) and of type I with

probability (bqI)/(π1aqS + bqI). If the expert remains silent, his expected utility will

be

π1aqS
π1aqS + bqI

[(1− ψS0)κoS + ψS0κ∅S] +
bqI

π1aqS + bqI
[(1− ψI0)κoI + ψI0κ∅I ] . (24)

An expert will find it strictly beneficial to attempt to speak iff (23) is larger than (24),

which is equivalent to ∆̃ > 0, where

∆̃ :=π1aqS [φS(κS − κoS) + ψS0(κoS − κ∅S)]

+ bqI [φI(κI − κoI) + ψI0(κoI − κ∅I)] .
(25)

If ∆̃ = 0, the expert will be indifferent.

According to (14) and (15), the probability of an individual expert being able to suc-

cessfully present his argument (T ∈ {I, S}) is

φT =
N−1∑
n=0

1

1 + n

(
N − 1

n

)
(qTλ)n(1− qTλ)N−1−n. (26)

Applying
(
N−1
n

)
= (N−1)!

n!(N−1−n)! ,
(
N
n

)
= N !

(n)!(N−n)! , and
∑N

n=0

(
N
n

)
(qTλ)n(1− qTλ)N−n = 1,

this expression can be rewritten as

φT =
N−1∑
n=0

1

1 + n

(
N − 1

n

)
(qTλ)n(1− qTλ)N−1−n

=
N−1∑
n=0

(N − 1)!

(n+ 1)!(N − 1− n)!
(qTλ)n(1− qTλ)N−1−n

=
1

N

N∑
n=1

N !

n!(N − n)!
(qTλ)n−1(1− qTλ)N−n

=
1

NqTλ

N∑
n=1

(
N

n

)
(qTλ)n(1− qTλ)N−n

=
1− (1− qTλ)N

NqTλ
.

With the help of this expression for φT , ∆̃ in (25) can be equivalently stated as

∆̃ = π1a(qHS − qS)F (λqS)κ− b(qI − qHI)F (λqI)κ, (27)
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where I have introduced F (l) as

F (l) :=
(N − 1)(1− l)N−2l2 + (1− (1− l)N−1)2

(N − 1)(1− (1− l)N)l
. (28)

It will be useful to introduce ∆, which is directly proportional to ∆̃, as

∆ =
F (λqS)

F (λqI)
− ρ, (29)

where, in line with (7), ρ has been defined as

ρ :=
b(qI − qHI)
π1a(qHS − qS)

.

I would like to note that qLI > qHI and qHS > qLS entail qI > qHI and qHS > qS,

which, in turn, imply ρ > 0.

Finally, I am able to compute whether an expert benefits from presenting his argument

when all his colleagues withhold information, and thus λ = 0. Note that

lim
l→0

F (l) = 1. (30)

Hence ∆ > 0 is equivalent to

ρ < 1,

which is the condition stated in the lemma. �

D Proof of Lemma 5

In the following, I examine the cases N = 1 and N = 2 separately.

D.1 Single Expert

First, I analyze the model for a single expert (N = 1). For this purpose, it will be

useful to note

lim
N→1

F (l) =
1

1− l
, (31)

where F (l) has been defined in (28). Inserting (31) into (29) yields

∆ =
1− λqI
1− λqS

− ρ. (32)
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Condition (2) implies that the expression for ∆ in (32) is a strictly monotonically

increasing function of λ. Moreover, (8) implies that ∆ > 0 for λ = 0. As a result, ∆ is

strictly positive for all admissible values of λ. As ∆ is proportional to the utility gain

achieved by the expert when announcing his argument over and against withholding

it, the expert always finds it profitable to release his argument.

D.2 Two Experts

As a next step, I focus on a committee comprising two experts (N = 2). In this case,

F (l) (see (28)) can be written as

F (l)|N=2 =
1

1− 1
2
l
. (33)

This expression can be inserted into (29), which results in

∆ =
1− 1

2
λqI

1− 1
2
λqS
− ρ. (34)

As in the scenario with a single expert, ∆ > 0 for λ = 0 follows from (8). Inserting

(33) into (29) reveals that ∆ strictly increases in λ due to (2). As a consequence, ∆ is

strictly positive for all λ ∈ [0, 1]. Hence a unique equilibrium exists for N = 2. In this

equilibrium, both experts always attempt to release their arguments. �

E Details for Numerical Finding 1

Uniqueness has been analytically established for N = 1 and N = 2 in Lemma 5. For

this reason, I consider N > 2 in the following. Recall that an individual expert will find

it attractive to release his argument if ∆ = F (λqS)
F (λqI)

− ρ (see (29)) is strictly larger than

zero, will prefer to keep his argument secret if ∆ < 0, and will be indifferent if ∆ = 0.

