Supporting Information

Dienophile-Modified Mannosamine Derivatives for Metabolic Labeling of Sialic Acids: A Comparative Study

Jeremias E. G. A. Dold, Jessica Pfotzer, Anne-Katrin Späte, and Valentin Wittmann* [a]

cpyic_201700002_sm_miscellaneous_information.pdf
Supporting Information

Table of content

Synthesis of Ac₄ManNBtl (11) .. S3
Determination of Second-Order Rate Constants S4
Characterization of DMB-Labeled Modified Sialic Acids 31–38 by RP-HPLC .. S5
Analysis of DMB-Labeled Sialic Acids Released from Cells S11
NMR Spectra ... S18
Synthesis of Ac₄ManNBtl (11)

Scheme S1. Synthesis of Ac₄ManNBtl (11).
Determination of Second-Order Rate Constants

A)

\[
\text{ManNPeoc (8): } X = \text{O, } n = 3 \\
\text{ManNBtl (12): } X = \text{CH}_2, \ n = 0 \\
\text{ManNBeac (18): } X = \text{NH, } n = 2 \\
\]

\[
\text{ManNPeoc} + \text{Tz-PEG-OH (1)} \rightarrow \text{DAinv products} \\
\text{ManNBtl} + \text{Tz-PEG-OH (1)} \rightarrow \text{DAinv products} \\
\text{ManNBeac} + \text{Tz-PEG-OH (1)} \rightarrow \text{DAinv products} \\
\]

B)

\[
\begin{align*}
1/c [M^{-1}] & \quad t [h] \\
\hline
0 & 200 \\
200 & 400 \\
400 & 600 \\
600 & 800 \\
800 & 1000 \\
1000 & 1200 \\
1200 & 1400 \\
1400 & 1600 \\
1600 & 1800 \\
1800 & 2000 \\
\end{align*}
\]

Figure S1. A) Reaction of ManNPeoc (8), ManNBtl (12), or ManNBeac (18) with Tz-PEG-OH (1) to determine the second-order rate constant of the DAinv reaction. The reaction was followed by observation of the absorbance of the tetrazine at \(\lambda = 522 \text{ nm} \). B) Plot of the inverse concentration \(c \) of the tetrazine against the reaction time \(t \). The slope of the lines (with \(t \) in seconds) obtained by linear regression equals the second-order rate constant \(k_2 \).
Figure S2. Analysis of DMB-NeuSAlloc (31) by RP-HPLC (10% – 30% B in 40 min) with a fluorescence detector (excitation 372 nm, emission 456 nm). $R_t = 22.5$ min.
Figure S3. Analysis of DMB-Neu5Beoc (32) by RP-HPLC with a fluorescence detector (excitation 372 nm, emission 456 nm). A) 10% – 30% B in 40 min: $R_t = 24.9$ min, B) 10% – 25% B in 40 min: $R_t = 36.3$ min.
Figure S4. Analysis of DMB-Neu5Peoc (33) by RP-HPLC (10% – 30% B in 40 min) with a fluorescence detector (excitation 372 nm, emission 456 nm). $R_t = 34.5$ min.

Figure S5. Analysis of DMB-Neu5Heoc (34) by RP-HPLC (10% – 30% B in 40 min) with a fluorescence detector (excitation 372 nm, emission 456 nm). $R_t = 41.0$ min.
Figure S6. Analysis of DMB-Neu5Btl (35) by RP-HPLC (10 % – 18 % B in 85 min) with a fluorescence detector (excitation 372 nm, emission 456 nm). \(R_t = 29.3 \) min.

Figure S7. Analysis of DMB-Neu5Ptl (36) by RP-HPLC (10 % – 18 % B in 85 min) with a fluorescence detector (excitation 372 nm, emission 456 nm). \(R_t = 48.1 \) min.
Figure S8. Analysis of DMB-Neu5HxI (37) by RP-HPLC with a fluorescence detector (excitation 372 nm, emission 456 nm). A) 10 % – 18 % B in 85 min: \(R_t = 75.5 \) min, B) 10 % – 25 % B in 40 min: \(R_t = 37.9 \) min.
Figure S9. Analysis of DMB-Neu5Beac (38) by RP-HPLC (10 % – 25 % B in 40 min) with a fluorescence detector (excitation 372 nm, emission 456 nm). \(R_t \approx 24.1 \text{ min.} \)
Analysis of DMB-Labeled Sialic Acids Released from Cells

Figure S10. RP-HPLC analysis (10 % – 30 % B in 40 min) with a fluorescence detector (excitation 372 nm, emission 456 nm) of DMB-labeled sialic acids released from cells grown without added sugar (solvent control). A) Complete chromatogram, B) and C) enlarged regions.
Figure S11. RP-HPLC analysis (10% – 18% B in 85 min) with a fluorescence detector (excitation 372 nm, emission 456 nm) of DMB-labeled sialic acids released from cells grown without added sugar (solvent control).

