Supporting Information

Content

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMR spectra</td>
<td>S3</td>
</tr>
<tr>
<td>Scheme S1</td>
<td>S11</td>
</tr>
<tr>
<td>LC-MS chromatograms</td>
<td>S15</td>
</tr>
</tbody>
</table>
NMR Spectra of Synthesized Compounds

Figure S1. 1H NMR spectrum (600 MHz, 300 K, D$_2$O) of H-D-γ-Glu(OMe)-Mdha-d-Ala-Leu-OH 3. 2 μL of acetone were added as an internal standard for calibration of 13C chemical shifts.

Figure S2. 13C NMR spectrum (151 MHz, 300 K, D$_2$O) of H-D-γ-Glu(OMe)-Mdha-d-Ala-Leu-OH 3. 2 μL of acetone were added as an internal standard for calibration of 13C chemical shifts.
Figure S3. 1H NMR spectrum (600 MHz, 305 K, D$_2$O) of thioether derivative 5. 4 µL of acetone were added as an internal standard for calibration of 13C chemical shifts.

Figure S4. 13C NMR spectrum (151 MHz, 305 K, D$_2$O) of thioether derivative 5. 4 µL of acetone were added as an internal standard for calibration of 13C chemical shifts.
Figure S5. 1H NMR spectrum (400 MHz, 300 K, D$_2$O) of H-D-γ-Glu-Mdha-d-Ala-Leu-OH 6.

Figure S6. 1H NMR spectrum (600 MHz, 300 K, D$_2$O) of 8. 2 µL of acetone were added as an internal standard for calibration of 13C chemical shifts.
Figure S7. 13C NMR spectrum (151 MHz, 300 K, D$_2$O) of 8. 2 µL of acetone were added as an internal standard for calibration of 13C chemical shifts.

Figure S8. DQF-COSY spectrum (600 MHz, 300 K, D$_2$O) of 8. 2 µL of acetone were added as an internal standard for calibration of 13C chemical shifts.
Figure S9. HSQC spectrum (151 MHz, 300 K, D$_2$O) of 8. 2 μL of acetone were added as an internal standard for calibration of 13C chemical shifts.

Figure S10. HMBC spectrum (151 MHz, 300 K, D$_2$O) of 8. 2 μL of acetone were added as an internal standard for calibration of 13C chemical shifts.
Figure S11. 1H NMR spectrum (600 MHz, 360 K, [D$_6$]-DMSO) of Z-D-γ-Glu(OMe)-Mdha-D-Ala-L-Leu-OtBu 11.

![NMR Spectrum 1](image1)

Figure S12. 13C NMR spectrum (151 MHz, 360 K, [D$_6$]-DMSO) of Z-D-γ-Glu(OMe)-Mdha-D-Ala-L-Leu-OtBu 11.

![NMR Spectrum 2](image2)
Figure S13. 1H NMR spectrum (600 MHz, 360 K, [D$_6$]DMSO) of Z-D-γ-Glu(OMe)-Mdha-D-Ala-L-Leu-OH 12.

Figure S14. 13C NMR spectrum (151 MHz, 360 K, [D$_6$]DMSO) of Z-D-γ-Glu(OMe)-Mdha-D-Ala-L-Leu-OH 12.
Figure S15. 1H NMR spectrum (600 MHz, 300 K, D$_2$O) of thioether derivative 13.

Figure S16. 1H NMR spectrum (400 MHz, 300 K, [D$_6$]DMSO) of Z-D-Gln(Me)-OH 15.
Figure S17. 13C NMR spectrum (101 MHz, 300 K, [D$_6$]DMSO) of Z-D-Gln(Me)-OH 15.

The identity of 15 was validated by comparison to an authentic synthetic sample that was prepared according to Scheme S1. Figures S18 and S19 show a comparison of the 1H and 13C NMR spectra of both samples.

Scheme S1. Synthesis of an authentic sample of Z-Gln(Me)-OH.
Figure S18. 1H NMR spectra (400 MHz, 300 K, [D$_6$]DMSO) of Z-D-Gln(Me)-OH 15 (top) and authentic sample synthesized according to Scheme S1 (bottom).

Figure S19. 13C NMR spectra (101 MHz, 300 K, [D$_6$]DMSO) of Z-D-Gln(Me)-OH 15 (top) and authentic sample synthesized according to Scheme S1 (bottom).
Figure S20. 1H NMR spectrum (400 MHz, 300 K, D$_2$O) of Z-D-γ-Glu,D,L-Mapa-D-Ala-L-Leu-OH 17.
Figure S21. 1H NMR spectrum (600 MHz, 300 K, CD$_3$OD) of microcystin-LF–GSH conjugate 18.
LC-MS Chromatograms

Figure S22. LC-MS chromatogram of microcystin-LF 1 (gradient: 50-100% BFA in 15 min) used for preparation of 18.

Figure S23. LC-MS chromatogram of a sample taken from the reaction mixture of 1 with an excess of GSH after 1h. (gradient: 35-70% BFA in 15 min).