Self-Fulfilling Credit Cycles

Costas Azariadis and Leo Kaas

Working Paper Series 2012-16

http://www.wiwi.uni-konstanz.de/forschung/
Self-Fulfilling Credit Cycles*

Costas Azariadis† Leo Kaas‡

September 2012

Abstract

This paper argues that self-fulfilling beliefs in credit conditions can generate endogenously persistent business cycle dynamics. We develop a tractable dynamic general equilibrium model with idiosyncratic firm productivity shocks. Capital from less productive firms is lent to more productive ones in the form of credit secured by collateral and also as unsecured credit based on reputation. A dynamic complementarity between current and future credit constraints permits uncorrelated sunspot shocks to trigger persistent aggregate fluctuations in debt, factor productivity and output. In a calibrated version we compare the features of sunspot cycles with those generated by shocks to economic fundamentals.

JEL classification: D92, E32

Keywords: Limited enforcement; Credit cycles; Sunspots

*The paper has benefited from the comments of participants in various seminars and conferences. Leo Kaas thanks the German Research Foundation (grant No. KA 1519/3) for financial support. The usual disclaimer applies.

†Department of Economics, Washington University, St. Louis MO 63130-4899, USA, and Federal Reserve Bank of St.Louis. E-mail: azariadi@artsci.wustl.edu

‡Department of Economics, University of Konstanz, Box D145, 78457 Konstanz, Germany. E-mail: leo.kaas@uni-konstanz.de
1 Introduction

Over the past two decades, there have been important advances in macroeconomic research demonstrating that financial market conditions play a key role for business cycle fluctuations. Starting with seminal contributions of Bernanke and Gertler (1989) and Kiyotaki and Moore (1997), much of this research shows how frictions in financial markets can amplify and propagate disruptions to macroeconomic fundamentals, such as shocks to total factor productivity (TFP) or to monetary policy. More recently, and to some extent motivated by the events of the last financial crisis, several theoretical and quantitative contributions argue that shocks to the financial sector itself may not only lead to severe macroeconomic consequences but can also contribute significantly to business cycle movements. For example, Jermann and Quadrini (2012) develop a model with stochastic collateral constraints which they identify as residuals from aggregate time series of firm debt and collateral (capital). Estimating a joint stochastic process for TFP and borrowing constraints, they find that both variables are highly autocorrelated and that financial shocks play an important role for business cycle fluctuations. But what drives these shocks to financial conditions and to aggregate productivity? And what makes their responses highly persistent?

This paper proposes a common underlying source for these observations: endogenous volatility in the form of self-fulfilling expectations of credit market conditions. We develop and analyze a parsimonious dynamic general equilibrium model with heterogeneous firms and limited enforcement of unsecured credit. In the model, credit constraints and TFP are endogenous variables. Constraints on unsecured credit depend on the value that borrowers attach to future credit market conditions which is a forward-looking variable. TFP depends on the capital allocation between heterogeneous firms which, among others, depends on current credit constraints. When these constraints bind, they slow down capital reallocation between firms and push aggregate factor productivity below its frontier. We show that this model exhibits a very natural equilibrium indeterminacy which gives rise to endogenous cycles driven by self-fulfilling beliefs in credit market conditions (sunspot shocks). In particular, a one-time sunspot shock triggers an endogenous and persistent response of endogenous borrowing constraints and of TFP. The model is a standard stochastic growth model which comprises a large number of firms facing idiosyncratic productivity shocks. In each period, productive firms wish to borrow from

\[1\] For recent surveys, see Quadrini (2011) and Brunnermeier et al. (2012).

\[2\] Other examples of financial shocks are Kiyotaki and Moore (2012) who introduce shocks to asset resaleability, Gertler and Karadi (2011) who consider shocks to the asset quality of financial intermediaries, and Christiano et al. (2010) who use risk shocks originating in the financial sector. These papers also impose or estimate highly persistent shock processes.
their less productive counterparts. These firms exchange secured and unsecured credit. Secured credit is restricted by the firm’s collateral which is determined by an exogenous fraction of the firm’s wealth, similar to Kiyotaki and Moore (1997). Unsecured credit rests on the borrower’s reputation. Building upon Bulow and Rogoff (1989) and Kehoe and Levine (1993), we assume that a defaulting borrower is excluded from future credit for a stochastic number of periods. As in Alvarez and Jermann (2000), endogenous forward-looking credit limits prevent default. These credit limits depend on the value that a borrower attaches to a good reputation which itself depends on future credit market conditions.

An important contribution of this paper is the tractability of our framework which permits us to derive a number of insightful analytical results in Sections 3 and 4. With standard and convenient specifications of preferences and technology, we characterize any equilibrium by one backward-looking and one forward-looking equation (Proposition 1). With this characterization, we prove that unsecured credit cannot support first-best allocations, unless collateral constraints are sufficiently loose, thereby extending related findings of Bulow and Rogoff (1989) and Hellwig and Lorenzoni (2009) to a growth model with idiosyncratic productivity (Proposition 2). We then prove the existence of multiple stationary equilibria for a range of parameter configurations (Proposition 3). While an equilibrium without unsecured credit always exists, there can also exist one or two stationary equilibria with a positive volume of unsecured credit. One of these equilibria has an efficient allocation of capital between firms, and another one features a misallocation of capital. The latter equilibrium is the one that provides the most interesting insights, since unsecured credit is traded and yet factor productivity falls short of the efficient technology frontier. We show that this equilibrium is always locally indeterminate, and hence that it permits the existence of sunspot cycles fluctuating around the stationary equilibrium (Proposition 4). Moreover, output and credit respond persistently to a one-time sunspot shock.

In Section 5 we calibrate this model to the U.S. economy and show that an uncorrelated sunspot process generates persistent and plausible dynamics of key macroeconomic variables. Particularly, the model captures the relative volatilities and autocorrelation patterns of output, firm credit and investment reasonably well. Such adjustment dynamics cannot be generated by any of the typical fundamental shocks once the underlying shock process is uncorrelated. Although this fact is well known, we contrast the resulting dynamics by feeding our model with uncorrelated

3 Much of the literature on limited enforceability of unsecured credit does not allow for such simple representations and therefore resorts to rather sophisticated computational techniques (see e.g. Kehoe and Perri (2002), Krueger and Perri (2006) and Marcet and Marimon (2011)).

4 The other, determinate steady states of this model either do not sustain unsecured credit (and hence resemble similar dynamics as in a Kiyotaki–Moore-type model with binding collateral constraints) or they have an efficient allocation of capital (and hence exhibit the same business cycle properties as a frictionless model).
shocks to the collateral share (financial shocks), to the productivity spread between firms (uncertainty shocks) or to the share of investing firms (investment spikes). Neither of these processes can generate a persistent macroeconomic response. On the other hand, a misspecified model would easily identify fundamental shock processes as highly persistent if data were generated by our model with uncorrelated expectational shocks.

Intuitively, the explanation for indeterminacy and sunspot cycles is a dynamic complementarity in endogenous constraints on unsecured credit. Borrowers’ incentives to default depend on their expectations of future credit market conditions, which in turn influences current credit constraints. If borrowers expect a credit tightening over the next few periods, their current default incentives become larger which triggers a tightening of current credit. This insight also explains why a one-time expectational shock must be followed by a long-lasting response of credit market conditions (and thus of macroeconomic outcomes): if market participants expect that a credit boom (or a credit slump) will die out quickly, these expectations could not be powerful enough to generate a sizable credit boom (or slump) today.

Another way to understand the role of expectations is that unsecured credit is like a bubble sustained by self-fulfilling beliefs, as has been argued by Hellwig and Lorenzoni (2009). Transitions from a “good” macroeconomic outcome with plenty of unsecured credit to a “bad” outcome with low volumes of unsecured credit can be triggered by widespread skepticism about the ability of financial markets to continue the provision of unsecured credit at the volume needed to support socially desirable outcomes, which is similar to the collapse of a speculative bubble. The emergence and the bursting of rational bubbles in financially constrained economies has received attention in a number of recent contributions, e.g. Caballero and Krishnamurthy (2006), Kocherlakota (2009), Farhi and Tirole (2011) and Miao and Wang (2012). One difficulty with many of the existing macroeconomic models with bubbles is that the no-bubble equilibrium is an attracting steady state, so that they can only account for the bursting of bubbles but not for their buildup.⁵ Although there are no bubbles in our model, its equilibrium dynamics account for recurrent episodes of credit booms and busts which are solely driven by self-fulfilling beliefs. Our work is also related to a literature on sunspot cycles arising from financial frictions. In an early contribution, Woodford (1986) shows that a simple borrowing constraint makes infinitely-lived agents behave like two-period-lived overlapping generations, so that endogenous cycles can occur with sufficiently strong income effects or with increasing returns in production (see e.g. Behabib and Farmer (1999) for a survey).⁶ Harrison and Weder (2010) introduce a produc-

⁵A recent exception is Martin and Ventura (2012) who construct an overlapping-generations model with two types of investors and permanent stochastic bubble dynamics.