For a grid spanning the entire range of admissible parameter values and 2 < N < 100,

I have numerically verified that max{F (λqS)
F (λqI)

, qI
qS
} is a monotonically decreasing function

of λ (it is strictly decreasing for F (λqS)
F (λqI)

> qI
qS

). Together with the observation that
F (λqS)
F (λqI)

goes to one as λ approaches zero (see (30)), this numerical finding implies that,

for 1 > ρ > qI
qS

, ∆ = 0 can only hold once at most. If ∆ = 0 holds for one value of λ,

a unique equilibrium exists, which is in mixed strategies. If ∆ > 0 for all admissible

values of λ, then equilibrium is also unique. In this equilibrium, all experts always

attempt to release their arguments (λ = 1). �
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F Details for Numerical Finding 2

I have numerically demonstrated, for a grid of admissible parameter values with N ≤
100, that F (λqS)

F (λqI)
decreases in N for arbitrary fixed values of λ with λ > 0. Together with

the fact that F (λqS)
F (λqI)

decreases strictly monotonically as a function of λ in the relevant

range λ ∈ [0, 1], this shows that the value of λ, implicitly given by ∆ = 0 decreases in

N (if ∆ > 0, then the equilibrium is in pure strategies with λ = 1). �

G Proof of Lemma 6

As a first step, I demonstrate that for N → ∞, the probability of individual experts

attempting to present their argument, λ, cannot converge to a strictly positive value.

For this purpose, I note that for all positive fixed values of λ

lim
N→∞

F (λqS)

F (λqI)
=
qI
qS
. (35)

Consequently, ∆, as defined in (29), converges to

lim
N→∞

∆ =
qI
qS
− ρ. (36)

This expression is strictly negative due to (10). As a result, the equilibrium value of λ

cannot converge to a strictly positive value for N → ∞, as all experts would strictly

prefer to withhold their arguments in this case, which contradicts λ > 0.

Inserting λ = 1
N
α into the definition of ∆, i.e. (29), and taking the limit N →∞ gives

lim
N→∞

∆ =
1− e−αqS
1− e−αqI

· qI
qS
− ρ, (37)

where I have utilized

lim
N→∞

F

(
β

N

)
=

1− e−β

β
, (38)

which in turn follows from limN→∞(1 − β/N)N = e−β. Therefore, for λ = 1
N
α and

N →∞, ∆ = 0 is equivalent to

1− e−αqS
1− e−αqI

· qI
qS

= ρ. (39)
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Does (39) have a unique admissible solution for α? The left-hand side of (39) ap-

proaches one for small positive values of α and qI/qS for large values of α. Moreover, it

decreases monotonically in α since qS > qI . Consequently, (39) has a unique positive

solution for α if qI
qS
< ρ < 1. Hence, for large N , the probability λ can be approximated

as λ = α
N

+O
(

1
N2

)
, where α is defined implicitly by (39). �

H Proof of Proposition 1

First, I prove the second claim of the proposition. According to this claim, (13) implies

that the probability of a single expert leading to a correct decision is higher than the

respective probability for a committee comprising infinitely many members. In line

with (9), the probability of a correct decision being reached for a single adviser is

E[uP ]|N=1 = π0 + π1aqS. (40)

For a very large committee, (4) and λ = α/N yield

lim
N→∞

E[uP ] = π0 + π1a
(
1− e−qSα

)
, (41)

where α is the unique positive solution to (39).

In order to prove the second claim stated in the proposition, I have to show that (40)

is larger than (41) or, equivalently,

qS > 1− e−qSα.

This condition is always fulfilled if α < 1. To assess whether α < 1 actually holds, I

examine (39), which implicitly defines α, more closely. I have already noted that the

left-hand side of (39) approaches one for small positive values of α. For α → 0, it

is therefore larger than the right-hand side of (39), i.e. ρ (compare (8)). Moreover,

the left-hand side of (39) is equal to 1−e−qS

1−e−qI

qI
qS

for α = 1. This value is smaller than

ρ according to (13). Together with the observation that the left-hand side of (39)

decreases monotonically in α, these findings imply a unique solution for α with α < 1.

Having demonstrated that a single expert is superior to an infinitely large committee,

I have to complete the proof by showing that the optimal committee size is strictly

larger than one. For this purpose, I refer to the probability of two experts leading to a

correct decision, which is stated in (9). Noting that this probability is strictly higher

than the respective probability for a single expert completes the proof. �
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I Proof that both (8) and (13) can hold at the same

time

To confirm that (8) and (13) can hold at the same time, it is sufficient to show that

1− e−qS
1− e−qI

· qI
qS

< 1. (42)

Inequality (42) follows from the facts that (1 − e−x)/x is a strictly monotonically

decreasing function of x and qS > qI . �
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