Figure S12. RP-HPLC analysis (10% – 25% B in 40 min) with a fluorescence detector (excitation 372 nm, emission 456 nm) of DMB-labeled sialic acids released from cells grown without added sugar (solvent control).
Figure S13. RP-HPLC analysis (10% – 30% B in 40 min) with a fluorescence detector (excitation 372 nm, emission 456 nm) of DMB-labeled sialic acids released from cells grown with Ac₄ManNAloc (3).

Figure S14. RP-HPLC analysis (10% – 30% B in 40 min) with a fluorescence detector (excitation 372 nm, emission 456 nm) of DMB-labeled sialic acids released from cells grown with Ac₄ManNBeoc (5).

Figure S15. RP-HPLC analysis (10% – 25% B in 40 min) with a fluorescence detector (excitation 372 nm, emission 456 nm) of DMB-labeled sialic acids released from cells grown with Ac₄ManNBeoc (5).
Figure S16. RP-HPLC analysis (10% – 30% B in 40 min) with a fluorescence detector (excitation 372 nm, emission 456 nm) of DMB-labeled sialic acids released from cells grown with AcᵣManNPėoc (7). A) Complete chromatogram, B) enlarged region.
Figure S17. RP-HPLC analysis (10% – 30% B in 40 min) with a fluorescence detector (excitation 372 nm, emission 456 nm) of DMB-labeled sialic acids released from cells grown with Ac$_4$ManNHeoc (9). A) Complete chromatogram, B) enlarged region.

Figure S18. RP-HPLC analysis (10% – 18% B in 85 min) with a fluorescence detector (excitation 372 nm, emission 456 nm) of DMB-labeled sialic acids released from cells grown with Ac$_6$ManNBtl (11).
Figure S19. RP-HPLC analysis (10 % – 18 % B in 85 min) with a fluorescence detector (excitation 372 nm, emission 456 nm) of DMB-labeled sialic acids released from cells grown with Ac₄ManNptl (13).

Figure S20. RP-HPLC analysis (10 % – 18 % B in 85 min) with a fluorescence detector (excitation 372 nm, emission 456 nm) of DMB-labeled sialic acids released from cells grown with Ac₄ManNHxl (15).

Figure S21. RP-HPLC analysis (10 % – 25 % B in 40 min) with a fluorescence detector (excitation 372 nm, emission 456 nm) of DMB-labeled sialic acids released from cells grown with Ac₄ManNHxl (15).
Figure S22. RP-HPLC analysis (10 % – 25 % B in 40 min) with a fluorescence detector (excitation 372 nm, emission 456 nm) of DMB-labeled sialic acids released from cells grown with Ac4ManNBeac (17).
NMR Spectra

\[\text{AcO} - \text{HN} \quad 3' \quad 4' \]

\[\text{AcO} - \text{OAc} \]

11 Ac\(_2\)ManNB\(_3\)

\[\text{1H-NMR spectrum (CDCl}_3, \ 400 \text{ MHz) of compound 11 (enriched } \alpha\text{-anomer).} \]

\[\text{13C NMR spectrum (CDCl}_3, \ 101 \text{ MHz) of compound 11 (enriched } \alpha\text{-anomer).} \]

S18
1H NMR spectrum (CDCl$_3$, 400 MHz) of the separated α-anomer of compound 17.

13C NMR spectrum (CDCl$_3$, 101 MHz) of the separated α-anomer of compound 17.
1H NMR spectrum (D$_2$O, 400 MHz) of compound 19.

13C-NMR spectrum (D$_2$O, 101 MHz) of compound 19.
\(^{1}\text{H} \text{NMR spectrum (D}_2\text{O, 600 MHz) of compound 20.}\)
\(^1\)H NMR spectrum (D\(_2\)O, 600 MHz) of compound 21.

\(^1\)C NMR spectrum (D\(_2\)O, 151 MHz) of compound 21.
\(^1\)H NMR spectrum (D\(_2\)O, 600 MHz) of compound 22.

\(^{13}\)C NMR spectrum (D\(_2\)O, 151 MHz) of compound 22.
1H NMR spectrum (D$_2$O, 400 MHz) of compound 23.

13C NMR spectrum (D$_2$O, 101 MHz) of compound 23.
1H NMR spectrum (D$_2$O, 600 MHz) of compound 24.

13C NMR spectrum (D$_2$O, 151 MHz) of compound 24.
1H NMR spectrum (D$_2$O, 400 MHz) of compound 25.

13C NMR spectrum (D$_2$O, 151 MHz) of compound 25.
1H NMR spectrum (D$_2$O, 400 MHz) of compound 26.

1H-NMR spectrum (CDCl$_3$, 400 MHz) of compound 28.
13C-NMR spectrum (CDCl$_3$, 101 MHz) of compound 28.

1H NMR spectrum (CDCl$_3$, 400 MHz) of compound 30.
13C NMR spectrum (CDCl$_3$, 101 MHz) of compound 30.