⁶Although earlier work on indeterminacy has shown that sunspot shocks can induce persistent macroeconomic responses (e.g. Farmer and Guo (1994)), the adjustment dynamics are typically sensitive to the particular speci-
tion externality in a Kiyotaki-Moore (1997) model and show that sunspots emerge for reasonable values of returns to scale. Other recent contributions find equilibrium multiplicity and indeterminacy in endowment economies with limited credit enforcement under specific assumptions about trading arrangements (Gu and Wright (2011)) and on the enforcement technology (Azariadis and Kaas (2012b)). Perri and Quadrini (2011) develop a two-country model with financial frictions and show that self-fulfilling expectations of asset values may be responsible for the international synchronization of credit tightening.

The rest of this paper is organized as follows. Section 2 lays out the model framework and defines competitive equilibrium. In Section 3 we characterize all equilibria by a forward-looking equation in the reputation values of borrowers and we show that unsecured credit cannot overcome binding constraints, unless the collateral share is sufficiently large. Section 4 derives our main results on equilibrium multiplicity, indeterminacy and sunspot cycles. In Section 5 we consider a calibrated numerical example to highlight the different impacts of sunspot shocks and fundamental shocks for business cycle dynamics. Section 6 concludes.

2 The model

Consider a growth model in discrete time with a continuum $i \in [0, 1]$ of firms, each owned by a single entrepreneur, and a unit mass of workers. At any date t, all agents maximize expected discounted utility

$$E_t(1 - \beta) \sum_{\tau \geq t} \beta^{\tau-t} \log(c_{\tau})$$

over future consumption streams. Workers supply one unit of labor per period and have no capital endowment. Entrepreneurs own capital and have no labor endowment. They produce a consumption and investment good y_t using capital k_t' and labor ℓ_t with common constant-returns technology $y_t = (k_t')^\alpha (A_t \ell_t)^{1-\alpha}$. Aggregate labor efficiency A_t grows at rate g.

Entrepreneurs differ in their ability to operate capital investment k_t. Some entrepreneurs are able to enhance their invested capital according to $k_t' = a^p k_t$; these entrepreneurs are labeled “productive”. The remaining, “unproductive” entrepreneurs deplete some of their capital investment such that $k_t' = a^u k_t$. We assume that $a^p > 1 > a^u$ and write $\gamma \equiv a^u/a^p$ for the relative productivity gap. All capital depreciates at common rate δ. Productivity realizations
are independent across agents and uncorrelated across time; entrepreneurs are productive with probability \(\pi \) and unproductive with probability \(1 - \pi \). Thus, fraction \(\pi \) of the aggregate capital stock \(K_t \) is owned by productive entrepreneurs in any period.

Timing within each period is as follows. First, entrepreneurs learn their productivity, they borrow and lend in a centralized credit market at gross interest rate \(R_t \), and they hire labor in a centralized labor market at wage \(w_t \). Second, production takes place. Third, entrepreneurs redeem their debt; agents consume and save for the next period.

In the credit market, productive entrepreneurs borrow capital from unproductive entrepreneurs. They are able to pledge an exogenous fraction \(\lambda < 1 \) of their total wealth (output and undepreciated capital) as collateral which can be seized in the event of default. All borrowers have access to such secured credit. On top of that, agents can borrow unsecured if they have a clean credit record. However, if a borrower decides to default in some period, his credit record deteriorates and the entrepreneur is banned from unsecured credit for a stochastic number of periods. Defaulters are still allowed to lend, however, and they can also pledge assets to creditors so that they have access to secured credit. Each period after default, the entrepreneur’s credit record is cleared with probability \(\psi \) in which case the entrepreneur regains full access to credit markets. Since no shocks arrive during a credit contract (that is, debt is redeemed at the end of the period before the next productivity shock is realized), there exist default–deterring credit limits, defined similarly as in the pure–exchange model of Alvarez and Jermann (2000). These limits are the highest values of credit that prevent default. In the absence of secured credit (\(\lambda = 0 \)) and with permanent market exclusion (\(\psi = 0 \)), this enforcement technology corresponds to the one discussed by Bulow and Rogoff (1989) and Hellwig and Lorenzoni (2009) who consider unsecured credit and assume that defaulters are excluded from future credit but are still allowed to save.

With \(\lambda > 0 \), secured credit is available and sometimes, but not always, a higher flow of credit can be sustained. Unsecured borrowing is founded on a producer’s desire to maintain a clean credit record and hence continued access to future unsecured credit. The value of \(\lambda \) is constant and common for all entrepreneurs;\(^8\) it depends on technological factors like the collateralizability of income and wealth, as well as on creditor rights and other aspects of economic institutions. We assume that \(\lambda < \gamma(1 - \pi) \); this restriction implies that credit constraints are binding on borrowers in equilibrium (see Proposition 2) and that capital is misallocated in the absence of unsecured credit (see Proposition 3).

While entrepreneurs can borrow in the credit market, we assume that workers’ labor income cannot be collateralized and that they have no access to unsecured credit either. That is,

\(^8\)Appendix B extends this model and the main results to correlated productivity shocks.

\(^9\)It is only a matter of additional notation to augment this model by a stochastic process for \(\lambda_t \) or for any other fundamental parameter. We do this in Section 5 to illustrate the effects of fundamental shocks.
workers face a zero borrowing constraint. Further, as we show below, \(R < (1 + g)/\beta \) holds in any stationary equilibrium, and hence also in any stochastic equilibrium near the steady state. Thus, workers are borrowing constrained and do not want to save; they simply consume their wage income in every period.

Let \(\theta_t \) denote the endogenous constraint on a borrower’s debt–equity ratio in period \(t \), the same for all borrowers with a clean credit record. If a productive entrepreneur enters the period with equity \(e_t \), he borrows \(b_t = \theta_t e_t \) and invests \(k_t = e_t + b_t \). An unproductive entrepreneur lends out capital, so \(b_t \leq 0 \), and investment is \(k_t = e_t + b_t \leq e_t \). The budget constraint for an entrepreneur with capital productivity \(a^* \in \{a^p, a^u\} \)

\[
ct + e_{t+1} = (a^*k_t)^\alpha(A_t \ell_t)^{1-\alpha} + (1 - \delta)a^*k_t - wt\ell_t - R_tb_t .
\] (2)

We are now ready to define equilibrium.

Definition: A competitive equilibrium is a list of consumption, savings, and production plans for all entrepreneurs, \((c_i^t, e_i^t, b_i^t, k_i^t, \ell_i^t)_{i \in [0,1]} \), contingent on realizations of idiosyncratic productivities, consumption of workers, \(c_w^t = w_t \), factor prices for labor and capital \((w_t, R_t) \), and debt-equity constraints \(\theta_t \), such that in every period \(t \geq 0 \):

(i) \((c_i^t, e_i^t, b_i^t, k_i^t, \ell_i^t) \) maximizes entrepreneur \(i \)'s expected discounted utility (1) subject to budget constraints (2) and credit constraints \(b_i^t \leq \theta_t e_i^t \).

(ii) Markets for labor and capital clear;

\[
\int_0^1 \ell_i^t \, di = 1 ,
\]

\[
\int_0^1 b_i^t \, di = 0 .
\]

(iii) If \(b_i^t \leq \theta e_i^t \) is binding in problem (i), entrepreneur \(i \) is exactly indifferent between debt redemption and default in period \(t \), where default entails the loss of collateral and the exclusion from unsecured credit such that the borrower is readmitted to unsecured credit with probability \(\psi \) each period following default.

3 Equilibrium characterization

Since entrepreneurs hire labor so as to equate the marginal product to the real wage, all productive (unproductive) entrepreneurs have identical capital–labor ratios; these are linked according

\[\text{In period } t = 0, \text{ there is some given initial equity distribution } (e_i^0)_{i \in [0,1]} .\]
to
\[
\frac{k_t^p}{l_t^p} = \gamma \frac{k_t^u}{l_t^u} \quad (3)
\]

With binding credit constraints, fraction \(z_t \equiv \min[1, \pi(1 + \theta_t)] \) of the aggregate capital stock \(K_t \) is operated by productive entrepreneurs. It follows from (3) and labor market clearing that
\[
\frac{k_t^p}{l_t^p} = \frac{a_t K_t}{a^p} \leq K_t < \frac{a_t K_t}{a^u} = \frac{k_t^u}{l_t^u},
\]

where \(a_t \equiv a^p z_t + a^u (1 - z_t) \) is the average capital productivity. The gross return on capital for an entrepreneur with capital productivity \(a^s \in \{a^u, a^p\} \) is then \(a^s R_t^* \), with capital return \(R_t^* \equiv 1 - \delta + \alpha A_1^{-\alpha}(a_t K_t)^{\alpha-1} \).

In any equilibrium, the gross interest rate cannot exceed the capital return of productive entrepreneurs \(a^p R_t^* \). It also cannot fall below the capital return of unproductive entrepreneurs \(a^u R_t^* \). Thus it is convenient to write \(R_t = \rho_t a^p R_t^* \) with \(\rho_t \in [\gamma, 1] \). When \(\rho_t < 1 \), borrowers are credit constrained. In this case the leveraged equity return
\[
\tilde{R}_t \equiv [1 + \theta_t(1 - \rho_t)] a^p R_t^*
\]

exceeds the capital return \(a^p R_t^* \). Unproductive entrepreneurs, on the other hand, lend out all their capital when \(\rho_t > \gamma \); they only invest in their own inferior technology if \(\rho_t = \gamma \). Therefore, credit market equilibrium amounts to the complementary-slackness condition
\[
\rho_t \geq \gamma \quad , \quad \pi(1 + \theta_t) \leq 1 \quad . (5)
\]

With this notation, the entrepreneurs’ budget constraints (2) simplify to \(e_{t+1} + c_t = \tilde{R}_t e_t \), when the entrepreneur is productive in \(t \), and to \(e_{t+1} + c_t = R_t e_t \) when the entrepreneur is unproductive. From logarithmic utility follows that every entrepreneur consumes a fraction \((1 - \beta) \) of wealth and saves the rest.

To derive the endogenous credit limits, let \(V_t(W) \) denote the continuation value of an entrepreneur with a clean credit record who has wealth \(W \) at the end of period \(t \), prior to deciding consumption and saving. These values satisfy the recursive equation
\[
V_t(W) = (1 - \beta) \log[(1 - \beta)W] + \beta \pi E_t V_{t+1} (\tilde{R}_{t+1} \beta W) + \beta (1 - \pi) E_t V_{t+1} (R_{t+1} \beta W) \quad .
\]

The first term in this equation represents utility from consuming \((1 - \beta)W \) in the current period.

To the next period \(t + 1 \), the entrepreneur saves equity \(\beta W \) which earns return \(\tilde{R}_{t+1} \) with

\footnote{In the absence of aggregate risk (sunspot or fundamental shocks), the expectations operator \(E_t \) could be dropped from this and from subsequent recursive equations.}
probability π and return R_{t+1} with probability $1 - \pi$. It follows that continuation values take the form $V_t(W) = \log(W) + V_t$ where V_t is independent of wealth, satisfying
\begin{equation}
V_t = (1 - \beta) \log(1 - \beta) + \beta \log \beta + \beta E_t \left[\pi \log \tilde{R}_{t+1} + (1 - \pi) \log R_{t+1} + V_{t+1} \right].
\end{equation}

If an entrepreneur has a bad credit record, he is only permitted to borrow against collateral. His debt-equity ratio then ensures that the value of debt does not exceed the value of collateral. It is pinned down from $R_t \theta_t = \lambda a^p R_t^* (1 + \theta_t^c)$ which yields $\theta_t^c = \lambda / (\rho_t - \lambda)$ and equity return
\begin{equation}
\tilde{R}_t^c \equiv [1 + \theta_t^c (1 - \rho_t)] a^p R_t^* = \frac{\rho_t (1 - \lambda)}{\rho_t - \lambda} a^p R_t^*.
\end{equation}

We write the continuation value of such an entrepreneur $V_t^c(W) = \log(W) + V_t^c$, where V_t^c satisfies, analogously to equation (6),
\begin{equation}
V_t^c = (1 - \beta) \log(1 - \beta) + \beta \log \beta + \beta E_t \left[\pi \log \tilde{R}_t^c + (1 - \pi) \log R_{t+1} + V_{t+1}^c + \psi(V_{t+1} - V_{t+1}^c) \right].
\end{equation}

This entrepreneur is banned from unsecured credit in period $t+1$ so that the equity return is \tilde{R}_t^c with probability π and R_{t+1} with probability $1 - \pi$. At the end of period $t+1$, the entrepreneur’s credit record clears with probability ψ in which case continuation utility increases from V_{t+1}^c to V_{t+1}.

If a productive entrepreneur has a clean credit record and enters period t with equity e_t, the debt-equity constraint θ_t makes him exactly indifferent between default and debt redemption if
\begin{equation}
\log \left[\tilde{R}_t e_t \right] + V_t = \log \left[(1 - \lambda) a^p R_t^* (1 + \theta_t) e_t \right] + V_t^c.
\end{equation}

Here the right-hand side is the continuation value after default: the entrepreneur invests $(1 + \theta_t) e_t$, earns return $a^p R_t^*$ and retains the uncollateralized share of wealth. The left-hand side is the continuation value under solvency, where the entrepreneur earns equity return \tilde{R}_t. Defining $v_t \equiv V_t - V_t^c \geq 0$ as the “value of reputation”, this equation can be solved for the default-deterring credit constraint
\begin{equation}
\theta_t = \frac{e^{v_t} - 1 + \lambda}{1 - \lambda - e^{v_t} (1 - \rho_t)}.
\end{equation}

This solution has a rather insightful interpretation. First, the debt-equity ratio is increasing in the reputation value v_t: a greater expected payoff from access to unsecured credit makes debt redemption more valuable, which relaxes the credit constraint. In fact, when the reputation value is zero, unsecured credit cannot be sustained and all credit is secured, so that $\theta_t = \theta_t^*$. Second, and quite obviously, the debt-equity ratio is increasing in the collateral share λ.

Using (4), (6), (7) and (8), reputation values satisfy the recursive identity
\begin{equation}
v_t = \beta E_t \left[\pi \log \frac{\tilde{R}_t + 1}{\tilde{R}_t} + (1 - \psi) v_{t+1} \right] = \beta E_t \left[\pi \log \left(\frac{\rho_{t+1} - \lambda}{1 - \lambda - e^{v_{t+1}} (1 - \rho_{t+1})} \right) + (1 - \psi) v_{t+1} \right].
\end{equation}
We can summarize this equilibrium characterization as follows.

Proposition 1 Any solution \((\rho_t, \theta_t, v_t)_{t \geq 0}\) to the system of equations (5), (9) and (10) gives rise to a competitive equilibrium with interest rates \(R_t = \rho_t a^s R^*_t\) and capital returns \(R^*_t = 1 - \delta + \alpha A_t^{1-\alpha} (a_t K_t)^{\alpha - 1}\) with \(a_t = a^u + (a^p - a^u) \cdot \min[1, \pi (1 + \theta_t)]\). The aggregate capital stock evolves according to

\[
K_{t+1} = \beta \left[(1 - \delta) + \alpha A_t^{1-\alpha} (a_t K_t)^{\alpha - 1} \right] a_t K_t .
\]

An implication of this proposition is that any equilibrium follows two dynamic equations, the backward-looking dynamics of aggregate capital (equation (11)) and the forward-looking dynamics of reputation values, see equation (12) below. Due to our modeling of the idiosyncratic productivity process, the latter identity is independent of the aggregate state \(K_t\), and hence permits a particularly simple analysis of stationary and non-stationary equilibria.\(^\text{12}\)

Using Proposition 1, we obtain two immediate results. First, there always exists an equilibrium where unsecured credit is not available. Formally, \(v_t = 0, \theta_t = \theta_c^t = \lambda / (\gamma - \lambda)\) and \(\rho_t = \gamma\) solves the above equilibrium conditions, given our parameter restriction on collateral. Intuitively, if no unsecured credit is available in the future, there is no value of reputation, and hence any borrower prefers to default on current unsecured credit. It follows that no unsecured credit is available in the current period.\(^\text{13}\) Second, we can show that unsecured credit cannot overcome binding borrowing constraints. This is in line with earlier results by Bulow and Rogoff (1989) and Hellwig and Lorenzoni (2009) who show that the first best cannot be implemented by limited enforcement mechanisms which ban defaulting agents from future borrowing but not from future lending. It differs decisively from environments with two-sided exclusion, as in Kehoe and Levine (1993) and Alvarez and Jermann (2000), where first-best allocations can be sustained with unsecured credit under certain circumstances.\(^\text{14}\) The intuition for this result is as follows. If borrowers were unconstrained, the interest rate would coincide with the borrowers’ capital return. Hence there is no leverage gain, so that access to credit has no value for borrowers. In turn, every borrower would default on an unsecured loan, no matter how small. We summarize this finding in

\(^{12}\)On the one hand, reputation values are independent of aggregate capital since excess returns are multiples of the capital return \(R^*_t\) which follows from our assumption that firms differ in capital productivity, \(k'_s = a^s k_t\) for \(s = u, p\). On the other hand, if productivity shocks were autocorrelated, equation (12) has two lags and the capital distribution enters as an additional state variable; see Appendix B.

\(^{13}\)A similar “autarky” equilibrium also obtains in the limited enforcement economy of Kehoe and Levine (1993) as decentralized by Alvarez and Jermann (2000); cf. Azariadis and Kaas (2007).

\(^{14}\)In endowment economies with permanent exclusion of defaulters, it is well known that perfect risk sharing can be implemented if the discount factor is sufficiently large, if risk aversion is sufficiently strong or if the endowment gap between agents is large enough (see e.g. Kehoe and Levine (2001) and Azariadis and Kaas (2007)). Azariadis and Kaas (2012b) show that the role of the discount factor changes decisively if market exclusion is temporary.
Proposition 2 Any equilibrium features binding borrowing constraints.

It follows immediately that the equilibrium interest rate is smaller than the workers’ marginal rate of intertemporal substitution, so that workers are indeed credit constrained.

Corollary 1 In any steady state equilibrium (balanced growth path), \(R < \frac{1 + \varphi}{\beta} \).

4 Multiplicity and cycles

Although borrowers must be credit constrained, the credit market may nonetheless be able to allocate capital efficiently. In particular, when the reputation value \(v_t \) is sufficiently large, credit constraints relax and the interest rate may exceed the capital return of unproductive entrepreneurs who then lend out all their capital to more productive entrepreneurs. Formally, when \(v_t \) exceeds the threshold value

\[
\overline{v} \equiv \log \left[\frac{1 - \lambda}{1 - \gamma(1 - \pi)} \right] > 0 ,
\]

the equilibrium conditions (5) and (9) are solved by \(\theta_t = (1 - \pi)/\pi \) and \(\rho_t = [1 - e^{-v_t}(1 - \lambda)]/(1 - \pi) > \gamma \). Conversely, when \(v_t \) falls short of \(\overline{v} \), credit constraints tighten, the interest rate equals the capital return of unproductive entrepreneurs \((\rho_t = \gamma) \), who are then indifferent between lending out capital or investing in their own technology, so that some capital is inefficiently allocated. We can use this insight to rewrite the forward-looking equation (10) as

\[
v_t = E_t f(v_{t+1}) ,
\]

with

\[
f(v) \equiv \begin{cases}
\beta(1 - \psi)v + \beta \pi \log \left[\frac{\gamma - \lambda}{1 - \lambda - e^v(1 - \gamma)} \right] & \text{, if } v \in [0, \overline{v}] , \\
\beta(1 - \pi - \psi)v + \beta \pi \log \left[\frac{e^v[1 - \lambda(1 - \pi)] + \lambda - 1}{\pi(e^v + \lambda - 1)} \right] & \text{, if } v \in [\overline{v}, v_{\max}] .
\end{cases}
\]

Here \(v = v_{\max} = \log(\frac{1 - \lambda}{\pi}) \) is the reputation value where the interest rate satisfies \(\rho = 1 \) and borrowers are unconstrained. It is straightforward to verify that \(f \) is strictly increasing if \(\pi + \psi < 1 \), convex in \(v < \overline{v} \) and concave in \(v > \overline{v} \), and it satisfies \(f(0) = 0 \) and \(f(v_{\max}) < v_{\max} \). This reconfirms that the absence of unsecured credit \((v = 0) \) is a stationary equilibrium. Depending on economic fundamentals, there can also exist one or two steady states exhibiting positive trading of unsecured credit. Figure 1(a) shows a situation in which function \(f \) has three intersections with the 45-degree line: \(v = 0, v* \in (0, \overline{v}) \) and \(v** \in (\overline{v}, v_{\max}) \). The steady states at \(v = 0 \) and
Proposition 3 For all parameter values there exists a stationary equilibrium in which no unsecured credit is available and capital is inefficiently allocated. Provided that \(\lambda < \frac{\beta(1 - \pi)}{1 + \beta \psi} \), there are threshold values \(\gamma_0 < \gamma_1 < 1 \) such that:

(a) For \(\gamma \in (\gamma_0, \gamma_1) \), there are two stationary equilibria with unsecured credit: one at \(v^* \in (0, \bar{v}) \) with inefficient capital allocation and one at \(v^{**} \in (\bar{v}, v_{\text{max}}) \) with efficient capital allocation.

(b) For \(\gamma > \gamma_1 \), there is no stationary equilibrium with unsecured credit.

(c) For \(\gamma \leq \gamma_0 \), there exists a unique stationary equilibrium with unsecured credit and efficient capital allocation at reputation value \(v^{**} \in (\bar{v}, v_{\text{max}}) \).

The explanation for equilibrium multiplicity is a dynamic complementarity between endogenous credit constraints (reputation values). Borrowers’ expectations of future credit market conditions affect their incentives to default which in turn determine current credit constraints. If future constraints are tight, the payoff of a clean credit record is modest so that entrepreneurs value access to unsecured credit only a little. In turn, current default-deterring credit limits must
be small. Conversely, if entrepreneurs expect future credit markets to work well, a clean credit record has high value, and this relaxes current constraints.\(^{15}\) Figure 2 shows how stationary debt–equity limits \(\theta\) depend on the fundamental parameter \(\gamma\). For small enough idiosyncratic productivity fluctuations \((\gamma > \gamma_1)\), unsecured credit is not available because entrepreneurs value participation in credit markets too little: Secured borrowing \((\theta = \theta^c)\) is the unique stationary equilibrium outcome. For larger idiosyncratic shocks, unsecured credit is sustainable because exclusion from future credit is a sufficiently strong threat for borrowers. For intermediate values of \(\gamma\), two further steady states emerge: one with an inefficient capital allocation at \(\theta^*\), and one with an efficient capital allocation at \(\theta^{**} = \frac{1-\pi}{\pi}\). For large enough idiosyncratic shocks \((\gamma < \gamma_0)\), the unique steady state with unsecured credit has an efficient capital allocation.

![Figure 2: Steady-state debt-equity ratios \(\theta\) for varying productivity differential \(\gamma = a^n/a^p\).](image)

Even if unsecured credit permits efficient allocations of capital, efficiency rests upon the confidence of market participants in future credit market conditions. When market participants

\(^{15}\)As Figure 1 shows, credit market expectations have a particularly strong impact on reputation values in the inefficient regime \(v \leq \overline{v}\). At low values of \(v\), credit constraints are relaxed without changes in the interest rate if market expectations become more favorable which leads to particularly large gains from participation. Conversely, if \(v > \overline{v}\), beliefs in better credit conditions also raise the interest rate which dampens this positive effect.
expect credit constraints to tighten rapidly, the value of reputation shrinks over time which triggers a self-fulfilling collapse of the market for unsecured credit. For instance, if $\gamma < \gamma_0$, the steady state at v^{**} is determinate and the one at $v = 0$ is indeterminate (see Figure 1(b)). That is, there exists an infinity of non-stationary equilibria $v_t = f(v_{t+1}) \to 0$ where the value of reputation vanishes asymptotically.\(^{16}\) If $\gamma \in (\gamma_0, \gamma_1)$, the two steady states at $v = 0$ and at v^{**} are determinate, whereas the one at v^* is indeterminate. That is, there is an infinity of non-stationary equilibria $v_t \to v^*$.

Indeterminacy in our model not only allows collapsing credit market bubbles, it also permits business cycles driven by self-fulfilling beliefs (sunspots). To see this, consider any sequence of random variables $\varepsilon_{t+1} \in (-v_t, v^{**} - v_t), t \geq 1$, satisfying $E_t(\varepsilon_{t+1}) = 0$, and define the stochastic process

$$v_{t+1} = f^{-1}(v_t + \varepsilon_{t+1}) \in (0, v^{**}).$$

Then, the stochastic cycle (13) is a solution of equation (12). Sunspot fluctuations vanish asymptotically if $\gamma < \gamma_0$, but they give rise to permanent volatility around the indeterminate steady state v^* if $\gamma \in (\gamma_0, \gamma_1)$.

Proposition 4 Suppose that $\gamma \in (\gamma_0, \gamma_1)$ as defined in Proposition 3. Then there exist sunspot cycles featuring permanent fluctuations in credit, output and total factor productivity.

The dynamic complementarity between endogenous credit constraints not only gives rise to expectations-driven business cycles, it also generates an endogenous propagation mechanism: a one-time expectational shock in period t triggers a persistent adjustment dynamics of reputation values v_k (and thus of credit constraints, investment and output) in subsequent periods $k > t$. Intuitively, a self-fulfilling credit boom (slump) in period t can only emerge if the boom (slump) lasts for several periods.

Corollary 2 A one-time sunspot shock $\varepsilon_t > 0$ ($\varepsilon_t < 0$) in period t induces a persistent positive (negative) response of firm credit and output.

Log-linearizing (13) around the indeterminate steady state v^* can also tell something about the degree of persistence of sunspot shocks. Particularly, if \hat{v}_t denotes the log deviation from steady state, we have $\hat{v}_{t+1} = \rho^* \hat{v}_t + \hat{\varepsilon}_{t+1}$ where the autocorrelation coefficient depends on fundamental model parameters,

$$\rho^* = f'(v^*)^{-1} = \frac{\gamma}{\beta(1 - \psi)(1 + \theta^*(1 - \gamma))}.$$

The next section demonstrates that sunspot shocks have the ability to account quantitatively for persistent dynamics of key macroeconomic variables with plausible volatilities.

\(^{16}\)These equilibria are mathematically similar to the bubble-bursting equilibria in overlapping-generation models.
5 A quantitative illustration

We calibrate the model to the U.S. economy to study the quantitative features of sunspot cycles and to explore how the model economy responds to different shocks. We choose a quarterly period length and parameters such that the model’s indeterminate steady state equilibrium matches suitable long-run properties of the U.S. economy. Note again that only the indeterminate steady state equilibrium allows for unsecured credit and inefficient capital allocations (Proposition 3). The other two determinate steady states of this model either feature efficient factor allocations or do not sustain unsecured credit. Hence their business-cycle properties would either resemble those of a standard frictionless model or those of an economy with exogenous, collateral-based credit constraints.17

We set $g = 0.005$, $\delta = 0.015$ and $\alpha = 0.33$ to match plausible values of output growth, capital depreciation and capital income shares. We normalize average capital productivity in steady state to $a = 1$ and set $\beta = 0.987$ to match a steady state capital-output ratio of 10. We choose the remaining parameters π, λ and a_u to match the following three targets:18 (1) Credit to non-financial firms is 0.5 of annual GDP; (2) a debt-equity ratio $\theta = 3$ of credit-constrained firms; (3) cross-firm dispersion of annual equity returns of 0.4.19 Given that this model has a two-point distribution of firm productivity (and hence of debt-equity ratios), the choice of target (2) is somewhat arbitrary. As a robustness check, we also calibrate the model with $\theta = 2$ and report business-cycle statistics below.20 Since only $\pi = 6.7\%$ of firms have positive investment rates in each quarter, this parameterization accounts for investment spikes similar to those documented by Cooper and Haltiwanger (2006). The calibrated model also yields an annual dispersion of employment growth of 0.51 which is in line with Davis et al. (2006). We set the exclusion parameter $\psi = 0.025$ so that an average entrepreneur has difficulty obtaining unsecured credit for a period of 10 years after default.21 In this model parameterization, 45\% of all firm

17Different from our model, collateral-based credit constraints may also be forward-looking as in Kiyotaki and Moore (1997) if collateral prices are endogenous, which may contribute to the amplification and propagation of shocks. Cordoba and Ripoll (2004) and Kocherlakota (2000) argue, however, that it is difficult to generate quantitatively significant amplification this way.

18The normalization $a = a^n + \pi(1 + \theta)(a^p - a^n) = 1$ then pins down parameter a^p.

19(1) Credit market liabilities of non-financial business are 0.52 of annual GDP (average over 1952-2011, Flow of Funds Accounts of the Federal Reserve Board, Z.1 Table L.101). (2) Debt-equity ratios below 3 are usually required to qualify for commercial loans; indeed, more than 80\% of small businesses have debt-equity ratios below 3 (see Herranz et al. (2009), Figure 2). Note, however, that the average debt-equity ratio is much lower both in the model (0.2) and in the Flow of Funds Accounts for non-financial business (0.41, average for 1952-2011). On (3), see Figure 1 in Jiang (2008).

20Departing from Table 1, this requires $a^n = 0.94$, $a^p = 1.14$, $\pi = 0.1$ and $\lambda = 0.12$.

21For example, if a firm owner files for bankruptcy according to Chapter 7 of the U.S. Bankruptcy Code,
credit is secured and 55% is unsecured. Unsecured borrowing boosts allocative efficiency quite substantially: aggregate output would drop by about 20% if only secured credit were available. Our parameter choices are summarized in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>0.005</td>
<td>Efficiency growth</td>
<td>Output growth</td>
</tr>
<tr>
<td>δ</td>
<td>0.015</td>
<td>Depreciation rate</td>
<td>Consumption of fixed capital</td>
</tr>
<tr>
<td>α</td>
<td>0.33</td>
<td>Production fct. elasticity</td>
<td>Capital income share</td>
</tr>
<tr>
<td>β</td>
<td>0.987</td>
<td>Discount factor</td>
<td>Capital-output ratio</td>
</tr>
<tr>
<td>π</td>
<td>0.067</td>
<td>Share of productive firms</td>
<td>Credit of non-financial firms</td>
</tr>
<tr>
<td>λ</td>
<td>0.48</td>
<td>Collateral share</td>
<td>Debt-equity ratio $\theta = 3$</td>
</tr>
<tr>
<td>a^u</td>
<td>0.95</td>
<td>Lowest productivity</td>
<td>Equity return dispersion</td>
</tr>
<tr>
<td>a^p</td>
<td>1.138</td>
<td>Highest productivity</td>
<td>Normalization $\alpha = 1$</td>
</tr>
<tr>
<td>ψ</td>
<td>0.025</td>
<td>Exclusion parameter</td>
<td>10-year punishment</td>
</tr>
</tbody>
</table>

To explore expectations-driven business cycles, we feed this model with a sunspot shock process that generates the magnitude of output volatility in U.S. data. This counterfactual exercise allows us to understand how the economy would fluctuate if sunspot shocks were the only driving force of the business cycle. We then compare the cyclical response of output, firm credit and investment to those in the data. We choose a simple process of the form $v_{t+1} = f^{-1}(v_t + \varepsilon_{t+1})$ with sunspot shocks

$$
\varepsilon_{t+1} = \begin{cases}
-\sigma v_t & \text{with prob. } \zeta_t \\
\sigma(v^{**} - v_t) & \text{with prob. } 1 - \zeta_t
\end{cases},
$$

where the choice $\zeta_t = (v^{**} - v_t)/v^{**}$ ensures that $E_t(\varepsilon_{t+1}) = 0$. This specification guarantees that reputation values v_t stay in the interval $(0, v^{**})$ in all periods. Parameter σ determines the magnitude of sunspot shocks which is the only free parameter in this two-point sunspot process. Note that we cannot allow for another parameter governing the persistence of sunspot shocks since $E_t(\varepsilon_{t+1}) = 0$ rules out that these shocks are (positively or negatively) autocorrelated. We set $\sigma = 0.023$ ($\sigma = 0.017$) if $\theta = 3$ ($\theta = 2$) which implies that the model’s simulated output time series has the same volatility as U.S. GDP.

Table 2 presents U.S. business cycle statistics and their counterparts in the simulated sunspot cycle for both calibrations. Notably, the model matches the relative volatility of firm credit and bankruptcy remains on the credit record for a period of 10 years (see e.g. Chatterjee et al. (2007)).
investment quite well. More importantly, the model generates persistent dynamics of output, credit and investment which are in line with the data. This is despite the fact that the underlying shock process has no persistence. Hence the model generates endogenous propagation of independent self-fulfilling expectational shocks. Lastly, firm credit and investment are strongly procyclical, although correlations with output are larger than in the data.

Table 2: Business cycle statistics with sunspot shocks

<table>
<thead>
<tr>
<th></th>
<th>Output</th>
<th>Firm Credit</th>
<th>Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.026</td>
<td>0.056</td>
<td>0.103</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>0.938</td>
<td>0.985</td>
<td>0.896</td>
</tr>
<tr>
<td>Correlation with output</td>
<td>1</td>
<td>0.519</td>
<td>0.849</td>
</tr>
<tr>
<td>Model (θ = 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.026</td>
<td>0.066</td>
<td>0.127</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>0.895</td>
<td>0.900</td>
<td>0.877</td>
</tr>
<tr>
<td>Correlation with output</td>
<td>1</td>
<td>0.976</td>
<td>0.916</td>
</tr>
<tr>
<td>Model (θ = 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.026</td>
<td>0.064</td>
<td>0.134</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>0.892</td>
<td>0.898</td>
<td>0.872</td>
</tr>
<tr>
<td>Correlation with output</td>
<td>1</td>
<td>0.998</td>
<td>0.971</td>
</tr>
</tbody>
</table>

Notes: All variables are logged and HP filtered with parameter 10^5. U.S. data are for the period 1952Q1-2011Q4. Firm Credit includes all credit market instruments of non-financial business in the Flow of Funds Accounts of the Federal Reserve Board (series FL144104005 in Table L.101). GDP and investment are in chained 2005 dollars from NIPA. The model statistics are obtained from 1000 simulations of 240 periods.

Our result on the internal propagation of sunspot shocks is very different from the model’s response to various types of shocks to economic fundamentals. To see this, we study the model dynamics under three different hypotheses on the sources of business cycles that have been proposed in the literature. First, we consider “financial shocks” which are modeled as shocks to the collateral share parameter λ; second, we explore the effects of “uncertainty shocks”, where the gap between a^n and a^p varies such that mean productivity is constant; third, we allow for

Stochastic TFP (A_t) would be another obvious candidate. In our model, however, the dichotomy between credit markets (equation (12)) and output/capital (equation (11)) implies that fluctuations in A_t take no impact on credit markets and hence work similarly as in a frictionless model.
fluctuations in the number of firms undergoing investment spikes, that is, in the parameter π.23

In any of these three cases, we suppose that the respective model parameter follows a simple symmetric i.i.d. process around their calibrated figures in Table 1. As in Table 2, we calibrate the standard deviation of the shocks so as to match output volatility in the data. By abstracting from any autocorrelation in the underlying shock process, we isolate the endogenous propagation of fundamental shocks and compare it to the one with uncorrelated sunspot shocks. Table 3 shows the results of this exercise. While all fundamental shocks roughly match the relative volatility of firm credit, there is no internal propagation.

Table 3: Business cycle statistics with fundamental shocks

<table>
<thead>
<tr>
<th></th>
<th>Output</th>
<th>Firm Credit</th>
<th>Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial shocks (λ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.026</td>
<td>0.067</td>
<td>0.145</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>-0.019</td>
<td>-0.017</td>
<td>-0.029</td>
</tr>
<tr>
<td>Uncertainty shocks (a^u/a^p)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.026</td>
<td>0.068</td>
<td>0.145</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>-0.007</td>
<td>-0.005</td>
<td>-0.020</td>
</tr>
<tr>
<td>Shocks to investment spikes (π)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.026</td>
<td>0.050</td>
<td>0.147</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>-0.021</td>
<td>-0.014</td>
<td>-0.032</td>
</tr>
</tbody>
</table>

Notes: All variables are logged and HP filtered with parameter 10^5. Model statistics are obtained from 1000 simulations of 240 periods.

The contrasting propagation patterns of sunspot shocks and fundamental shocks are also shown in the impulse response diagrams of Figure 3. The upper graphs show the responses of output and firm credit to an expectational shock in period 10. The shock generates strong propagation with a long-lasting hump-shaped pattern of output peaking after 12 quarters. The responses to a financial shock in period 10 are shown in the lower graphs. A one-time increase of the collateral fraction λ by 5% generates an output increase by 7.6% in period 1 which does not propagate into subsequent periods. The absence of internal propagation of fundamental shocks is hardly surprising, given that economies with binding (exogenous) credit constraints have

23For example, Kiyotaki and Moore (2012) and Jermann and Quadrini (2012) study financial shocks as exogenous fluctuations of borrowing constraint parameters; Bloom et al. (2012) and Arellano et al. (2012) propose uncertainty shocks; and Gourio and Kashyap (2007) argue that the extensive margin of investment largely accounts for aggregate investment dynamics.
difficulty to generate propagation (see Cordoba and Ripoll (2004)). Also, some of the traditional fundamental propagation channels, such as persistent wealth distributions, adjustment costs or habit persistence, are absent from this model.

(a) Sunspot shock

(b) Financial shock

Figure 3: Impulse responses to a sunspot shock ($\varepsilon_{10} = 0.05$, $\varepsilon_t = 0$ for $t \neq 10$) and to a one-time financial shock ($\lambda_{10} = 0.504$, $\lambda_t = 0.48$ for $t \neq 10$).

Why do sunspot shocks have a long-lasting impact whereas fundamental shocks do not? Intuitively, the forward-looking nature of reputation values necessitates that a self-fulfilling boom of unsecured credit can only be generated if the boom is long-lasting. If credit market participants expected that the boom will decay quickly, such expectations could not induce a substantial credit expansion in the first place. Put differently, the dynamic forward-looking complementarity between reputation values triggers the endogenous propagation of self-fulfilling credit booms.
Pure fundamental shocks, on the other hand, cannot generate similar propagations. Although such shocks also induce endogenous long-lasting responses of reputation values (and thus of unsecured credit), they are quantitatively insignificant relative to the direct impact of the fundamental shock. This becomes evident from the bottom graphs in Figure 3 which show that the impact on output and firm credit after the shock period is almost negligible.

We wish to emphasize that our findings do not imply that one-time fundamental shocks yield counterfactual macroeconomic impulses. On the contrary, our results suggest that fundamental shocks can be powerfully amplified and propagated if they are correlated with expectational shocks, and, therefore, with the provision of unsecured credit. This idea of “sunspot-like equilibria”, which has been explored by Manuelli and Peck (1992) and Bacchetta et al. (2011) in different settings, supposes that there are some fundamental variables that serve as a coordination device for self-fulfilling beliefs. In such situations small changes in economic fundamentals trigger coordinated changes in economic beliefs and generate long-lasting macroeconomic effects.

6 Conclusions

Two enduring characteristics of the business cycle are the high autocorrelations of credit and output time series, and the strong cross-correlation between those two statistics. Understanding these correlations, without the help of persistent shocks to the productivity of financial intermediaries and final goods producers, has been a long-standing goal of macroeconomic research and the motivation for the seminal contributions mentioned in the first paragraph of the introduction to this paper. Is it possible that cycles in credit, TFP and output are not the work of persistent productivity shocks that afflict all sectors of the economy simultaneously? Could these cycles instead come from small and temporary shocks to anticipated credit conditions?

This paper gives an affirmative answer to both questions within an economy in which part of the credit firms require to finance investment is secured by collateral, and the remainder is based on reputation. Unsecured credit improves debt limits, facilitates capital reallocation and helps aggregate productivity, provided that borrowers expect plentiful unsecured credit in the future. Favorable expectations of future debt limits increase the value of remaining solvent and on good terms with one’s lenders. Widespread doubts, on the other hand, about future credit will lead to long-lasting credit tightening with severe macroeconomic consequences.

It is this dynamic complementarity of current with future lending that connects macroeconomic performance over time and endows one-time expectational impulses with long lasting responses. A calibrated version of our economy, despite its apparent simplicity, matches well with observed features of the joint stochastic process governing U.S output, firm credit and investment and
illustrates the endogenous propagation of self-fulfilling belief shocks.

References

Appendix A: Proofs

Proof of Proposition 2: If borrowers were unconstrained in all periods, unproductive entrepreneurs lend out all their capital to productive entrepreneurs who borrow \((1 - \pi)K_t\) in the aggregate, and the interest rate equals the capital return of productive entrepreneurs, \(R_t = a^p R^*_t\). It follows that there are no gains from leverage so that \(\tilde{R}_t = \tilde{R}_t = R_t\) for all \(t \geq 0\), and the only solution to equation (10) is \(v_t = 0\) for all \(t\). But then it follows from equation (9) that debt-equity constraints are \(\theta_t = \theta_t = \lambda / (1 - \lambda)\), and the restriction on collateral \((\lambda < \gamma(1 - \pi) < 1 - \pi)\) implies

\[\theta_t \pi K_t < (1 - \pi) K_t. \]

Thus, aggregate borrowing exceeds the aggregate credit limit, a contradiction. \(\square\)

Proof of Corollary 1: In a balanced–growth path,

\[1 + g = K_{t+1} / K_t = \beta a R^*, \]

where \(a = a^u + (a^p - a^u) \min(1, \pi (1 + \theta))\) is average capital productivity. From Proposition 2, any steady state has binding credit-constraints, so that \(R = \rho a^p R^* < a^p R^*\). Then either \(\rho = \gamma\) implies \(R = a^u R^* < a R^*\), or \(\rho > \gamma\) and (5) implies \(\pi(1 + \theta) = 1\), so that \(a = a^p\) and again \(R < a R^*\). In any case, \(R < (1 + g)/\beta\) follows. \(\square\)

Proof of Proposition 3: Because of \(f(v_{\text{max}}) < v_{\text{max}}\) and continuity, a solution \(f(v) = v \in (\overline{v}, v_{\text{max}})\) exists iff \(f(\overline{v}) > \overline{v}\). This condition is

\[[1 - \gamma(1 - \pi)]^{1 + \Phi} > \left[\frac{\pi \gamma}{\gamma - \lambda} \right]^{\Phi} (1 - \lambda)^{1 + \Phi}, \]

with \(\Phi = \beta \pi / (1 - \beta(1 - \psi))\). Both sides in (15) are decreasing in \(\gamma\) and \(\text{LHS} < \text{RHS}\) at \(\gamma = 1\) (because of \(\lambda < 1 - \pi\)). Further, at \(\gamma = \lambda / (1 - \pi)\), \(\text{LHS} = \text{RHS}\) and the LHS has a bigger slope than the RHS (because of \(\lambda < \frac{\beta(1 - \pi)}{1 + \beta \psi}\)). Therefore there exists another intersection \(\gamma_1 \in (\overline{\gamma}, 1)\), such that \(\text{LHS} > \text{RHS}\) for all \(\gamma \in (\overline{\gamma}, \gamma_1)\) (see Figure 4). It follows that the steady state \(v^{**} \in (\overline{v}, v_{\text{max}})\) exists if \(\gamma < \gamma_1\).

Since \(f\) is strictly convex in \(v \in (0, \overline{v})\), a steady state \(v^* \in (0, \overline{v})\) exists if \(\gamma < \gamma_1\) (implying \(f(\overline{v}) > \overline{v}\)) and if \(f'(0) < 1\). The latter condition is equivalent to \(\gamma > \gamma_0 \equiv \frac{\Phi + 1}{\Phi + \lambda}\). Moreover, \(\lambda < \frac{\beta(1 - \pi)}{1 + \beta \psi}\) also implies that \(\gamma_0 > \frac{1}{1 - \pi}\) (so that credit constraints are indeed binding). This completes the proof. \(\square\)
Appendix B: Autocorrelated productivity

This Appendix extends the model and Propositions 1–3 to an autocorrelated idiosyncratic productivity process. Specifically, suppose that productive entrepreneurs stay productive with probability π_p and become unproductive otherwise, whereas unproductive entrepreneurs become productive with probability π_u and stay unproductive otherwise. Assume that productivities are positively autocorrelated: $\pi_p > \pi_u$. The i.i.d. benchmark considered in the main text corresponds to the case $\pi_p = \pi_u = \pi$. We assume again that the collateral share is sufficiently low so as to ensure binding credit constraints and a capital misallocation in the absence of unsecured credit:

$$\lambda < \frac{\gamma(1 - \pi_p)}{1 - \gamma(\pi_p - \pi_u)}.$$ \hfill (16)

One major difference with the benchmark model is that the share of capital in the hands of productive entrepreneurs at the beginning of a period, denoted x_t, is a state variable which adjusts sluggishly over time (see Kiyotaki (1998)) according to

$$x_{t+1} = \frac{\pi_p \hat{R}_t x_t + \pi_u R_t (1 - x_t)}{\tilde{R}_t x_t + R_t (1 - x_t)},$$ \hfill (17)

where $R_t = \rho_t a^p R^*_t$ is again the gross interest rate (the equity return of unproductive entrepreneurs) and $\hat{R}_t = (1 + \theta_t(1 - \rho_t))a^p R^*_t$ is the equity return of productive entrepreneurs. Given x_t, fraction $z_t = \min(1, x_t(1 + \theta_t))$ of capital is operated by productive entrepreneurs, $a_t = z_t a^p + (1 - z_t) a^u$ is average capital productivity, and the capital return R^*_t is defined as in
the main text. Capital market equilibrium boils down to the complementary slackness condition
\[\rho_t \geq \gamma , \quad x_t(1 + \theta_t) \leq 1 . \]

To derive the endogenous debt-equity ratio \(\theta_t \), define again \(V_t(W) \) \((V_t^c(W)) \) for the continuation values of a productive entrepreneur with a clean (bad) credit record who has wealth \(W \) at the end of period \(t \). Similarly, define continuation values for unproductive entrepreneurs as \(U_t(W) \) \((U_t^c(W)) \). Because of log utility, all entrepreneurs save fraction \(\beta \) of wealth and continuation utilities can be written in the form \(V_t(W) = \log(W) + V_t \) etc. where \(V_t, V_t^c, U_t, U_t^c \) are independent of wealth and satisfy the recursive equations (with constant \(C \equiv (1 - \beta) \log(1 - \beta) + \beta \log \beta)\):

\[
V_t = C + \beta E_t \left[\pi_p \left(\log \bar{R}_{t+1} + V_{t+1} \right) + (1 - \pi_p)(\log \bar{R}_{t+1} + U_{t+1}) \right], \\
V_t^c = C + \beta E_t \left[\pi_p \left(\log \bar{R}_{t+1}^c + V_{t+1}^c + \psi(V_{t+1} - V_{t+1}^c) \right) + (1 - \pi_p)(\log \bar{R}_{t+1}^c + U_{t+1} - U_{t+1}^c) \right], \\
U_t = C + \beta E_t \left[\pi_u \left(\log \bar{R}_{t+1} + U_{t+1} \right) + (1 - \pi_u)(\log \bar{R}_{t+1} + U_{t+1}) \right], \\
U_t^c = C + \beta E_t \left[\pi_u \left(\log \bar{R}_{t+1}^c + V_{t+1}^c + \psi(V_{t+1} - V_{t+1}^c) \right) + (1 - \pi_u)(\log \bar{R}_{t+1}^c + U_{t+1} - U_{t+1}^c) \right].
\]

Define \(v_t \equiv V_t - V_t^c \) and \(u_t \equiv U_t - U_t^c \) as reputation values for productive and unproductive entrepreneurs, satisfying

\[
v_t = \beta E_t \left[\pi_p \left(\log \bar{R}_{t+1} + (1 - \psi)v_{t+1} \right) + (1 - \pi_p)(1 - \psi)u_{t+1} \right], \\
u_t = \beta E_t \left[\pi_u \left(\log \bar{R}_{t+1} + (1 - \psi)v_{t+1} \right) + (1 - \pi_u)(1 - \psi)u_{t+1} \right].
\]

These equations can be reduced to one in \(v_t \) with two forward lags, generalizing equation (10):

\[
v_t = \beta E_t \left[\pi_p \log \frac{\bar{R}_{t+1}}{\bar{R}_{t+1}^c} + (1 - \psi)\pi_p + 1 - \pi_u v_{t+1} \right] - \beta^2 (1 - \psi)\pi_p - \pi_u \]
\[E_t \left[\log \frac{\bar{R}_{t+2}}{\bar{R}_{t+2}^c} + (1 - \psi)v_{t+2} \right].
\]

Default-deterring debt limits are linked to reputation values \(v_t \) according to the same equation (9) as in the main text. This generalizes Proposition 1 as follows: Any solution \((\rho_t, \theta_t, v_t, x_t) \) to the system of equations (17), (18), (19) and (9) defines a competitive equilibrium.

It is straightforward to check that credit constraints are binding if (16) holds, which generalizes Proposition 2. If constraints were slack in all periods, \(\rho_t = 1 \) and \(\bar{R}_t = \bar{R}_t^c = R_t \) would imply that \(v_t = 0 \) in all periods \(t \), so that default-deterring debt-equity ratios are \(\theta_t = \lambda/(1 - \lambda) \). On
the other hand, because of (17), the capital share of productive entrepreneurs would converge to the stationary population share which is $x_t \to FB_t \equiv \frac{\pi_p}{1 + \pi_u - \pi_p}$. Capital market equilibrium with non-binding constraints requires however that the debt capacity of borrowers exceeds capital supply of lenders, $\theta_t x_t \geq 1 - x_t$ which boils down to $\lambda \geq (1 - \pi_p)/(1 - \pi_p + \pi_u)$, contradicting condition (16).

Condition (16) furthermore implies that there exists an equilibrium without unsecured credit ($v_t = 0$ for all t) where capital is misallocated. In this equilibrium, $\rho_t = \gamma$, $\theta_t = \bar{\theta} \equiv \frac{1}{1 - \pi_p}$, and the stationary capital share \bar{x} solves the quadratic

$$x(1 - \gamma)\bar{x} + \gamma - \lambda = \pi_p(1 - \lambda)\bar{x} + \pi_u(\gamma - \lambda)(1 - \bar{x}),$$

which has a unique solution $\bar{x} \in (0, 1)$. A credit market equilibrium with misallocated capital at $\rho = \gamma$ requires that $\bar{x}\bar{\theta} < 1 - \bar{x}$. It is straightforward to verify that this equivalent to condition (16).

Lastly, we generalize Proposition 3 as follows.

Proposition 5 For all parameter values there exists a stationary equilibrium in which no unsecured credit is available and capital is inefficiently allocated. Provided that λ is sufficiently small, there are threshold values $\gamma_0 < \gamma_1 < 1$ such that:

(a) For $\gamma \in (\gamma_0, \gamma_1)$, there are two stationary equilibria with unsecured credit, one of them with inefficient capital allocation and the other one with efficient capital allocation.

(b) For $\gamma > \gamma_1$, there is no stationary equilibrium with unsecured credit.

(c) For $\gamma \leq \gamma_0$, there exists a unique stationary equilibrium with unsecured credit and efficient capital allocation.

Proof: The existence of the equilibrium without unsecured credit has already been established above. Consider first a steady–state equilibrium with an inefficient capital allocation ($\theta x < 1 - x$ and $\rho = \gamma$) and unsecured credit ($v > 0$). Because of $\tilde{R}/\tilde{R}^v = \frac{2 - \lambda}{1 - \lambda - e^v(1 - \gamma)}$, equation (19) implies in steady state that

$$e^v = F(e^v) \equiv \left(\frac{1 - \gamma - \lambda}{1 - \lambda - e^v(1 - \gamma)}\right)^\Phi,$$

with parameter $\Phi \equiv \frac{\beta \pi - \beta^2 (1 - \psi)(\pi_u - \pi_p)}{1 - \beta(1 - \psi)(\pi_u - \pi_p) + \beta(1 - \psi)^2(\pi_u - \pi_p)} > 0$. Redefine $\varphi = e^v > 1$ and note that F is increasing and strictly convex with $F(\varphi) \to \infty$ for $\varphi \to (1 - \lambda)/(1 - \gamma) > 1$. We also have that $F(1) = 1$ (which corresponds to the steady state $v = 0$ without unsecured credit). This
implies that equation (20) has a solution $\varphi = e^v > 1$ if and only if $F'(1) < 1$ which is equivalent to $\gamma > \gamma_0 \equiv \frac{\lambda + \Phi}{1 + \Phi}$. The stationary capital share x solves

$$x = H(x) \equiv \frac{\pi_p[1 + \theta(1 - \gamma)]x + \pi_u\gamma(1 - x)}{[1 + \theta(1 - \gamma)]x + \gamma(1 - x)},$$

where function H is increasing (because of $\pi_p > \pi_u$). This equation has a unique solution $x \in (0, 1)$ which satisfies $\theta x < 1 - x$ if and only if $1/(1 + \theta) > H(1/(1 + \theta))$ which is equivalent to

$$\theta < \frac{1 - \pi_p}{\pi_p(1 - \gamma) + \pi_u\gamma}.$$

Using $\theta = \frac{\varphi - 1 + \lambda}{1 - \lambda - \varphi(1 - \gamma)}$, this is equivalent to

$$\varphi < \overline{\varphi} \equiv \frac{(1 - \lambda)(1 - \gamma(\pi_p - \pi_u))}{1 - \gamma + \pi_u\gamma}.$$

Since F is increasing and convex with $F'(\varphi) > 1$, this holds if and only if $F(\overline{\varphi}) > \overline{\varphi}$ which is equivalent to

$$[1 - \gamma(1 - \pi_u)]^{1 + \Phi} > (1 - \lambda)^{1 + \Phi}\left[\frac{\gamma}{\lambda} \right]^{\Phi}[\pi_p - \gamma(\pi_p - \pi_u)]^{\Phi}[1 - \gamma(\pi_p - \pi_u)]. \quad (21)$$

In this inequality, both the LHS and the RHS are decreasing functions of γ such that LHS$(1) <$ RHS(1) (because of (16)) and LHS$(\gamma) =$ RHS(γ) at $\gamma \equiv \lambda/(1 - \pi_p + \lambda(\pi_p - \pi_u)) < 1$. Moreover, we have $0 > \text{LHS}'(\gamma) > \text{RHS}'(\gamma)$ if and only if

$$\lambda[\pi_p - \lambda(\pi_p - \pi_u)](1 - \pi_u)(1 + \Phi) < (1 - \lambda)(1 - \pi_p)\Phi[1 - \pi_p + \lambda(\pi_p - \pi_u)].$$

This inequality is true if λ is sufficiently small, so that we can conclude that there exists $\gamma_1 \in (\gamma, 1)$ such that inequality (21) is satisfied for all $\gamma \in (\overline{\gamma}, \gamma_1)$ (see Figure 4). Since also $\gamma_0 \in (\overline{\gamma}, \gamma_1)$, we conclude that there exists a steady state with inefficient production and unsecured credit if and only if $\gamma \in (\gamma_0, \gamma_1)$.

Second, consider an equilibrium with unsecured credit and efficient production, so that $\rho > \gamma$ and $\theta = \frac{e^v - 1 + \lambda}{1 - \lambda - e^v(1 - \rho)}$. The stationary capital share in such an equilibrium is $x = \frac{\pi_p(1 - \rho) + \pi_u\rho}{1 - \rho(\pi_p - \pi_u)}$, and capital market equilibrium requires that $x\theta = 1 - x$. Combining these equations establishes the equilibrium interest rate at given reputation value v:

$$\rho = \frac{e^v - 1 + \lambda}{e^v(1 - \pi_u) - (1 - \lambda)(\pi_p - \pi_u)} \quad (22)$$

On the other hand, equation (19) yields the stationary reputation value, analogously to (20),

$$e^v = \left(\frac{\rho - \lambda}{1 - \lambda - e^v(1 - \rho)}\right)\Phi. \quad (23)$$
Solving (22) for \(e^v \) and substitution into (23) yields the following equation for the equilibrium value of \(\rho \):

\[
[1 - \rho(1 - \pi_u)]^{1+\phi} = (1 - \lambda)^{1+\phi} \left(\frac{\rho}{\rho - \lambda} \right)^{\phi} [\pi_p - \rho(\pi_p - \pi_u)]^{\phi} [1 - \rho(\pi_p - \pi_u)] .
\]

(24)

In this equation, both sides (functions of \(\rho \)) are the same as both sides in inequality (21) (functions of \(\gamma \)). We conclude, again for \(\lambda \) sufficiently small, that \(\rho = \gamma_1 < 1 \) solves equation (24). In turn, for every \(\gamma < \gamma_1 = \rho \), a steady-state equilibrium with efficient production and unsecured credit exists. This completes the proof of Proposition 5. \qed